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Università di Torino

Francisco Miraglia, An Introduction to Partially Ordered

Structures and Sheaves, Brası́lia: Lógica no Avi~ao, 2020.

Série L, Volume 2

I.S.B.N. 978-65-00-06148-2

Obra publicada com o apoio do PPGFIL/UnB.



Editorial Preface

I am very glad for the opportunity to write an editorial preface to “An In-
troduction to Partially Ordered Structures and Sheaves” by Francisco Miraglia.
This book with 45 chapters and almost 500 pages of exciting mathematics, featur-
ing partially ordered structures, category theory, spectral spaces, presheaves over
topological spaces, change of base and characteristic maps, originated in graduate
courses given by the author, as a visiting scholar at the Mathematical Institute
of Oxford University, in the academic year 90/91. It was first published by Poli-
metrica International Scientific Publisher in January 2009, where I was acting as
a chief editor. I then had the privilege of writing a more careful, perhaps a bit
poetic, Foreword to the book. I will not repeat it here, but instead register some
facts. Polimetrica was founded by Giandomenico de Sica in Monza, Italy, with
the intention of bringing quality books to light. In my short life as an editor at
Polimerica, I had the chance to publish, besides Miraglia’s book, also “The Magic
Garden of George B And Other Logic Puzzles” by Raymond Smullyan in 2007,
which was reprinted by World Scientific in 2015. Polimetrica did publish several
books, but unfortunately could not resist the pressure of the editorial market.

I would like to applaud the excellent initiative by the UnB Brasilia group
of “Lógica no Avião” (LnA) in the person of Rodrigo Freire (editor), Alexandre
Costa-Leite, Edgar Almeida and Gustavo Schmidt in republishing this book. LnA
is a non-profit organization dedicated to the promotion and dissemination of high
quality work in logic and philosophy, and will make this extraordinary book free
for all future generations. I am proud to have contributed to it.

Campinas, July 2020

Walter Carnielli
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Foreword

The discussion whether category theory is just a convenient language or has
its own intrinsic way to conceptualize mathematical knowledge will be seen as idle
after you read this book: you will certainly agree that it is both. Category theory
was born under the point of view that many (or all) concepts in Mathematics could
be better understood and explained by approaching them in a highly unified way:
several definitions, constructions, proofs and concepts are essentially the same, and
this is what the tools of category theory reveal.

Interesting enough, the idea of “category” derives from the use it had in phi-
losophy; even if the intention the founders of category theory gave the term is not
exactly the one Aristotle, Immanuel Kant, and Charles S. Peirce referred to it,
some connections remain.

Perhaps what the ideas of category in the philosophical and mathematical
senses share is the concern about existence and predication. In a similar way as on
what can be said about a given object or subject, as idealized by the classics, would
depend on the attention to certain aspects (such as quantity, substance, relations
or states), in the mathematical categories the existence of objects depends on the
conceptual environment. The witnesses of their existence are the morphisms (an-
other borrowed term, this one from R. Carnap) that relate the object in question
with other objects.

Some authors will say that, in category theory, an object cannot say to exist,
but what exists is the concept behind it. This is clearly reflected, for instance, in
setting the natural number objects in sheaves: if we suspect that perhaps one of
the most fundamental properties of natural numbers is their capacity of defining
functions by recursion, an abstract treatment can test this idea and see how far it
goes.

It is in the spirit of Mathematics to stretch out the essence of an idea to its
ultimate consequences: this way, for example, the category of sets or a topos of
sheaves over a topological space generalize at the same time a huge number of
concepts.

This book gives an overall, as self-contained as possible, introduction to sheaf
theory and its relation to logic. Starting from partially ordered structures, Mi-
raglia shows how to go from lattices to sheaf theory, how this naturally leads to
the universal constructions of category theory, and to first-order structures over
partially ordered sets.
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Foreword 7

Sheaves and presheaves over topological spaces - and how this is related to
first-order structures - is a central topic of this book.

But the connections to contemporary logic itself go much further: A theory of
relations and quantification in some particular categories is also explained; classi-
cal existential and universal quantifiers arise from those when certain projections
“forget” coordinates, following the seminal ideas of Francis William Lawvere on
conceptual mathematics.

There is also a deep methodological point when working in abstract partially
ordered structures and sheaves, and this book contributes to making this point
clear - as in general such structures are “pointless”, the constructions and gener-
alizations from elementary to more sophisticated results have to be more intrinsic,
but this, on the other hand, reveals the common relationship among semillatices,
distributive lattices, Heyting algebras and frames.

Continuous lattices and their natural topology (the “Scott topology”) is a ba-
sic topic here; they are known to be connected with computer science, general
topology, analysis, algebra and topos theory. This will also be relevant to read-
ers interested in constructive mathematics, and in deeper connections between
category theory and Logic, and on how this leads to more abstract views, as for
example how the methods of homology, cohomology, algebra and topological K-
theory could be seen as a sort of unified theory.

But what is an enjoyable and distinctive characteristic of this book is that
all this (and its relationship to category theory) is developed in a smooth way:
Miraglia chooses to introduce sheaves directly as mathematical structures, (specif-
ically, as Ω-sets closed under certain gluing properties) without previous require-
ments on category theory, for the benefit of the non-acquainted reader. This makes
this book as peerless introduction not only to concepts and methods, but to the
philosophical assumptions, foundations and significance of contemporary logic.

Walter Carnielli

Editor, Contemporary Logic

Campinas, September 2006

F. Miraglia An Introduction to Partially Ordered Structures and Sheaves. Lógica no Avião.



Preface

These notes originated in graduate courses given by the author, as a visit-
ing scholar, at the Mathematical Institute, Oxford University, in the academic
year 90/91. The audience included Angus Macintyre, Alex Wilkie, Richard Kaye,
Margerita Otero, Ugo Solitro and Paula D’Aquino, all of which deserve my hearti-
est thanks for ideas and suggestions. I am also grateful for the hospitality of the
Mathematical Institute at Oxford, marvelously represented by Angus Macintyre
and Alex Wilkie.

I am happy to acknowledge the contributions of Ugo Solitro, Marcelo Coniglio,
Andreas Brunner and Hugo Mariano to the present version of the text, which
consists of a considerable revision of the original, distributed every week to the
participants of the courses at Oxford. Special thanks are due to Walter Carnielli
for his enthusiasm with this project and to Giandomenico de Sica and the editorial
staff at Polimetrica for all their help in bringing the book to print.

In January of 1989, Carlos di Prisco organized, at the Instituto Venezuelano De
Investigaciones Cient́ıficas (IVIC) in Caracas, Venezuela, a workshop on Category
Theory and Logic. Besides Carlos di Prisco, were in attendance Antonio Mario
Sette (University of Campinas, Brazil), Xavier Caicedo (University of Los Andes,
Colombia), Ken López-Escobar (University of Maryland, USA) and the author.
In the many hours of enjoyable mathematical and cultural discussion, arose the
idea of writing a text that could serve as an introduction for the development of
the Sheaf Theory and Logic, as well as an introduction to the abstract context of
Topoi. The visit to Oxford gave me the opportunity of constructing a proposal in
this direction. However, all shortcomings of this attempt are my sole responsibility.

The prerequisites are a knowledge of basic algebra, point set topology and
elementary category theory. I expect that a first year graduate student will have
enough background to be able to work through the book.

The text is divided into seven parts. In Part I, Partially Ordered Struc-
tures, we discuss the lattice theoretic basis of sheaf theory. The attempt is to make
the text relatively self-contained. On the other hand, to keep size under control,
we cut a rather brisk path through partially ordered sets, lattices, distributive lat-
tices, Boolean algebras, Heyting algebras and their complete counterparts, giving
indications for further reading.

We have also included, in Chapters 16 and 17 of Part II, a summary of the
Category Theory and of limits and colimits of first-order structures over partially
ordered sets used in the book.
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Preface 9

Part III, Spectral Spaces, gives a unified treatment of the spectra of dis-
tributive lattices and of commutative rings. It also includes a presentation of the
Gleason or projective cover of compact spaces.

Part IV, Presheaves over Topological Spaces, is a survey of the main
ingredients of sheaves and presheaves over topological spaces. There is, of course,
also a presentation of sheaves and presheaves of first order structures, in this
setting. Our feeling was that the geometrical model is important in understanding
the abstract constructions, which it originated.

Part V, L-sets generalizes to semilattices, distributive lattices, Heyting alge-
bras and frames, the constructions in Part III. Since in general the algebraic basis
we work with do not have points, the treatment has to be more intrinsic. The
origin of these ideas are in [15], but we build on the development begun in [50].

Part VI, Change of Base, discusses the process of transporting, along a
semilattice morphism, L-sets and presheaves over one base to another. The mate-
rial includes the fundamental constructs of image, base extension, inverse image,
localization, fiber and stalks. These ideas are then applied to the description of
regularization functors, that generalize the transport functor associated to double
negation in a frame.

With an eye to applications of the material in text to Model Theory in the
category of Ω-sets and presheaves, we develop, in Part VII, Characteristic Maps,
a description of closed subobjects of Ω-sets and presheaves that has proven to be
a versatile and useful instrument for the establishment of a theory of relations and
quantification in those categories. The final Chapter of this Part introduces the
notion of graded frame, bringing to the theory of characteristic maps a construct
that is inspired by the well-known sequences that occur in Homology, Cohomology,
as well as in Algebraic and Topological K-theory.

We have chosen to present the development of Model Theory in the category
of L-sets and presheaves over a frame in a distinct volume.

At the end of each chapter we have included exercises, of varying difficulty.
Moreover, supplying the proofs of many assertions made in Examples and Remarks
are also considered as exercises for the reader.

All results, remarks, examples, exercises and definitions are numbered consecu-
tively within each chapter, beginning anew with every chapter, even if a chapter is
divided into sections. We adopt standard conventions concerning cross-references.
The symbol 2 indicates the end of a proof, of an example or of a remark.

São Paulo, April, 2006

F. Miraglia

F. Miraglia An Introduction to Partially Ordered Structures and Sheaves. Lógica no Avião.
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Part 1

Partially Ordered Structures



CHAPTER 1

Fundamentals

1. Sets

We adopt standard notation for unions, intersections and other set theo-
retic operations. For sets A and B, A − B is their difference, while A 4 B is their
symmetric difference, i.e.,

A − B = {x ∈ A : x 6∈ B} and A 4 B = (A − B) ∪ (B − A).

If A ⊆ B is clear from context, write Ac for B − A.

A ⊆f B stands for A is a finite (possibly empty) subset of B. Let

[Fin] Fin(B) = {A ⊆ B : A ⊆f B}
be the collection of finite subsets of B.

If A is a set, write card(A) or A for the cardinal of A.

If X
f−→ Y is a map and S ⊆ X, f|S : S −→ Y is the restriction of f to S.

Write 2 = {0, 1} and identify the set 2X with the family of subsets of X, via
characteristic functions :

S ⊆ X 7−→ χS : X −→ 2, where χS(x) = 1 iff x ∈ S.

The identity map as well as the composition of maps will be written as usual.
Whenever possible, we omit parentheses from functional notation, writing fx for
the value of f at x.

We write N = {0, 1, . . . }, Z, Q, R and C for the natural numbers, integers,
rationals, reals and complex numbers respectively, all of which carry their well-
known mathematical structure. If a < b are reals, we use standard conventions
regarding intervals. Thus, e.g.,

[a, b) = { x ∈ R : a ≤ x < b}.
For n ∈ N,

∗ n = {0, 1, 2, . . . , (n− 1)}, as is standard in Set Theory;

∗ If n ≥ 1, write n = {1, 2, . . . , n}.
Thus, 2 = {0, 1}, while 2 = {1, 2}. Clearly, 0 = ∅.

1.1. Partial Maps.

Write pF (X,Y ) for the set of partial maps from X to Y , that is

pF (X,Y ) = {f : f ⊆ X × Y and f is a function}.
Write domf and Imf , respectively, for the domain and image of a binary

relation f . Note that ∅ (the function with empty domain) is a member of pF (X,Y ).

Write Y X (⊆ pF (X,Y )) for the set of maps from X to Y . 2

15



Chapter 1. Fundamentals 16

One of the basic properties of subsets of pF (X,Y ) is described in

Lemma 1.2. Assume that S ⊆ pF (X,Y ) is compatible, i.e., it satisfies :

For all f , g ∈ S, f|domf∩domg = g|domf∩domg.

Then, there is a unique h ∈ pF (X,Y ) such that

domh =
⋃
f∈S domf and h|domf = f , ∀ f ∈ S.

Proof. For x ∈ U =
⋃
f∈S , set hx = fx, with x ∈ domf , f ∈ S; since

the elements of S are compatible, h is a map from U into Y , with the required
properties. �

Write h =
∨
f∈S f or h =

∨
S for the ‘gluing’ of the compatible family S

given by Lemma 1.2.

1.3. Equivalence Relations.

An equivalence relation on a set X is a subset E ⊆ X × X, such that for
all x, y, z ∈ X
[equ 1] : x E y;

[equ 2] : x E y implies y E x;

[equ 3] : x E y and y E z implies x E z,

where, as usual, x E y stands for 〈x, y 〉 ∈ E (called infix notation). If E is an
equivalence relation on X and x ∈ X, write

x/E = {y ∈ X : x E y},
for the equivalence class of x with respect to E. Write X/E for the set of equiv-
alence classes of elements of X by E. There is a natural surjection πE : X −→
X/E, given by πE(x) = x/E. 2

1.4. Products.

If {Xi}i∈I is a family of sets, their product is defined to be∏
i∈I Xi = {I s−→

⋃
i∈I Xi : ∀ i ∈ I, s(i) ∈ Xi },

which may be abbreviated by
∏

Xi. A typical element of
∏

Xi is written a =

〈 ai 〉 or a = 〈 a(i) 〉. There are natural projection maps
∏
Xi

πi−→ Xi, given by a
= 〈 ai 〉 7→ ai.

If J ⊆ I, there is a natural map,

ρJ :
∏
i∈I Xi −→

∏
j∈J Xj , ρJ(a) = restriction of a to J .

Hence, ρJ is the projection that forgets the components outside J . Since we employ
the restriction notation when dealing with presheaves, we shall refrain (although
appropriate) to write ρJ(a) as a|J .

Let Xi
fi−→ Yi, i ∈ I, be a family of maps. There is a unique map∏

i∈I fi :
∏
i∈I −→

∏
i∈I Yi,

∏
fi(a) = 〈 fiai 〉, (PM)

called the product of the fi. A map X
f−→ Y , induces, for any set I, a function

f I : XI −→ Y I , f I(a) = 〈 fai 〉.
We shall frequently let f(a) stand for fI(a). 2

F. Miraglia. An Introduction to Partially Ordered Structures and Sheaves. Lógica no Avião.



Chapter 1. Fundamentals 17

1.5. Disjoint Unions.

Write
∐
i∈I Xi or simply

∐
Xi, for the disjoint sum of the family Xi, where∐

Xi =
⋃
i∈I Xi × {i}.

There are canonical maps Xi
αi−→
∐
Xi, given by x ∈ Xi 7→ 〈x, i 〉. 2

2. Topology

We assume that the reader is familiar with the language of Topology, as for
instance in [12] or [77]. This section is designed to serve as a quick reference, for
the convenience of the reader.

Definition 1.6. A topological space is a pair 〈X, τ 〉 where X is a set and
τ is a subset of 2X such that

[top 1] : ∅, X ∈ τ ;

[top 2] : τ is closed under finite intersections;

[top 3] : τ is closed under arbitrary unions.

The elements of τ are called opens 1 and τ as a topology on X.

A subset of X is closed if its complement is open. The de Morgan laws of
elementary set theory guarantee that the closed sets verify the following conditions:

[clo 1] : ∅, X are closed;

[clo 2] : The family of closed sets is closed under finite unions;

[clo 3] : The family of closed sets is closed under arbitrary intersections.

Example 1.7. Let 〈X, τ 〉 be a topological space and A be a subset of X.
Define

τ |A = {C ⊆ A : ∃ U ∈ τ such that C = U ∩ A}.
τ |A is a topology, the induced or subspace topology on A. 2

If τ1, τ2 are topologies on X and τ1 ⊆ τ2, we say that τ2 is finer than τ1.

Note that 2X is a topology on X, the discrete topology, in which all subsets
of X are open. It is clearly the finest topology on X.

The family of topologies on X – a subset of 22X –, is closed under intersections.
Hence, if S ⊆ 2X is a family of subsets of X, S generates a unique topology on X,
defined as

τ(S) =
⋂
{τ : τ is a topology on X and S ⊆ τ}.

A more “constructive” description of τ(S) is given by

Lemma 1.8. For S ⊆ 2X , let 2

B(S) = {V ⊆ X : ∃ F ⊆f S such that V =
⋂
F}.

Then,

τ(S) = {U ⊆ X : ∃ G ⊆ B(S) such that U =
⋃
G}.

1This is quite imprecise. “Open” only has meaning after τ is given.
2⊆f means “finite subset of”, defined in page 15.

F. Miraglia. An Introduction to Partially Ordered Structures and Sheaves. Lógica no Avião.



Chapter 1. Fundamentals 18

Lemma 1.8 may be paraphrased as “the elements of τ(S) are the union of finite
intersections of elements of S”.

Proof. Write T = {U ⊆ X : ∃ G ⊆ B(S) such that U =
⋃
G}; note that

S ⊆ B(S) ⊆ T . It is straightforward that T ⊆ τ(S). Hence, it suffices to check
that T is a topology. It is clear that T is closed under arbitrary unions, as well as
that ∅, X ∈ T 3. To see that it is closed under finite intersections, write

U =
⋃
G1 and V =

⋃
G2,

with Gi ⊆ B(S), i = 1, 2. Then

U ∩ V =
⋃
A∈G1,B∈G2

A ∩ B. (*)

Since A and B are finite intersections of elements of S, the same is true of A ∩ B,
and (*) entails that U ∩ V ∈ T , as needed. �

Definition 1.9. Let 〈T, τ 〉 be a topological space and S ⊆ τ .

a) S is a basis for T iff every open set in T can be written as the union of elements
of S 4.

b) S is a sub-basis for T if every open set in T can be written as the union of
elements in B(S) (as in 1.8).

If X is a topological space, write Ω(X) for the topology (or the set of opens)
in X. For x ∈ X,

νx = {U ∈ Ω(X) : x ∈ U}
is the set of open neighborhoods of x in X.

Associated to any topological space X there are operations on 2X , which we
now describe. For A ⊆ X, define

int A = interior of A =
⋃
{U ∈ Ω(X) : U ⊆ A};

A = closure of A

=
⋂
{F ⊆ X : A ⊆ F and F is closed in X};

∂A = frontier of A = A ∩ X −A
The basic properties of interior and closure are described in the following

Lemma, whose proof is left to the reader.

Lemma 1.10. Let X be a topological space, x ∈ X, A, B ⊆ X.

a) A is open iff A = int A and A is closed iff A = A.

b) Interior and closure are increasing and idempotent, that is,

(1) Increasing : A ⊆ B ⇒ int A ⊆ int B and A ⊆ B;

(2) Idempotent : int(int A) = int A and (A) = A.

c) int A ∪ int B ⊆ int (A ∪ B) and A ∩ B ⊆ A ∩ B 5.

d) int (A ∩ B) = int A ∩ int B and A ∪ B = A ∪ B.

e) A = {p ∈ X : ∀ V ∈ νp, V ∩ A 6= ∅}.

3Just as above, X =
⋂
∅ and ∅ =

⋃
∅ and ∅ is a finite subset of S and B(S).

4Some authors require that S be closed under finite intersection.
5In general, interior does not preserve unions and closure does not preserve intersection.

F. Miraglia. An Introduction to Partially Ordered Structures and Sheaves. Lógica no Avião.



Chapter 1. Fundamentals 19

f) int Ac =
(
A
)c

and
(
Ac
)c

= int A.

Definition 1.11. Let T be a topological space and A, B ⊆ X.

a) A is clopen if it is open and closed in T . Write B(T ) for the set of clopen
subsets of T .

b) A is a regular open set if A = int A. Write Reg(T ) for the set of regular
opens in T .

c) A is a regular closed set if A = intA.

d) A is dense in B if B ⊆ A. A is dense if it is dense in T , that is, A = T .
Write D(T ) for the set of dense open sets in T .

With notation as in 1.11, it is clear that

[R] {∅, T} ⊆ B(T ) ⊆ Reg(T ) ⊆ Ω(T ).

Lemma 1.12. If T is a topological space, then B(T ) is closed under comple-
ments, as well as finite unions and intersections.

Proof. It is immediate from the defining properties of a topology (1.6) that
B(T ) is closed under complements and finite unions and intersections. �

Lemma 1.13. Let T be a topological space.

a) A ⊆ T is dense iff for all U ∈ Ω(X) − {∅}, A ∩ U 6= ∅.
b) The set D(T ) of dense opens in T has the following properties :

(1) A, B ∈ D(T ) ⇒ A ∩ B ∈ D(T );

(2) A ∈ D(T ) and A ⊆ B ∈ Ω(X) ⇒ B ∈ D(T ).

Proof. a) Straightforward from 1.10.(e) and the fact that A = T .

b) Since closure is increasing (1.10.(b).(1)), (2) is clear. For (1), we use (a). Let
x ∈ T and V ∈ νx; since A is dense in T , we have V ∩ A 6= ∅. But note that
V ∩ A is open and so must intersect the dense set B. Hence, V ∩ A ∩ B 6= ∅, and
1.10.(e) entails x ∈ A ∩ B, as needed. �

Lemma 1.14. Let {U} ∪ {Wi : i ∈ I} ⊆ Reg(T ), where T is a topological
space.

a) For A ∈ Ω(X), A is regular ⇔ A the interior of a closed set.

b) If A is open in T then

¬A =def int (T − A)

is a regular open, the largest open set in T that is disjoint from A. Moreover,
(A ∪ ¬A) ∈ D(T ).

c) The smallest 6 regular open containing all Wi is∨∗
i∈I Wi =def int

⋃
i∈I Wi.

In particular, U ∨∗ ¬U = T .

d) The largest 7 regular open contained in all Wi is∧∗
i∈I Wi = int

⋂
i∈I Wi.

6Under inclusion.
7Under inclusion.

F. Miraglia. An Introduction to Partially Ordered Structures and Sheaves. Lógica no Avião.



Chapter 1. Fundamentals 20

e) Reg(T ) is closed under finite intersections. Hence, if I is finite, then∧∗
i∈I Wi =

⋂
i∈I Wi.

f) U ∩
∨∗
i∈I Wi =

∨∗
i∈I U ∩ Wi.

Proof. a) (⇒) is clear; conversely, suppose A = int F , with F closed in T .
Then, since closure and interior are increasing (1.10.(b)), we get

A = intF ⊆ F .

Hence, A ⊆ int A ⊆ int F = A, and A = int A, as desired.

b) Since A is open, it follows from (a) that ¬A is a regular open. Clearly, A ∩ ¬A
= ∅ 8. If W ∩ A = ∅, then W ⊆ (T − A). Since the interior of a set is the largest
open set contained in it (see § before 1.10), it follows that W ⊆ int (T − U) =
¬U .

To check that U ∪ ¬U is dense in T , let x ∈ T and V ∈ νx. By what has just
been proven

V ∩ U = ∅ ⇒ V ⊆ ¬U .

Hence, V ∩ (U ∪ ¬U) 6= ∅, and the conclusion follows from 1.10.(e).

c) By (a),
∨∗

Wi ∈ Reg(T ); clearly, it contains all Wi. If V ∈ Reg(T ) verifies Wi

⊆ V , i ∈ I, then ⋃
i∈I Wi ⊆ V ,

wherefrom it follows that
⋃
i∈I Wi ⊆ V . But then,∨∗

i∈I Wi = int
⋃
i∈I Wi ⊆ int V = V ,

as needed. Since U ∪ ¬U is dense in T , it follows that

U ∨∗ ¬U = int U ∪ ¬U = int T = T ,

as asserted. Item (d) is similar and left to the reader.

e) It is enough to show that if U , V ∈ Reg(T ), then U ∩ V ∈ Reg(T ). This
amounts to verifying that

U ∩ V = int U ∩ V ,

which reduces to int U ∩ V ⊆ U ∩ V . But this follows from items (c) and (d) in
1.10 :

int U ∩ V ⊆ int (U ∩ V ) = int U ∩ int V = U ∩ V ,

as desired.

f) From (c) and (d) in 1.10 we get

int
⋃
i∈I U ∩ Wi = int U ∩

⋃
i∈I Wi ⊆ int

(
U ∩

⋃
i∈I Wi

)
= int U ∩ int

⋃
i∈I Wi = U ∩

∨∗
i∈I Wi.

By the computation above, the reverse inclusion is equivalent to

int
(
U ∩

⋃
i∈I Wi

)
⊆ int U ∩

⋃
i∈I Wi, (*)

which we now verify. To do this, it is enough to check that any open set contained
in the left hand side of (*) is also contained in its right hand side. Suppose, then

8For ¬A ⊆ T − A.
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that W ∈ Ω(T ) is such that W ⊆
(
U ∩

⋃
i∈I Wi

)
. Then, W ⊆ U , and so W ⊆ U ,

because U is regular. Hence,

W ⊆ U ∩
⋃
i∈I Wi (**)

We now observe

Fact 1.15. For U ∈ Ω(T ) and A ⊆ T , U ∩ A ⊆ U ∩ A.

Proof. Let p ∈ U ∩ A and V ∈ νp. Because U is open, U ∩ V ∈ νp. Since

p ∈ A, 1.10.(e) entails U ∩ V ∩ A 6= ∅, establishing that p ∈ U ∩ A.

It is now immediate from Fact 1.15 and (**) that W ⊆ U ∩
⋃
i∈I Wi, as needed

to establish (*), ending the proof. �

There are several ways to measure the “size” of a topological space (besides
cardinality). Two of the most common are introduced in

Definition 1.16. Let T be a topological space.

a) The density of T , d(T ), is the least cardinal κ such that T has a dense subset
of cardinality κ. T is separable if d(T ) is at most countable.

b) The weight of T , w(T ), is the least cardinal γ such that T has a basis of cardinal
γ. T is second countable or Lindelöff if its weight is at most countable.

It is clear that d(T ) ≤ w(T ); but Theorem 1.29 (stated below) implies that
there are (many) separable spaces whose weight is uncountable.

Definition 1.17. Let f : X −→ Y be a map between topological spaces.

a) f is continuous if for all V ∈ Ω(Y ), f−1(V ) ∈ Ω(X). Write C(X,Y ) for
the set of continuous maps from X to Y . When Y is the real line R, write C(X)
for C(X,R).

b) f is closed if the image of every closed subset of its domain is closed in its
codomain.

c) f is open if the image of every open subset of its domain is open in its codomain.

d) A continuous map is a homeomorphism if it is bijective and its inverse is
continuous.

Lemma 1.18. Let f : X −→ Y be a continuous map of topological spaces. If
f is bijective, the following are equivalent :

(1) f is a homeomorphism; (2) f is closed; (3) f is open.

Proof. Let g : Y −→ X be the inverse of f . Recall that inverse image
commutes with complement and that for A ∈ 2X and B ∈ 2Y

f−1(B) = g(B) and g−1(A) = f(A).

The stated equivalence is immediate from these observations. �

Definition 1.19. Let X and Y be sets and S, T be disjoint subsets of X.
Let A ⊆ 2X and K ⊆ Y X .

a) A separates S and T if there are A, B ∈ A such that S ⊆ A and T ⊆ B.
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b) K separates S and T iff there is f ∈ K and y, y′ in Imf such that S ⊆ f−1(y)
and T ⊆ f−1(y′).

c) A separates points in X if distinct points in X are separated by A. Analo-
gously, for the concept that K separates points in X.

Definition 1.20. A topological space X is 9

∗ T0 iff for all x, y ∈ X, x 6= y ⇒ νx 6= νy.

∗ T1 iff ∀ x, y ∈ X, x 6= y ⇒ νx − νy 6= ∅.
∗ Hausdorff or T2 iff distinct points in X are separated by Ω(X).

∗ regular or T3 iff it is T1 and for all x ∈ X and closed F in X,

x 6∈ F ⇒ {x} and F are separated by Ω(X).

∗ completely regular 10 iff it is T1 and for all x ∈ X and all closed F in X,

x 6∈ F ⇒ {x} and F are separated by C(X, [0, 1]).

∗ normal or T4 iff it is T1 and disjoint closed sets in X are separated by Ω(X).

Lemma 1.21. a) A space is T1 iff all points in X are closed.

b) A T1 space is regular iff for all x ∈ X and all V ∈ νx, there is U ∈ νx such
that U ⊆ V .

If i ≤ j then Tj ⇒ Ti ; T4 ⇒ completely regular, comes from the famous
Urysohn separation theorem for normal spaces :

Theorem 1.22. (Urysohn) X is a normal space iff any pair of disjoint closed
sets is separated by C(X, [0, 1]).

An important property that will appear quite frequently is compactness, a
topological version of finiteness.

Definition 1.23. Let T be a topological space and A ⊆ B ⊆ T .

a) A is compact 11 if every open covering of A has a finite subcovering.

b) A is relatively compact in B if (A ∩ B) is compact in B (in the topology
induced by T ) 12.

c) A is relatively compact if A is compact in T .

Lemma 1.24. Let T be a topological space.

a) Compactness is preserved by finite unions 13.

b) If U ∈ Ω(T ) and A ⊆ U , then A is compact in U iff it is compact in T .

b) The intersection of a closed set and a compact set is compact. In particular, a
closed subset of a compact set is compact.

c) In a Hausdorff space, all compact subsets are closed. Hence, in a Hausdorff
space, the intersection of compacts is compact.

9Terminology as in 1.19.
10Sometimes T3 1

2
space; [0, 1] is the closed unit real interval.

11Some authors use quasi-compact when T is not Hausdorff.
12(A ∩ B) is the closure of A in B, in the induced topology from T as 1.7.
13However, in general, not by intersections.
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d) A compact Hausdorff space is normal (1.20).

e) Compactness is preserved by continuous image.

f) Let f : X −→ Y be a continuous map. If X is compact and Y is Hausdorff,
then f is a homeomorphism ⇔ f is bijective.

Proof. We prove b), (d) and (f) leaving the other items to the reader.

b) Let C = F ∩ K, with F = F and K compact in T . Let W = F c; then W is
open in T . If Vi, i ∈ I, is an open covering of C, the family {Vi : i ∈ I} ∪ {W} is
an open covering of K; hence it has a finite subcovering. Removing W from this
finite subcovering, one obtains a finite subcovering C by the Vi, as needed.

d) Let C, E be disjoint closed sets in T . By (b), C and E are compact. Fix p ∈ C;
for each q ∈ E, select disjoint open neighborhoods Uq, Vq of p and q, respectively.
This is possible because T is Hausdorff. Since E is compact, there is β ⊆f E such
that

E ⊆
⋃
q∈β Vq.

Because β is finite, Up =
⋂
q∈β Uq is an open set containing p. Now note that

Up ∩
⋃
q∈β Vq = ∅,

providing disjoint opens, one containing p and the other E. This reasoning shows
that T is regular. Now repeat the argument, using regularity. For each p ∈ C, there
are disjoint opens Up, Vp, with p ∈ Up and E ⊆ Vp. Compactness yields α ⊆f C
such that C ⊆

⋃
p∈α Up. But then⋂

p∈α Vp and
⋃
p∈α Up

are disjoint opens, the first containing E and the second C, establishing normality.

f) It is enough to prove (⇐). We show that f is closed and conclude by 1.18. Let
F be a closed set in X; then, F is compact (by (b)) and so f(F ) is compact in Y
(by (e)). Now, (c) entails that f(F ) is closed, ending the proof. �

1.25. The Product Topology. Let Xi, i ∈ I, be a family of topological
spaces. The product X =

∏
Xi (1.4) carries a natural topology, the product

topology, that we now describe.

Recall that Fin(I) is the family of finite subsets of I (see [Fin] in page 15).
For α ∈ Fin(I), define

O(α) =
∏
i∈α Ω(Xi).

Write U = 〈Ui 〉i∈α for a typical element of O(α). Now define

p(U) = {s ∈
∏
Xi : s(i) ∈ Ui, for all i ∈ α}. (1)

Note that p(U) is the product of the family

{Xj : j ∈ I − α} ∪ {Ui : i ∈ α}.
Consequently, 

p(U) = X if α = ∅,
and

p(U) = ∅ if Ui = ∅, for some i ∈ α.

(2)

For α, β ∈ Fin(I), U ∈ O(α) and V ∈ O(β), define

U ∧ V ∈ O(α ∪ β) and U ∨ V ∈ O(α ∩ β),
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by the following prescriptions :

(U ∧ V )i =


Ui if i ∈ α − β;

Vi if i ∈ β − α;

Vi ∩ Ui if i ∈ α ∩ β.

(U ∨ V )i = Ui ∪ Vi, i ∈ α ∩ β.

We have

Fact 1.26. For α, β ∈ Fin(I), U ∈ O(α) and V ∈ O(β)

(1) p(U) ∩ p(V ) = p(U ∧ V );

(2) p(U) ∪ p(V ) = p(U ∨ V ).

Proof. (1) For s ∈ X
s ∈ p(U) ∩ p(V ) iff ∀ i ∈ α, s(i) ∈ Ui and ∀ j ∈ β, s(j) ∈ Vj

iff ∀ k ∈ α ∪ β,


s(k) ∈ Uk if k ∈ α − β

s(k) ∈ Vk if k ∈ β − α

s(k) ∈ Uk ∩ Vk if k ∈ α ∩ β
iff s ∈ p(U ∧ V ).

The proof of (2) is similar and left to the reader.

The product topology on X =
∏

Xi is the topology generated (1.8) by the
family

p = {p(U) : U ∈ O(α) and α ∈ Fin(I)}.
By Fact 1.26, p is closed under finite intersections and unions. Hence, a subset C
⊆ X is open in the product topology iff it can be written as a union of elements
of p. Some of the fundamental properties of the product topology are described in

Fact 1.27. a) The canonical projections, πi :
∏
Xi −→ Xi, are continuous.

b) Let Y be a topological space and f : Y −→
∏
Xi be a map. The following are

equivalent :

(1) f is continuous; (2) For all i ∈ I, f ◦ πi is continuous.

Proof. a) If A is open in Xi, then

π−1
i (A) = p(U),

where α = {i} and U = 〈A 〉.
b) Since composition preserves continuity, (a) entails that (1) ⇒ (2). For the
converse, note that if α ∈ Fin(I) and U ∈ O(α), then

f−1(p(U)) =
⋂
i∈α (f ◦ πi)−1(Ui),

which is open because α is finite. Since all opens in
∏
Xi are unions of elements

in p and inverse image preserves arbitrary unions, f is continuous. 2

We now mention two important structural properties of product spaces: preser-
vation of compactness and the characterization of their density (1.16.(a)) in terms
of that of its components. For a proof of these results, the reader may consult [12].

Theorem 1.28. (Tychonoff) If Xi, i ∈ I, is a family of compact spaces, then∏
Xi, with the product topology, is compact.
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Theorem 1.29. (Hewitt, Marczewski, Pondiczery) Let m be an infinite car-
dinal and let Xi, i ∈ I, be spaces such that d(Xi) ≤ m. If card(I) ≤ 2m, then
d(
∏
Xi) ≤ m. 2

Exercises

1.30. If T is a topological space and U ∈ Ω(T ), then

a) ¬¬U = int U .

b) U ∈ D(T ) iff ¬¬U = T .

c) U ∈ Reg(T ) iff ¬¬U = U . 2

1.31. a) If f : X −→ Y is a continuous map, then

U ∈ B(Y ) ⇒ f−1(U) ∈ B(X).

b) Give an example to show that the above property is false for regular opens. 2

1.32. Let Xi, i ∈ I, be a family of topological spaces and let Bi be a basis 14

for the topology on Xi, i ∈ I. In analogy with 1.25, for α ∈ Fin(I), define

B(α) =
∏
i∈α Bi

and write U = 〈Ui 〉i∈α for a typical element of B(α). As in 1.25, set

p(U) = {s ∈
∏
i∈I Xi : si ∈ Ui, for all i ∈ α},

and let

b = {p(U) : U ∈ B(α) and α ∈ Fin(I)}.
a) b is a basis for the product topology on

∏
i∈I Xi.

b) If the Bi, i ∈ I, are closed under finite intersections, the same is true of b 15.

c) If the Bi, i ∈ I, are closed under finite unions, the same is true of b.

d) If Bi, i ∈ I, consists of clopen sets, then all elements of b are clopen in the
product topology on

∏
i∈I Xi.

e) If Bi, i ∈ I, consists of compact sets and all Xi are compact, then all elements
of b are compact in the product topology on

∏
i∈I Xi. 2

1.33. Let X, Y be sets, S, T be disjoint subsets of X and A ⊆ 2X , K ⊆ Y X .

a) Prove that 2X separates any disjoint pair of subsets of X.

b) K separates S and T iff {f−1(y) : f ∈ K and y ∈ Y } separates S and T .

c) With notation as in 1.3, for x, y ∈ X, define

x E y iff For all f ∈ K, fx = fy.

(i) Show that E is an equivalence relation on X.

(ii) Show that if f ∈ K, then the rule f̂(x/E) = fx yields a well-defined map f̂ :

X/E −→ Y , such that f̂ ◦ πE = f .

(iii) Show that K̂ = {f̂ : f ∈ K} separates points in X/E. 2

14That is, every open in Xi is an unions of elements of Bi.
15Fact 1.26 may be useful.
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CHAPTER 2

Partial Orders

Partial Orders occur very frequently in Mathematics and are at the foundation
of all that will henceforth be discussed. We shall cut a rather brisk path through
the basic facts we will need. General references for the material presented here are
[3], [5], [21] and [60].

There is a perhaps inevitable cluster of definitions and nomenclature which has
to presented and acquired. We hope the examples will prove helpful in obtaining
an understanding of these. Almost all that is described in this chapter will appear
repeatedly in future work.

1. Pre-Orders and Partial Orders

Definition 2.1. Let L be a set. A binary relation, ≤, on L is a pre-order
on L iff for all a, b, c ∈ L we have

[po1] : a ≤ a;

[po2] : a ≤ b and b ≤ c ⇒ a ≤ c.

A pre-order ≤ on L that satisfies, for all a, b ∈ L
[po3] : a ≤ b and b ≤ a ⇒ a = b.

is called a partial order (po) on L. We often say that 〈L,≤〉 is a poset 1. As
usual, a < b stands for a ≤ b and a 6= b.

If 〈L,≤〉, 〈R,�〉 are pre-ordered sets, a map f : L −→ R is a morphism 2,
if for all x, y ∈ L
[I] x ≤ y ⇒ fx � fy.

A morphism f : L → R is an embedding if for all x, y ∈ L
[E] x ≤ y ⇔ fx � fy.

2.2. Notation. For a ≤ b in a pre-ordered L,

[a, b] = {x ∈ L : a ≤ x ≤ b}; (a, b) = {x ∈ L : a < x < b};
(a, b] = {x ∈ L : a < x ≤ b}; [a, b) = {x ∈ L : a ≤ x < b};
a→ = {x ∈ L : a ≤ x}; a← = {x ∈ L : x ≤ a}. 2

The proof of the next result is straightforward.

1Partially ordered set.
2Or increasing.
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Lemma 2.3. Let 〈L,≤〉 be a pre-ordered set. Define a binary relation E on
L by

x E y iff x ≤ y and y ≤ x

Then, E is an equivalence relation on L. For x, y ∈ L, set

x/E ≤ y/E iff x ≤ y.

Then, 〈L/E,≤〉 is a poset and the natural surjection, πE, is a morphism of pre-
ordered sets. Moreover, we have the following universal property : If 〈P,�〉 is
a poset and f : L −→ P is a morphism, then there is a unique morphism,
fE : L/E −→ P , such that fE ◦ πE = f .

P

L

?

- L/E

�
�
�

�
�
�	

f

πE

fE

2

The poset in 2.3 is called the poset associated to the pre-ordered set 〈L,≤〉.

Pre-orders on a set are in duality with a special type of topology on its carrier,
as follows :

Proposition 2.4. There is a natural bijective correspondence between the
pre-orders on a set X and subsets of 2X which are closed under arbitrary unions
and intersections.

Proof. Let  be a pre-order on X. With notation as in 2.2, define

τ = {U ⊆ X : ∀ x (x ∈ U ⇒ x→ ⊆ U}. (I)

It is readily verified that τ is closed under arbitrary unions and intersections. In
fact, τ is a topology on X, of a very special kind : each x ∈ X has a minimal
neighborhood, namely x→.

Conversely, given a family P ⊆ 2X , which is closed under unions and intersec-
tions, define

x P y iff ∀ U ∈ P, x ∈ U ⇒ y ∈ U . (II)

Again, it is straightforward that P is a reflexive and transitive relation on X. We
may now ask for the relation between P and τ = τP .

If U ∈ P, x ∈ U and x P y, then by (II) above, y ∈ U . Thus, by (I), U ∈ τ
and so P ⊆ τ . For the converse, first note that for x ∈ X

x→ = {y ∈ X : x P y} =
⋂
{U ∈ P: x ∈ U}, 3

3In the pre-order P .
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which is an element of P since it is closed under intersections. Thus, given V ∈ τ ,
we may write V =

⋃
{x→ : x ∈ V }, a union of elements in P, showing that V ∈ P

and so τ = P. A similar reasoning shows that τ = , ending the proof. �

We have used the forcing symbol  to indicate a pre-order in the proof of 2.4
because of the connection between pre-orders and Kripke models.

It is clear that if S ⊆ L and ≤ is a po on L, then S is a poset with the order
induced by L; when no confusion can arise, the induced order is still written ≤.

Example 2.5. We change notation a little for the sake of clarity. If R is a po
on L, we may define a new po on L, Rop, given by

〈x, y 〉 ∈ R ⇔ 〈 y, x 〉 ∈ Rop.
Rop is the inverse or opposite order of R. Clearly, (Rop)op = R. Concepts
defined for R, correspond, by duality, to concepts defined for Rop : lower bound to
upper bound, inf to sup, bounded to bounded, etc. We shall have a chance to see
other pairs of dual concepts below. It is useful to keep this duality in mind, since
a result proven for R will also yield its dual for Rop. 2

Definition 2.6. Let 〈L,≤〉 be a poset, let S be a subset of L and let a, b be
elements of L.

∗ a is the maximum (minimum) of S, if a ∈ S and ∀ s ∈ S, s ≤ a (resp., a ≤ s).
Notation : a = max S (resp., a = min S).

The symbols > (top) and ⊥ (bottom) will always denote max L and min L,
respectively. Write L− for L − {⊥, >}.

∗ a is an upper (lower) bound for S, if ∀ s ∈ S, s ≤ a (resp., a ≤ s).
The (possibly empty) set of upper (resp., lower) bounds for S is denoted by S→

(resp., S←) : {
S→ = {x ∈ L : ∀ s ∈ S, (s ≤ x)}
S← = {x ∈ L : ∀ s ∈ S, (x ≤ s)}.

When S = {b}, following the notation in 2.2, write b→ and b← in place of S→ and
S←, respectively. Notice that

S→ =
⋂
s∈S s

→,

and similarly for S←.

S is bounded if S→ 6= ∅ and S← 6= ∅. The reader can surely imagine the
definitions of bounded above or below.

∗ a is the least upper bound, supremum (sup) or join of S if a = min S→;

sup S,
∨
S or

∨
s∈S s,

stand for the join of S in L (whenever it exists). Duality yields the concept of
greatest lower bound, infimum (inf) or meet of S, written

inf S,
∧
S or

∧
s∈S s.

It is easily verified that

a = min S→ iff a = inf S→ iff a = sup S.
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Similar relations hold for the meet.

∗ a is maximal (minimal) in S, if a ∈ S and

∀ s ∈ S, s ≥ a ⇒ s = a (resp., s ≤ a ⇒ s = a).

∗ If L has bottom ⊥, a is an atom in L iff a is a minimal element distinct from
⊥.

∗ S is an upper (lower) set iff S =
⋃
s∈S s

→ (resp.,
⋃
s∈S s

←).

If 〈L,≤〉 is a poset and S ⊆ L, it is clear that∨
S exists in L iff

∨ ⋃
s∈S s

← exists in L,

in which case they are equal. A similar comment holds for meets.

Remark 2.7. Every subset S ⊆ L generates an upper and a lower set, given
respectively by

S↑ =
⋃
s∈S s

→ and S↓ =
⋃
s∈S s

←.

With this notation we have, for all S ⊆ L :

(i) S is an upper (lower) set iff S = S↑ (resp., S↓);
(ii) (S↑)↑ = S↑ and (S↓)↓ = S↓.
(iii)

∨
S =

∨
S↓ and

∧
S =

∧
S↑,

where the equations mean that one side is defined iff the other is and they are
equal. 2

Remark 2.8. When dealing with sups and infs we must be careful of the
posets in which they are computed (see 2.11, below). A completely unambiguous
notation would be very cumbersome. Common sense and care are the proposed
alternatives. 2

Example 2.9. One of the most basic examples of poset is the power set of
a set X, 2X , with the inclusion relation, ⊆. If one wishes to deal directly with
characteristic functions, this order is given by

f ≤ g iff ∀ x ∈ X, fx ≤ gx.

If S ∈ 2X then
⋃
S and

⋂
S are, respectively, sup S and inf S in this po. Further,

in this po, ∅ = ⊥ and X = >.

Let S = {singletons in X} = {{x} : x ∈ X}; if X has more than one element,
every element in S is maximal and minimal, but S has no top and no bottom.

Inside 2X there are many interesting subposets. As examples, let λ be a car-
dinal, λ ≤ card(X) (the cardinal of X); define{

2Xλ = {A ∈ 2X : card(A) < λ} ∪ {X};
Bλ(X) = {A ∈ 2X : card(A) < λ or card(Ac) < λ},

both with the po induced from 2X . Note that 2Xγ = 2X , when γ is a cardinal not
less than the successor of card(X). Moreover, if λ = ω (the cardinal of the natural
numbers), then

2Xω = Fin(X) ∪ {X},
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where Fin(X) is the set of finite subsets of X ([Fin], page 15). Further, Bω(X) is
the poset of subsets of X which are finite or cofinite (the complement of a finite
set). 2

Example 2.10. The natural orders on N, Z, Q and R are, of course, all pos.
Definition 2.6 generalizes familiar concepts in these examples. If A denotes any of
these number sets, let A∗ = A ∪ {−∞,∞}, with the canonical order. 4 2

Example 2.11. Let T be a topological space.

a) For x, y ∈ T , define x ≤ y iff x ∈ {y}; ≤ is a po iff T is a T0 space, called
the specialization po.

b) Let Ω(T ) be the set of opens in T . Clearly, Ω(T ) ⊆ 2T and the inclusion po
in Ω(T ) is that induced by 2X . As above, top and bottom in Ω(T ) are T and ∅,
respectively. For S ⊆ Ω(T ),∧

S = int(
⋂
S) and

∨
S =

⋃
S,

are the sup and inf of S in Ω(T ), while int (∗) is the interior operation, as in
section 1.2 and 1.10.

It is easy to find topological spaces and families of opens S where int(
⋂
S) 6=⋂

S. This exemplifies the caution mentioned in 2.8. 2

Example 2.12. Let pF (X,Y ) be the set of partial maps from X to Y (1.1).
Define 5

f ≤ g iff domf ⊆ domg and g|domf
= f .

This is clearly a partial order, called the extension po. For a non-empty
S ⊆ pF (X,Y ) we have :

a) S→ 6= ∅ iff for all f , g ∈ S, f|domf∩domg = g|domf∩domg.
In that case,

∨
S exists (by 1.2) as the gluing of the compatible family of maps

S. Thus, this poset satisfies a familiar property : every non-empty subset with an
upper bound has a least upper bound.

b) f ∈ S← iff all elements of S are extensions of f .

Hence, S← is compatible and all non empty subsets of pF (X,Y ) have an infimum,
namely

∨
S←.

c) Any element of Y X is maximal, although pF (X,Y ) has no top, whenever X
has more than one element.

In set-theoretical forcing, it is customary to use the opposite of this order :
f ≤ g iff f is an extension of g. The results are then dual to the ones described
above. 2

Example 2.13. If X, Y are sets and κ is a cardinal, define

pFκ(X,Y ) = {f ∈ pF (X,Y ) : card(domf) < κ}.
pFκ(X,Y ) inherits the extension po of pF (X,Y ), with which it becomes a poset
in its own right. In particular, pFω(X,Y ) consists of all partial maps from X to
Y with finite domain, with the extension po. 2

4For all x ∈ A, −∞ < x < ∞.
5f|∗ is the restriction of f , as in page 15.
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Example 2.14. Let M be a module over the commutative ring R. Let Sub(M)
be the set of submodules of M , partially ordered by inclusion. If S is a set of
submodules of M , there always exist

∧
S (the intersection of the submodules in

S) and
∨
S (the submodule generated by

⋃
S). Similarly, one can consider the

poset of ideals of a ring, the poset of subspaces of a vector space and the poset of
closed subspaces of a Hilbert space. 2

Example 2.15. Let 〈M,Σ, µ 〉 be a measure space, that is M is a set, Σ ⊆
2M is a σ - algebra and µ is a countably additive map, µ : Σ −→ R+ (positive
reals). Actually, for our purposes, it would be sufficient that µ be a finitely additive
vector measure. We assume that µM < ∞.

A partition of M in Σ is a finite set P ⊆ Σ − {∅}, such that for all distinct
p, q ∈ P we have p ∩ q = ∅ and

⋃
P =

⋃
p∈P p = M . Let P be the set of partitions

of M in Σ. For P , Q ∈ P, define

P � Q iff ∃ b : Q −→ P such that ∀ q ∈ Q, q ⊆ bq.

The relation � is a po on P, called refinement. Every pair (and thus every finite
subset) of partitions has a least upper bound, namely,

P ∨ Q = {p ∩ q : p ∈ P , q ∈ Q and p ∩ q 6= ∅}.
Some authors allow partitions which are countable subsets of Σ, with refinement
as above; others, require only that Σp∈P µp = µM . In general, we still have only
finite sups. We remark that for finite measure spaces, only finite partitions are
needed for integration theory. 2

Example 2.16. Products. If Xi, i ∈ I, are posets,
∏

Xi has a natural po
given by

〈 ai 〉 ≤ 〈 bi 〉 iff ∀ i ∈ I, ai ≤ bi.

In particular, if M is a poset, any power M I is also a poset in a natural way.

Important examples occur as sub posets of RI or R∗I , as for instance, continuous
real functions on a topological space and lower or upper semicontinuous on a
topological space.

Recall that a map f : T −→ R∗ from a topological space to the extended reals
is lower semicontinuous (f ∈ LSC(T )) iff

[LSC] For all r ∈ R∗, the set {x ∈ T : fx > r} is open in T .

For upper semicontinuity (USC(T )) we require that {x : fx < r} be open in T .

Under the order induced from the product R∗I , both LSC(T ) and USC(T )
have sups for all subsets. On the other hand, the same will be true for continuous
functions on compact spaces iff T is extremely disconnected, a property we will
study later on. We have relative versions of the above for real valued functions,
that is, every non-empty subset with an upper bound has a sup.

Other classical Banach function spaces are associated to “quotients” of posets
of the sort RI : if f , g are measurable real valued functions we may define

f ≤ g iff µ{x : fx > gx} = 0.

As it stands, this is a pre-order (2.1). It becomes a po if we declare equal all
functions which are equal almost everywhere.
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The reader will find a wealth of information on the functional analytic proper-
ties of these structures in [16], [42], [78], [63] and [64]; [17] also has considerable
information on the relation between these structures and continuous lattices. 2

Example 2.17. Let {Xi : i ∈ I} be a family of posets and assume that I is
partially ordered by �. The disjoint union

∐
Xi (see 1.5) carries a po, defined as

follows : 6

〈x, i 〉 ≤ 〈 y, j 〉 iff i ≺ j or i = j and x ≤ y (in Xi). 2

Example 2.18. Let 〈L,≤〉 be a poset and n ≥ 1 an integer. The product Ln

carries, besides the natural (coordinate-wise) partial order presented in 2.16, the
following partial order, called lexicographic po, defined as follows :

For x = 〈x1, . . . , xn 〉 and y = 〈 y1, . . . , yn 〉 in Ln, set 7
α(x, y) = {k ∈ n : xk 6= yk};

and

γ(x, y) =

{
min α(x, y) if α(x, y) 6= ∅

0 if γ(x, y) = ∅.
Note that α(x, y) = 0 iff x = y. Now define, with γ = γ(x, y),

x ≤ y iff γ(x, y) = 0 or xγ ≤ yγ .

It is straightforward to check that this defines a partial order on Ln. The same
construction maybe obtained substituting n ≥ 1 for an arbitrary well-ordered (see
2.19) set of indices. 2

2. Chains and Well-Founded Posets

Many interesting mathematical structures arise by considering partial orders in
which certain subsets have maximum or minimum. We shall discuss two examples
of this sort : chains and well-orderings. While at it, we also present the notion of
well-foundedness.

Definition 2.19. Let 〈L,≤〉 be a non-empty poset.

a) L is a chain if for all a, b ∈ S, a ≤ b or b ≤ a. Chains are also called total
or linear orders.

A subset S ⊆ L is a chain in L if S, with the induced order, is a chain.

b) L is well-founded if for all non-empty subsets S of L, there is x ∈ S such
that x← ∩ S = {x}.
c) L is well-ordered if all non-empty subsets of L have a minimum.

d) L is a tree if for all x ∈ L, x← is well-ordered 8.

Remark 2.20. A famous statement involving chains in posets is

Zorn’s Lemma : If 〈V,≤〉 is a non-empty poset in which every chain has an
upper bound, then V has a maximal element.

6As usual, ≺ is the strict order derived from �.
7n = {1, 2, . . . , n} is defined in page 15.
8With the ordering induced by L.
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It is easily seen that the above statement is equivalent to : If 〈V,≤〉 is a poset
in which every chain has a lower bound, then V has a minimal element. As is
well-known, Zorn’s Lemma is equivalent to the Axiom of Choice ([51]). Another
statement of this sort is

Well-Ordering Axiom (WOA) : Every non-empty set can be well-ordered.

WOA means that if X is a non-empty set, then there is a partial order on X which
is a well-ordering. As is the case with Zorn’s Lemma, WOA is another example of
an equivalent to the Axiom of Choice ([51]). In [62] the reader will find a plethora
of statements that are equivalent to the Axiom of Choice. 2

Lemma 2.21. a) Any well-ordered poset is a chain.

b) All well-orderings are well-founded and have ⊥ 9.

c) A chain is well-ordered iff it is well-founded.

Proof. a) Since {a, b} has a minimum, either a ≤ b or b ≤ a.

b) Let L be a well-ordered poset. It follows immediately from the definition that
L has a least element. If S 6= ∅ in L and x = min S, it is clear that x← ∩ S = {x}.
c) It is enough to verify that a well-founded chain L is well-ordered. If S 6= ∅ in
L, select x ∈ S such that x← ∩ S = {x}. Hence, for y ∈ S, we cannot have y <
x. Since L is a chain, we conclude that x ≤ y, and so x = min S. �

A well-known example of a well-ordered set is N, with its natural order. There
are many well-founded posets that are not chains (and thus, by 2.21.(c), not well-
ordered). Here is a family of examples :

Example 2.22. Let Y be a set. With notation as in 1.1, let

TY = {f ∈ pF (N, Y ) : ∃ n ∈ N such that domf = n}.
We consider TY partially ordered by the extension po induced from pF (N, Y ).
Since Y will remain fixed, write T for TY . For f ∈ T, define a map l : T −→ N,
given by l(f) = domf , called the length of f .

Fact 1. For all f , g ∈ T, f < g ⇒ l(f) < l(g).

Proof. If f < g in the extension po of 2.12, then n = domf is properly contained
in m = domg. Hence, in N, l(f) = n < m = domg.

Fact 2. T is a tree (the Y -branching tree over N).

Proof. Fix f ∈ T; note that for g ∈ T

g ≤ f iff g = f|k,

where k ≤ n 10. Hence, f← = {f|k : k ≤ n}, which is well-ordered in the extension

po, completing the proof of Fact 2.

For a non-empty S ⊆ T, consider

α(S) = {l(f) : f ∈ T}.

9As in 2.6, ⊥ is the least element of a poset.
10But not in pF (N, Y ); n has many subsets which are not of the form k ≤ n.
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Since N is well-ordered and α(S) is a non-empty subset of N, there is s ∈ S such
that l(s) = min α(S). It follows immediately from Fact 1 that s← ∩ S = {s},
verifying that T is well-founded.

When Y = 2 = {0, 1}, T2 is the binary tree, whose schematic diagram
follows.

• • • • • • • •

• • • •

• •
•
∅ (root)
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P

T2

...
...

...
...

The above can be generalized to Y -branching trees over well-ordered sets. 2

Remark 2.23. If L is a poset with ⊥, then the condition that it be well-
founded can be written, in the interval notation of 2.2, as

For all ∅ 6= S ⊆ L, there is x ∈ S such that [⊥, x) ∩ S = ∅.
Since we did not want to use the hypothesis ⊥ ∈ L in the definition of well-founded
(2.19.(b)), the equivalent formulation therein was employed. In truth, this question
is irrelevant : any poset L can be isomorphically embedded in a poset with ⊥, by
adding a new point and declaring it to be less than all the elements of L. Hence,
whenever convenient, it shall be assumed that posets have ⊥ 11. 2

One important method at our disposal in well-founded posets is the possibility
of proof by induction.

Theorem 2.24. For a subset S of a well-founded poset L with ⊥, the following
are equivalent :

(1) S = L;

(2) For all x ∈ L, [⊥, x) ⊆ S ⇒ x ∈ S.

Proof. Clearly, (1)⇒ (2). For the converse, let A = (L − S); if A 6= ∅, there
is a ∈ A, such that a← ∩ A = {a}. Thus, [⊥, a) ⊆ S, with a in the complement
of S, violating (2). �

3. Directed Sets. Filters and Ideals

Our next theme is the study of directed subsets of partially ordered sets, leading
to a general definition of filter and ideal.

11The same comment applies, of course, to >.
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Definition 2.25. Let S be a subset of a poset L.

a) S is up directed if

[ud] For all a, b ∈ S, there is c ∈ S such that a ≤ c and b ≤ c.

The concept of down directed is dual, that is,

[dd] For all a, b ∈ S, there is c ∈ S such that c ≤ a and c ≤ b.

We abbreviate up directed by ud and down directed by dd. Some authors use right
(left) directed for ud (resp., dd) sets.

b) S is up cofinal (ucof) in L if

[ucof ] For all a ∈ L, there is c ∈ S such that a ≤ c.

c) S is down cofinal (dcof) if

[dcof ] For all a ∈ L, there is c ∈ S such that c ≤ a.

d) S is cofinal if it is up and down cofinal.

The notion of directed set is instrumental to construct the concepts of filter
and ideal in a poset.

Definition 2.26. Let S be a subset of a poset L.

a) S is a filter in L if S 6= ∅ and the following hold :

[Fi1] : S is dd in L;

[Fi2] : ∀ a, b ∈ L, (a ∈ S and a ≤ b ⇒ b ∈ S).

For a ∈ L, a→ is the principal filter generated by a in L.

b) S is an ideal in L if S 6= ∅ and the following hold :

[Id1] : S is ud in L;

[Id2] : ∀ a, b ∈ L (a ∈ S and b ≤ a ⇒ b ∈ S).

If a ∈ L, a← is the principal ideal generated by a in L.

A filter or ideal is said to be proper if it is distinct from L.

Clearly, Definitions 2.25 and 2.26 presents a set of pairs of dual concepts.
Notice that a filter is down directed upper set, while an ideal is a ud lower set. In
fact, some authors call a dd set a filter base and a ud set an ideal base. The
reason is the following result, whose proof is left to the reader.

Lemma 2.27. With notation as in 2.7, the following conditions are equivalent,
for a subset S of a poset L :

(1) S is dd (ud);

(2) S↑ is dd (resp., S↓ is ud);

(3) S↑ is a filter (resp., S↓ is an ideal).

Example 2.28. Let X be a set and (2X , ⊆) be the power set of X, partially
ordered by inclusion. For S ⊆ 2X ,

a) S is ucof (dcof) iff X ∈ S (resp., ∅ ∈ S). This will always happen in a po with
> (resp., ⊥).

b) The notions of filter and ideal in this po coincide with the usual ones in set
theory 12 : S is a filter (ideal) in 2X iff

12We shall discuss filters and ideals in lattices in Chapter 3.
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(*) a, b ∈ S ⇒ a ∩ b ∈ S (resp., a ∪ b ∈ S);

(**) a ∈ S and a ⊆ b (resp., b ⊆ a) ⇒ b ∈ S. 2

Example 2.29. If X is a set, S ⊆ 2X and x ∈ X, define

Sx = {U ∈ S : x ∈ U}.
Let L = 2X − {∅}, partially ordered by ⊆. For S ⊆ L we have :

a) S is dcof or left cofinal in L iff ∀ x ∈ X, {x} ∈ Sx.

b) S is a filter in L iff S is a filter in 2X , such that ∅ 6∈ S (i.e., S is a proper
filter).

c) S is an ideal in L iff S ∪ {∅} is an ideal in 2X . 2

Example 2.30. Let T be a topological space and L = Ω(T ) − {∅}, the non
empty open sets of T , partially ordered by ⊆. With notation as in Example 2.29,
and for S ⊆ L, we have :

a) S is dcof or left cofinal in L iff ∀ t ∈ T , St is a neighborhood basis of t in
T . In particular,

⋃
S is a dense open in T . Conversely, if V is a dense open in T ,

then S = Ω(V ) − {∅} is dcof in L.

b) S is a filter (ideal) in Ω(T ) iff it satisfies conditions (*) and (**) of 2.28 above,
relative to Ω(T ). The concepts of filter/ideal in L correspond to that of proper
filter/ideal in Ω(T ). 2

Example 2.31. Let L = pF (X,Y ), partially ordered by the extension po, as
in 2.12.

a) Left cofinal subsets of L are not very interesting. On the other hand, ucof or
right cofinal subsets furnish ‘samples’ of the possible values of elements in L. The
set

D(x) = {f ∈ L : x ∈ domf}
is clearly up cofinal in L. As another example, fix g ∈ L and consider

D(g) = {f ∈ L : f ≥ g or {x ∈ X : fx 6= gx} 6= ∅}.
Simple calculations will show that D(g) is up cofinal in L.

b) A subset S ⊆ L is a proper filter iff

i) ∅ ∈ S;

ii) S contains all extensions of its members;

iii) ∀ f , g ∈ S, {x ∈ X : fx = gx} 6= ∅.
c) S is an ideal in L iff S consists of a family of pairwise compatible maps,
together with the ‘gluing’ of every finite subset of S and all restrictions of elements
of S to subsets of their domains. Thus, S is an ideal iff :

∗ ∀ f , g ∈ S, f|domf∩domg = f|domf∩ domg
and f ∨ g ∈ S;

∗ ∀ f ∈ S, ∀ A ⊆ domf , f|A ∈ S.

For a non-empty S ⊆ L, the following are equivalent :
(a)

∨
S exists in L; (b) S is bounded in L;

(c) S is contained in some ud set T ; (d) S is contained in some ideal I.
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If the above equivalent conditions hold, then the ud subset T and the ideal I can
be chosen so that

∨
S =

∨
T =

∨
I. Hence, in pF (X,Y ), every non-empty ud

subset has a supremum.

By Lemma 1.2, an ideal S in L furnishes a function
∨
S ∈ L; the domain of∨

S might be very small ({∅} is an ideal). One way to guarantee that dom
∨
S

= X is to require that for all ucof H ⊆ L, we have S ∩ H 6= ∅. Such ideals are
usually called generic.

In expositions of forcing in set theory, it is the reverse order of the one above
that is used (see, for instance, [40]). We are then led to consider filters, dcof (or
dense) subsets and generic filters. 2

Example 2.32. Let 〈L,≤〉 be a poset and I(L) (F(L)) be the set of ideals
(resp., filters) in L, partially ordered by inclusion. Up directed subsets of I(L) or
F(L) have a least upper bound, their set theoretic union, which, for ud subsets,
preserves the property of being an ideal or a filter. The intersection of ideals or
filters will not, in general, be an ideal or filter. To see this, let

L = {a, b}
∐

(0, 1)
∐

(0, 1)
∐
{c, d},

with the po determined by the following clauses :

i) The order in each copy of (0, 1) is its natural
order;

ii) a and b are smaller, while c and d are larger than
all elements in (0, 1)

∐
(0, 1);

iii) Elements in the distinct copies of (0, 1), as well
as a, b, c and d, are unrelated.

•a • b

b

b

0

1

b

b

0′

1′

•c • d

Since {c, d} ⊆ a→ ∩ b→, this intersection is not dd, because both copies of (0, 1)
have no last element. Similarly, c← ∩ d← is not ud.

Observe that for all I ∈ I(L) and all a ∈ L, a ∈ I ⇔ a← ⊆ I. Hence,

I =
∨
{a← : a ∈ I}.

For all a, b ∈ I, there is c ∈ I such that a ≤ c and b ≤ c. Therefore, for all I ∈
I(L), {a← : a ∈ I} is ud (a← ⊆ c← and b← ⊆ c←). Moreover, for all a ∈ L and
ud subsets S ⊆ I(L),

a← ≤
∨
S iff a ∈

⋃
I∈S I.

Analogous properties hold for F(L), with principal filters in place of principal
ideals. Properties similar to the ones described here hold in the posets of Exam-
ple 2.14, with the appropriate modifications. We shall return to this theme after
Definition 2.43. 2
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4. The Countable Chain Condition

Definition 2.33. Let 〈L,≤〉 be a poset and a, b ∈ L.

∗ a and b are up-compatible (compatible) if a→ ∩ b→ ∩ L− 6= ∅
(resp., a← ∩ b← ∩ L− 6= ∅) 13.

∗ a and b are up-incompatible (resp., incompatible), written
a ⊥∗ b (resp., a ⊥ b) if they are not up-compatible (resp., compatible).

L is up-ccc (ccc) (countable chain condition) iff every set of pairwise up-
incompatible (resp., incompatible) elements is at most countable. Hence, ≤ is up
ccc iff ≤op is ccc and vice-versa.

Remark 2.34. Terminology here is not quite standard. There is always the
question of duality and of what is the “natural” way in which “increasing” or
“decreasing” are understood. The examples below will help, hopefully, to make
matters clearer. 2

Example 2.35. If T is a topological space and L = Ω(T ) with the inclusion
po, then :

i) U ⊥∗ V iff U ∪ V = T .

ii) U ⊥ V iff U ∩ V = ∅.
Hence, our notion of ccc corresponds to what is known in the literature as a ccc
topological space : any set of pairwise disjoint opens is at most countable. 2

Example 2.36. If L = pF (X,Y ), with the extension partial order of 2.12,
then :

a) f ⊥∗ g iff they do not have a common extension

iff {x ∈ X : fx 6= gx} 6= ∅;
b) f ⊥ g iff {x ∈ X : fx = gx} = ∅.

In the literature in Set Theory, sub posets of pF (X,Y ) are said to be ccc if
they are up-ccc in our terminology. 2

Remark 2.37. If α is a cardinal, it should be clear how to define the concept
of α-ccc (the α chain condition). As above we would have a pair of dual up/down
(or left/right) conditions. 2

Theorem 2.39 below, of independent interest, will guarantee that certain posets
are ccc. From here on, we assume that the well-ordering axiom (WOA) in 2.23 is
part of the axioms of Set Theory. We first recall the concept of regular cardinal.

Definition 2.38. Let K be a set. card(K) is regular if it is infinite and for
all {Ai : i ∈ I} ⊆ 2K ,

card(I) < card(K)

and

card(Ai) < card(K), ∀ i ∈ I
⇒ card(

⋃
i∈I Ai) < card(K).

13Recall from 2.1 that L− = L − {⊥, >}.
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Theorem 2.39. (Erdös-Rado) Let A be a set, n ≥ 1 a positive integer and
K an infinite collection of subsets of A of cardinality n. Assume that card(K) is
regular. Then there is a B ⊆f A and K ′ ⊆ K such that

(1) card(K) = card(K ′); (2) For all α, β ∈ K ′, α ∩ β = B.

Proof. By induction on n ≥ 1. If n = 1, then either

∗ There is a ∈ K that is common to card(K) elements of K; in this case, set B =
{a};
∗ No such element exists and set B = ∅.

Suppose the result true for (n−1) ≥ 1 and that the elements of K have cardinal
n. Assume A is well ordered and for α ∈ K, let aα be the least element of α in
this order. Consider the set

C = {α − {aα} : α ∈ K}.
There are two possibilities :

1. card(C) < card(K) : For u ∈ C, define

Ku = {α ∈ K : α − {aα} = u}.
Then K =

⋃
{Ku : u ∈ C}; since card(K) is regular (2.38) and card(C) < card(K),

there is B ∈ C such that card(KB) = card(K). Now observe that for all α, β ∈
KB , α ∩ β = B.

2. card(C) = card(K) : Since the elements of C have cardinal (n−1), by induction

there is D ⊆f A and C ′ ⊆ C, with card(C ′) = card(C) = card(K) and U ∩ V =
D, ∀ U , V ∈ C ′. Consider the cardinality of

T = {aα : α − {aα} ∈ C ′}.
Again there are two possibilities :

card(T ) < card(K) : For a ∈ T , let Ka = {β : (β − {a}) ∈ C ′}; clearly,⋃
{Ka : a ∈ T} has cardinality equal to card(K) (it is larger than or equal

to card(C ′)). Since card(T ) is strictly less the regular card(K), there is a ∈ T such
that card(Ka) = card(K). It is straightforward to check that for all β, γ in Ka,
β ∩ γ = D ∪ {a}.
card(T ) = card(K) : For a ∈ T , select α ∈ K with (α − {a}) ∈ C ′. It is clear

that this selection produces a subset K ′ ⊆ K such that for all α, β ∈ K ′, we have
α ∩ β = D, ending the proof �

Corollary 2.40. Let A be a set and K an uncountable collection of finite
subsets of A. Then there is B ⊆f A and an uncountable K ′ ⊆ K such that ∀ α,
β ∈ K ′, α ∩ β = B. If card(K) is regular, then there is K ′ ⊆ K with the above
property, with card(K ′) = card(K).

Proof. For each n ≥ 1, let Kn = {α ∈ K : card(α) = n}; then K =
⋃
Kn

and so, being uncountable, at least one of the Kn must be uncountable. If card(K)
is regular, then card(Kn) = card(K), for some n ≥ 1. If card(K) is not regular,
one can always choose a regular uncountable cardinal below card(K) 14. The full
statement of the Corollary now follows from 2.39. �

14The first uncountable cardinal, ω1, is regular.
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Remark 2.41. Although Theorem 2.39 is true if card(K) is countable (a
regular cardinal), this is not the case of Corollary 2.40. It is not very hard to find
examples of this. 2

As an application of these results, we show that the posets pFω(X,Y ) (2.13)
are up-ccc, if Y is finite.

Corollary 2.42. If X, Y are sets, then pFω(X,Y ) is up-ccc in the extension
po, whenever Y is finite.

Proof. Write Z = pFω(X,Y ) and suppose T is an uncountable set of up-
incompatible elements in Z. Since for finite D, Y D is finite, K = {dom t : t ∈ T}
is uncountable. By Corollary 2.40, there is B ⊆f X and an uncountable K ′ ⊆ K
such that u ∩ v = B, for all u, v ∈ K ′. Let T ′ = {t ∈ T : dom t ∈ K ′}; if s, t ∈ T ′,
then 2.36.(a) implies that s|B 6= t|B , because s ⊥∗ t. But this is impossible, since

T ′ is uncountable and Y B is finite. �

We shall apply 2.42 in 18.6 to show that all dyadic spaces are ccc. More
information on combinatorics and chain conditions can be found in [40] and [9].

5. Continuous and Algebraic Posets. Compactness

Analogy with topology produces the following

Definition 2.43. Let 〈L,≤〉 be a poset, a, b ∈ L and S ⊆ L.

a) a is compact (also algebraic or finite) in L iff for all ud S ⊆ L,

S→ ⊆ a→ ⇒ There is s ∈ S such that a ≤ s.

For b ∈ L, set cp(b) = {a ∈ L : a is compact and a ≤ b}.
b) a is way below b, in symbols a � b, iff for all ud S ⊆ L,

S→ ⊆ b→ ⇒ There is s ∈ S such that a ≤ s.

For b in L, set b←← = {a ∈ L : a � b}.
Note that a is compact iff a � a.

c) ≤ is a continuous po on L (or L is a continuous poset) iff

[cpo1] : All non-empty, up directed subsets of L, have a sup in L;

[cpo2] : For all a in L, a←← is up directed and a =
∨
a←←.

d) L is an algebraic poset iff it is a continuous poset such that for all a ∈ L,
cp(a) is up directed and a =

∨
cp(a).

e) A poset with > is compact if it is algebraic and > is compact.

One can find much information on this topic in [17], where its connections with
lattice theory, computer science, general topology, analysis, C∗-algebras and Topos
theory are presented and explored. The material in [34] is also interesting, with a
different point of view. Here we will be content with discussing the above properties
relative to the examples already given and presenting another two, important for
future work.
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Remark 2.44. Our definition of compact and “way below” is not that in
[17] since we wanted to state it without the assumption of “completeness”. The
following observations are, therefore, in order :

a) Since the sets S in the definition of the way below relation are ud, we have 15

a � b ⇔ ∀ ud S ⊆ L, S→ ⊆ a→ ⇒ ∃ F ⊆f S, with F→ ⊆ a→.

Similarly for the notion of compactness. This is closer to the usual topological
definition of compactness.

b) In the presence of [cpo1] we may rewrite the definition of a � b as :

∀ ud S ⊆ L, b ≤
∨
S ⇒ ∃ s ∈ S (a ≤ s).

Similarly for the concept of compactness.

c) If L has sups for all finite subsets (or equivalently, for each pair of its elements),
then

a � b iff ∀ S ⊆ L, S→ ⊆ a→ ⇒ ∃ F ⊆f S with a ≤
∨
F .

This holds because, in this case, given S ⊆ L, we can form

S′ = {sup F : F ⊆ S and F is finite},
which is ud and satisfies S→ = (S′)→. Similarly, of course, for compactness.

d) If L has sups for all its subsets then

a � b iff ∀ S ⊆ L, b ≤
∨
S ⇒ ∃ F ⊆f S, with a ≤

∨
F . 2

Proposition 2.45. In a poset 〈L,≤〉 the relation � has the following prop-
erties : for x, y, u, z ∈ L
a) x � y ⇒ x ≤ y.

b) u ≤ x � y ≤ z ⇒ u � z. If x is compact and z ≤ x ≤ y, then z � x � y.

c) If L has finite sups then :

(i) x � z, y � z ⇒ sup{x, y} � z. In particular, z←← is ud.

(ii) If x and y are compact, so is x ∨ y. In particular, cp(z) is ud.

Proof. For item (a), just consider the ud set {a}. The remaining assertions
follow straightforwardly from the definitions. �

We now relate the notion of algebraic compactness with its topological version,
presented in Definition 1.23.

Proposition 2.46. Let T be a topological space and V , U ∈ Ω(T ).

a) In 〈Ω(T ),⊆〉, consider the following conditions :

(1) V � U ; (2) V is relatively compact (1.23) in U .

Then, (2) ⇒ (1). If T is regular (1.20), these conditions are equivalent.

b) U is compact in the poset 〈Ω(T ),⊆〉 iff it is (topologically) compact.

c) Consider the following conditions :

(1) 〈Ω(T ),⊆〉 is a continuous poset;

(2) Every open set in T is the union of relatively compact opens in U .

(3) T is locally compact, i.e., for U ∈ Ω(T ) and x ∈ U ,

15⊆f means “finite subset of”, defined in page 15.
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[lc] There is V ∈ νx 16 such that V ⊆ U and V is compact.

Then (3) ⇒ (2) ⇒ (1). If T is regular, these conditions are equivalent.

d) The following are equivalent :

(1) 〈Ω(T ),⊆〉 is an algebraic poset;

(2) T has a basis of compact opens, that is, every open in T is the union of
compact opens.

Proof. Recall that Ω(T ) has arbitrary sups and so we may use the displayed
statement in 2.44.(d) as the definition of � in Ω(T ). We discuss (a), leaving the
other items to the reader.

a) For V ⊆ U , assume that V ∩ U is compact in U (or, equivalently, in T ;
see 1.24.(b)). If S ⊆ Ω(U) is a covering of U , then there is C ⊆f S such that

V ⊆ V ∩ U ⊆
⋃
C, and V � U , establishing that (2) ⇒ (1).

To show that (1) ⇒ (2), suppose that T is regular and let S ⊆ Ω(U) be an
open covering of F = V ∩ U . The covering S is refined in two ways :

∗ By Lemma 1.21.(b), eachW ∈ S may be written as a union of opens whose closure
is contained in W ; let S′ be the covering of F obtained through the refinement of
S by this method;

∗ Let S′′ = S′ ∪ {V c ∩ U}.
Since V

c ∩ U is the complement of F in U – it is clearly open –, S′′ is an open
covering of U . It follows from (1) that there is B ⊆f S′′, such that V ⊆

⋃
B. Since

V
c ∩ U has empty intersection with V , we may as well assume that it is not in

B. Since closure commutes with finite unions (1.10.(d)), we get

F ⊆
⋃
W∈B W . (*)

Now, for each W ∈ B, select A ∈ S such that W ⊆ A. Because B is finite, one
obtains a finite subset of S that, by (*), is a covering of F , ending the proof. �

Example 2.47. In 2X , a set is compact iff it is finite. Again, we have a
continuous poset, which is algebraic.

In pF (X,Y ), an element is compact iff its domain is finite; it is easily verified
that pF (X,Y ) is an algebraic poset. 2

Example 2.48. An important example of a continuous poset which is not
algebraic is the real unit interval [0, 1], with its usual order. We have a � b
iff a < b or a = 0. On the other hand, the only compact element of [0, 1] is 0.
Another example of this sort (but harder to verify), is furnished by LSC(T ), the
lower semicontinuous functions on a compact space T . 2

Example 2.49. Let A be an algebra in the sense of universal algebra, i. e.,
A is a set, together with a set of n-ary operations on A, for each n ≥ 0.

If A is an algebra, a congruence θ on A is an equivalence relation such that
for all n ≥ 1, all n-ary operations α on A and all 〈 a1, . . . , an 〉, 〈 b1, . . . , bn 〉 in An,

ai θ bi, 1 ≤ i ≤ n, ⇒ α(a1, . . . , an) θ α(b1, . . . , bn).

16The filter of opens neighborhoods of x in T ; see section 1.2.
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Let Con(A) be the set of congruences on A. With the containment po inherited
from A2, Con(A) is a poset. Clearly, Con(A) is closed under arbitrary intersections.
Thus, every subset S ⊆ A × A generates a congruence on A, given by

θS =
⋂
{θ ∈ Con(A) : S ⊆ θ},

the smallest congruence relation containing S. Note that the equality relation (the
diagonal of A × A) is the ⊥ of Con(A), while A × A is its >. Hence, in Con(A)
all subsets have sup and inf.

For each 〈x, y 〉 in A × A, let θxy be the congruence generated by {〈x, y 〉}.
Clearly, θxy = θyx. Note that θxy is compact in Con(A) and for all θ in Con(A)

θ =
∨
{θxy : 〈x, y 〉 ∈ θ}.

Thus, Con(A) is an algebraic lattice. This example has many interesting instances:
groups, rings, etc. 2

Exercises

2.50. a) If L is a poset, show that I(L) and F(L) (2.32) are continuous
algebraic posets.

b) If M is a module over a commutative ring, show that the lattice of submodules
of M (2.14) is an algebraic poset. 2

2.51. Let I be a set and [0, 1] be the real unit interval. In the power [0, 1]I ,
with the coordinate-wise order (2.16), show that 17

(xi) � (yi) iff


∀ i ∈ I, xi � yi

and

∃ F ⊆f I with xi = 0 if i ∈ (I − F ). 2

2.52. One of the basic examples of poset is the family of subsets of a set,
2X , partially ordered by inclusion. We can produce further posets by considering
subsets S ⊆ 2X , with the induced order. Show that this, in fact, produces all
posets, except for isomorphism. 2

17Recall that ⊆f denotes “finite subset of”.
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Lattices

Recall that A ⊆f B means that A is a finite subset of B (page 15).

Definition 3.1. Let (L,≤) be a poset.

a) L is a semilattice iff for all F ⊆f L,
∧
F exists in L. When F = {x, y},

write x ∧ y for inf {x, y} 1. Thus, all semilattices have > =
∧
∅.

b) L is a join semilattice iff for all F ⊆f L,
∨
F exists in L; for x, y ∈ L,

x ∨ y indicates sup {x, y} 2. Note that all join semilattices have ⊥ =
∨
∅.

c) L is a lattice iff for all F ⊆f L, both
∧
F and

∨
F exist in L. Hence, all

lattices have ⊥ and >.

If L and P are lattices, a morphism, f : L −→ P , is a map such that for all
F ⊆f L

f(
∨
F ) =

∨
f(F ) and f(

∧
F ) =

∧
f(F ),

where, as usual, f(F ) = {fx : x ∈ F}.
d) A sublattice of L is a subset P of L, such that for all F ⊆f P ,

∨
F and

∧
F ,

computed in L, are in P . Thus,
∨

F and
∧

F in P exist, and are identical to
the sup and inf taken in L.

Note that the canonical injection P −→ L is a morphism iff P is a sublattice
of L.

Lattices and their morphisms are a category, denoted by L. We write L ∈ Ob(L)
and f ∈ M(L) to indicate that L is a lattice and that f is a lattice morphism.

Standard references on lattices are [21], [5] and [3]; [60] is also very interesting.
In general, the definitions will allow for the absence of ⊥ and/or >. It is simple to
modify the above to cover that : just require that non-empty finite sets have inf
and/or sup. We will be mainly interested in lattices with ⊥ and >. The following
is straightforward :

Lemma 3.2. Let L
f−→ P be a map between lattices.

a) f is a morphism iff it verifies

∗ f(⊥) = ⊥ and f(>) = >;

∗ ∀ x, y ∈ L, f(x ∨ y) = fx ∨ fy and f(x ∧ y) = fx ∧ fy.

b) If f is a morphism, then f is increasing (i.e., a poset morphism) and the image
of f is a sublattice of P .

1Also called the meet of x and y.
2Also called the join of x and y.
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c) If f is increasing, then it is a lattice morphism iff

∗ f(⊥) = ⊥ and f(>) = >;

∗ ∀ x, y ∈ L, f(x ∨ y) ≤ fx ∨ fy and fx ∧ fy ≤ f(x ∧ y).

Many of the examples in Chapter 2 are lattices : 2Xλ and Bλ(X) (2.9), linear
orders, the opens of a topological space (2.11), congruences on an algebra (2.49)
and the posets presented in 2.14. We also have examples of semilattices and join
semilattices.

Example 3.3. If Li, i ∈ I, is a family of lattices, the set-theoretical product,∏
Li, has a natural lattice structure, where the operations of ∧ and ∨ are defined

coordinatewise :

∀ i ∈ I, [s ∧ t](i) = s(i) ∧ t(i) and [s ∨ t](i) = s(i) ∨ t(i).
Note that > and ⊥ in

∏
Li are the constant sequences > and ⊥, respectively. The

canonical projections
∏
Li

πi−→ Li are lattice morphisms.

If f : D −→ L is a lattice morphism, define

D ×f D = {〈 a, b 〉 ∈ D × D : fa = fb}.
With the operations induced by D × D, D ×f D is a lattice, called the fibered
product of D over f . The restriction of the canonical projections π1, π2 from
D × D to D are lattice morphisms, still indicated by πi, i = 1, 2. Note that
f ◦ π1 = f ◦ π2. This construction yields a proof that monomorphisms in the
category L are precisely the injective lattice morphisms (Exercise 3.15.(d)). 2

Example 3.4. We shall now construct the coproduct of a family of lattices,
{Li : i ∈ I}, written

∐
i∈I Li. The question here is to obtain a lattice with ⊥ and

>. The formal definition of coproduct of a family of object in a category appears
in Example 16.30.(b), while that of initial object in a category in Definition 16.9.

If I = ∅, set ∐
i∈I Li =def 2 = {⊥, >},

where 2 is the two-element lattice with ⊥ < >. Note that for all lattices L, there
is a unique lattice morphism from 2 to L, taking ⊥ to ⊥ and > to >. Hence, 2 is
the initial object in the category of lattices 3.

From here on assume that I 6= ∅ and let

T = {s ∈
∏
Li : {i ∈ I : si 6= >} is finite},

with the partial order induced by
∏
Li. Define

B = {s ∈ T : {i ∈ I : si = ⊥} 6= ∅}.
Now note that :

(1) B is closed under meets;

(2) T = B ∪
⋃
s∈T−B {s}, and this union is disjoint.

Hence, there is a unique equivalence relation θ on T , whose equivalence classes are
precisely B and, for s ∈ T − B, the singleton {s}. Whence, for s, t ∈ T , s θ t

iff s, t ∈ B or s, t ∈ T − B and s = t.

Set

3It is a general fact that an empty coproduct, if it exists, is an initial object.
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∐
i∈I Li =def T/θ =def {s/θ : s ∈ T}.

We now define the operations of meet and join in
∐
i∈I Li as follows : for s, t ∈ T

(3) s/θ ∧ t/θ = (s ∧ t)/θ;

(4) s/θ ∨ t/θ =


s/θ if t ∈ B;

t/θ if s ∈ B;

(s ∨ t)/θ if s, t ∈ T − B.

It is straightforward that the operations defined above verify the axioms in Exercise
3.15.(a) and hence, by its item (b), 〈

∐
i∈I Li, ∧, ∨ 〉 is a lattice, wherein ⊥/θ is

class of any sequence in T that has ⊥ as one of its coordinates (i.e., ⊥/θ = B)
and >/θ is the class of the element of T whose all coordinates are equal to >. The
reader can also check that the corresponding partial order in

∐
i∈I Li is given by

s/θ ≤ t/θ iff s ∈ B or s ∈ T − B and s ≤ t in T .

For each i ∈ I and a ∈ Li, let ǎ be the element of T that has a in the ith

coordinate and > in all others. Now define

αi : Li −→
∐
i∈I Li, given by αi(a) = ǎ/θ.

It is easily verified that αi is a lattice morphism. This construction has the following
universal property :

Lemma 3.5. If fi : Li −→ L, i ∈ I, are lattice morphisms, then there is a
unique lattice morphism, f :

∐
i∈I Li −→ L, such that for all i ∈ I the following

diagram is commutative :

Li - ∐
i∈I Li

fi f

L

αi

A
A
A
A
AAU

�
�
�
�
���

This unique f is written
∐
i∈I fi and called the coproduct of the fi.

Proof. We give only a sketch, leaving details to the reader. For s ∈ T , define

f(s/θ) =
∧
i∈I fi(si). (*)

Note that if s ∈ T , then {i ∈ I : si 6= >} is finite, and so the (apparently) infinitary
meet in the right side of (*) is in fact finite. Since for all s ∈ B, f(s/θ) = ⊥,
the definition in (*) is independent of representatives. It is straightforward that f
preserves ∧ and ∨, being, therefore, a lattice morphism. Moreover, for all i ∈ I
and a ∈ Li

f(αi(a)) = f(ǎ) = fi(a),

and the diagram in the statement is indeed commutative. To verify the uniqueness
of f , let g :

∐
i∈I Li −→ L be a lattice morphism making the diagram in the

statement commutative. For s ∈ T , let J ⊆f I be such that for all i 6∈ J we have
si = >. Then, s =

∧
j∈J šj and s/θ =

∧
j∈J šj/θ. Hence,
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g(s/θ) =
∧
j∈J g(šj) =

∧
j∈J g(αj(sj)) =

∧
j∈J fj(sj)

=
∧
i∈I fi(si) = f(s/θ),

ending the proof. �

It is the universal property described by Lemma 3.5 that guarantees that the
system 〈

∐
i∈I Li, {αi : i ∈ I} 〉 is the coproduct of the Li in the category of

lattices, as stipulated by Definition 16.29 and Example 16.30.(b). 2

Example 3.6. Let T be a topological space. Recall from 1.11 that B(T ) and
Reg(T ) are the set of clopens and regular opens in T . We have (see [R] in page
19)

{∅, T} ⊆ B(T ) ⊆ Reg(T ) ⊆ Ω(T )

as partially ordered sets. By 1.12,

B(T ) is a sublattice of Ω(T ).

It follows from 1.14 that Reg(T ) is a lattice with ⊥ = ∅, > = T and

U ∧ V = U ∩ V and U ∨ V = int (U ∪ V ).

However, Reg(T ) is not a sublattice of Ω(T ). 2

Recall from 2.49, that a congruence θ on a lattice L is an equivalence relation
on L, such that for all x, y, a, b ∈ L,

x θ a and y θ b ⇒ (x ∧ y) θ (a ∧ b) and (x ∨ y) θ (a ∨ b).
Write Con(L) for the lattice of congruences on L.

Example 3.7. Let L
f−→ P be a lattice morphism. For x, y ∈ L, define

x θf y iff fx = fy.

θf is a congruence on L, the congruence generated by f . 2

A congruence relation θ on L gives rise to a quotient L/θ, the set of equivalence
classes of the elements of L by θ. For x ∈ L, write x/θ for the equivalence class of
x in L/θ. The following are straightforward :

a) ∀ x, y ∈ L, x θ (x ∧ y) iff y θ (x ∨ y). This allows us to define

x/θ ≤ y/θ iff x θ (x ∧ y),

yielding a partial order ≤ on L/θ.

b) The assignments,

x/θ ∨ y/θ = (x ∨ y)/θ and x/θ ∧ y/θ = (x ∧ y)/θ,

define operations on L/θ that, together with ⊥ = ⊥/θ and > = >/θ, make it the
lattice associated to (L/θ,≤). Further, the map

πθ : L −→ L/θ, given by x 7→ x/θ

is a lattice morphism. The lattice L/θ is called the quotient of L by θ and πθ is
the quotient morphism.

Proposition 3.8. (Fundamental theorem for morphisms) Let L be a lattice,
θ be a congruence on L and f : L −→ P be a lattice morphism. The following
conditions are equivalent :
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(1) There is a unique g : L/θ −→ P

such that g ◦ πθ = f ;

(2) θ ⊆ θf (3.7).

L - L/θ

f g

P

πθ

A
A
A
A
AAU

�
�
�
�
���

Proof. Left to the reader. �

As an application of Proposition 3.8, we establish that the category of lattices
has coequalizers 4, namely :

Corollary 3.9. Let f , g : L −→ R be lattice morphisms. Then, there is a
lattice C and a lattice morphism , γ : R −→ C, satisfying the following (universal)
property :

[coeq]

(1) γ ◦ f = γ ◦ g;

(2) If R
α−→ T is a lattice morphism such that α ◦ f = α ◦

g, there is a unique lattice morphism, α̂ : C −→ T such that the
following diagram is commutative :

L
-f -

g R - C

α α̂

T

γ

A
A
A
A
AAU

�
�
�
�
���

Proof. Set K = {〈 fx, gx 〉 ∈ R2 : x ∈ L} and let θ be the lattice congruence
generated by K on R (2.49). Set C = R/θ and let γ = πθ : R −→ C be the
canonical quotient map. Since K ⊆ θ, it is clear that γ verifies condition (1) in
[coeq]. Let α : R −→ T be a lattice morphism such that α ◦ f = α ◦ g. Then,

Σ = {〈 r, s 〉 ∈ R2 : αs = αr}
is, by Example 3.7, a lattice congruence on R; moreover, the hypothesis on α
implies that K ⊆ Σ. Since θ is congruence generated by K, it follows that θ ⊆ Σ.
But then Proposition 3.8 guarantees that there is a unique α̂ making the diagram
in the statement commutative, ending the proof. �

4The formal definition of this notion appears in 16.30.(a).
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The diagram γ : R −→ C constructed in Corollary 3.9 is the coequalizer of
the pair 〈 f, g 〉.

We now turn to the consideration of filters and ideals in a lattice. The defini-
tions of filter and ideal in a poset are in 2.26.

Lemma 3.10. Let L be a lattice and ∅ 6= A ⊆ L.

a) A is a filter in L iff for all x, y ∈ L
[lf 1] : x, y ∈ A ⇒ x ∧ y ∈ A;

[lf 2] : x ∈ A ⇒ x→ ⊆ A;

b) A is an ideal in L iff for all x, y ∈ A
[li 1] : x, y ∈ A ⇒ x ∨ y ∈ A;

[li 1] : x ∈ A ⇒ x← ⊆ A.

c) A filter A (ideal) is proper iff ⊥ 6∈ A (resp., > 6∈ A).

Proof. We prove only (a). Suppose A is a (poset) filter. It is clear that
[Fil 2] in 2.26 is identical with [lf 2]. If x, y ∈ A, down-directedness yields c ∈ A
such that c ≤ a, b. But then c ≤ (a ∧ b) and [Fil 2] implies that a ∧ b ∈ A. For
the converse, just observe that any set satisfying [lf 1] is dd. �

Example 3.11. If T is a topological space, 1.13 implies that D(T ), the set of
dense opens in T , is a proper filter in Ω(T ). 2

Recall that a→ (resp., a←) is the principal filter (ideal) generated by a.

With the help of 3.17.(c), we can define the filter or ideal generated by a subset
of a lattice.

Definition 3.12. Let L be a lattice and let S be a subset of L. The filter
generated by S, f(S), is defined as

f(S) =
⋂
{F ⊆ L : F is a filter and S ⊆ F}.

Similarly, the ideal generated by S, i(S), is given by

i(S) =
⋂
{I ⊆ L : I is an ideal and S ⊆ I}.

Note that f(∅) = {>} and i(∅) = {⊥}. The following Lemma describes some
of the fundamental properties of these concepts, as well as the basic method for
constructing filters and ideals.

Lemma 3.13. Let L be a lattice and S be a subset of L. With notation as
above,

a) f(S) = {x ∈ L : There is a finite D ⊆ S, such that x ≥
∧
D}.

b) i(S) = {x ∈ L : There is a finite D ⊆ S, such that x ≤
∨
D}.

c) The following are equivalent :

(1) f(S) is a proper filter.

(2) (Finite intersection property, fip) If D ⊆f S, then
∧
D 6= ⊥.

d) The following are equivalent :

(1) i(S) is a proper ideal.

(2) (Finite union property, fup) If D ⊆f S, then
∨
D 6= >.
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Proof. The reasonings for filters and ideals are entirely similar and we treat
only the case of filters. Let A be the right hand side of the equality in (a). If F
is a filter in L containing S, then A ⊆ F , since F is closed under finite meets.
Thus, it suffices to show that A is a filter. It is clear that condition [lf 2] in 3.10
is satisfied. For [lf 1], if x, z ∈ A, let D and K be finite subsets of S, such that

x ≥
∧
D and z ≥

∧
K.

By 3.15.(c), (x ∧ y) ≥
∧

(D ∪ K) and so (x ∧ y) is in A, as needed. Item (c)
follows from (a), because a filter F is proper iff ⊥ 6∈ F . �

Lemma 3.14. Let L
f−→ P be a lattice morphism. If F is a filter in K, then

f−1(F ) is a filter in L, which is proper if F is proper in K.

Proof. It is straightforward that f−1(F ) is a filter in L. Now note that
⊥ ∈ f−1(F ) implies f(⊥) = ⊥ ∈ F , verifying the properness claim. �

Exercises

3.15. a) For all x, y, z in a lattice L

(i) (x ∨ y) ∨ z = x ∨ (y ∨ z); (x ∧ y) ∧ z = x ∧ (y ∧ z).
(ii) x ∨ y = y ∨ x; x ∧ y = y ∧ x.

(iii) 5 x ∨ (x ∧ y) = x = x ∧ (x ∨ y).

(iv) x ∨ ⊥ = x and x ∧ ⊥ = ⊥; x ∨ > = > and x ∧ > = x.

b) Show, conversely, that a set L with two operations, ∧, ∨, two distinguished
elements ⊥, >, and with properties (i) to (iv) in (a) is a lattice. Thus, lattices can
be equationally defined.

c) Let D, K ⊆f L and x, y, z, t be elements of L. Show that :

(i)

{ ∨
(D ∪ K) = (

∨
D) ∨ (

∨
K)∧

(D ∪ K) = (
∧
D) ∧ (

∧
K).

Generalize the above for a finite family of finite subsets of L.

(ii) D ⊆ K ⇒
∨
D ≤

∨
K and

∧
K ≤

∧
D.

(iii) x ≤ z and y ≤ t ⇒ x ∧ y ≤ z ∧ t and x ∨ y ≤ z ∨ t.
d) Show that a morphism of lattices is a monomorphism iff it is injective. Discuss
the nature of an epimorphism.

e) Give an example of a subposet P ⊆ L such that both L and P are lattices but
P is not a sublattice of L. 2

3.16. Let Li, i ∈ I be a family of lattices. Suppose that I is a chain and
consider ∐

Li =
⋃
i∈I {i} × Li.

In
∐
Li, define

〈 i, u 〉 ≤ 〈 j, w 〉 iff i < j or i = j and u ≤ w.

5The absorption laws.
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The relation ≤ is a po. Is
∐
Li a lattice ? Is there an analogue of the morphisms

αi described in Example 3.4 for the direct sum ? 2

3.17. (Compare with 2.32) Let L be a poset.

a) If L is a semilattice, then the intersection of a family of filters in L is a filter.

b) If L is a join semilattice, the intersection of a family of ideals in L is an ideal.

c) If L is a lattice, the intersection of a family of filters (ideals) in L is a filter
(resp., ideal).

d) If Ai, i ∈ I, is an upward directed (by inclusion) family of filters or ideals in L,
then

⋃
Ai is a filter or an ideal in L, respectively.

e) If L is a lattice, show that F(L) and I(L), the posets of filters and ideals in L,
respectively, are lattices. 2
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CHAPTER 4

Distributive Lattices

We now come to the type of lattice that is central in all that follows.

Definition 4.1. A lattice L is distributive if it satisfies the following equiv-
alent conditions :

[∧, ∨] : For all x, y, z ∈ L, x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

[∨, ∧] : For all x, y, z ∈ L, x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).
The notions of morphism and sublattice are the same as in the category of

lattices (3.1). In particular, L
f−→ P is an isomorphism iff there is P

g−→ L
such that f ◦ g = IdP and g ◦ f = IdL. If L and P are isomorphic we write
L ≈ P or L ≈f P , if there is need to display the isomorphism f explicitly.

Definition 4.1 and Exercise 3.15 guarantee that distributive lattices can be
equationally defined.

Example 4.2. Except for the class of lattices in Example 2.10, all other
examples in chapter 3 are distributive lattices. 2

Example 4.3. The lattices in 2.10 are important mathematical objects. Some
satisfy an alternative to distributivity, known as the modular law : ∀ x, y, z ∈ L

x ≤ z implies x ∨ (y ∧ z) = (x ∨ y) ∧ z.
For closed subspaces of a Hilbert space, there is the operation of taking a

subspace to its orthogonal complement, x 7→ x⊥, satisfying :

(i) x ∧ x⊥ = ⊥; x ∨ x⊥ = >; (x⊥)⊥ = x.

(ii) (x ∧ y)⊥ = x⊥ ∨ y⊥.

(iii) (x ∨ y)⊥ = x⊥ ∧ y⊥.

(iv) (The orthomodular law) x ≤ y ⇒ x ∨ (x⊥ ∧ y) = y.

The interested reader may consult [5], [21] and [35]. 2

Distributive lattices and their morphisms form a category, denoted by D. The
expressions L ∈ D and f ∈ M(D) indicate that L is a distributive lattice and
that f is a morphism in D.

Remark 4.4. There is a neat characterization of distributivity, due to Birkhoff,
in terms of having or not certain finite lattices as sublattices. See, for instance,
Theorem II.5.9, pg. 51 of [3]. 2

Example 4.5. The product (3.3) and the coproduct (3.4) of distributive
lattices is distributive. Hence, 2 = {⊥, >} is an initial object in the category D.
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If f : L −→ P is a lattice morphism, with L distributive, then Im f is a
distributive sublattice of P . 2

Example 4.6. If X is a topological space, the lattice of opens in X, Ω(X),
is a distributive lattice, because it is a sublattice of 2X .

Let Y be a topological space and f : X −→Y be a continuous map. Define
f∗ : Ω(Y ) −→ Ω(X) by U 7→ f−1(U). It is well known that f∗ preserves inter-
sections and unions, being, therefore, a lattice morphism from Ω(Y ) to Ω(X). Of
course, if f is a homeomorphism, f∗ will be an isomorphism.

Recall from 3.6, that B(X), Reg(X) are the lattice of clopens and regular
opens, respectively, in X. Since B(X) is a sublattice of Ω(X) it is also distributive.
On the other hand, by 1.14.(f), Reg(X) is a distributive lattice, although not a
sublattice of Ω(X) or of 2X .

If we restrict f∗ to B(Y ), we get a lattice morphism from B(Y ) to B(X)
(1.31.(a)). However, the inverse image of a regular open is not, in general, regular
(1.31.(b)). For instance, for the sine function, sin : [0, π] −→ [0, 1], the inverse
image of (0, 1) is (0, π/2) ∪ (π/2, π), which is not regular.

There is a map f∗ : Ω(X) −→ Ω(Y ), closely associated to f∗. Define

f∗(V ) =
⋃
{W ∈ Ω(Y ) : f∗(W ) ⊆ V }.

f∗ is not direct image, as f might not be an open map. In fact,

f∗(V ) = int(Y − f(X − V )).

The connection between f∗ and f∗ is described by the adjunction :

(*) For all 〈V,W 〉 ∈ Ω(X) × Ω(Y ), f∗W ⊆ V iff W ⊆ f∗V .

A general way of obtaining such adjoint pairs is described in Theorem 7.8. 2

Lemma 4.7. Let L be a distributive lattice, a ∈ L, and S, T1, . . . , Tn be finite
subsets of L. Then,

a) a ∨ (
∧
S) =

∧
{a ∨ s : s ∈ S}.

b) a ∧ (
∨
S) =

∨
{a ∧ s : s ∈ S}.

c)
∨n
i=1 (

∧
Ti) =

∧
{
∨n
i=1 f(i) : f ∈

∏
Ti}

d)
∧n
i=1 (

∧
Ti) =

∨
{
∧n
i=1 f(i) : f ∈

∏
Ti}

Proof. Parts (a) and (b) come from the distributivity, by induction on the
number of elements of S. Items (c) and (d) can be proven, for n = 2, by induction
on the number of elements of T1, the basis step being provided by (a) and (b).
Finally, induction on n will finish the proof. �

Remark 4.8. If L is a distributive lattice and θ is a lattice congruence on L,
then the quotient lattice, L/θ, defined right before Proposition 3.8, is distributive
and called the quotient of L be θ. As before, πθ : L −→ L/θ is a lattice morphism
and the statement of 3.8 is valid, ipsis litteris, for distributive lattices. In particular,
Corollary 3.9 holds − with the same proof −, for distributive lattices, that is, in
this category every pair of morphisms has a coequalizer. 2

We now explore the relationship between congruences and filters or ideals in
a distributive lattice.
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Definition 4.9. Let L be a distributive lattice and f : L −→ P be a lattice
morphism.

a) If F ⊆ L is a filter in L, define, for x, y ∈ L,

x ∼F y iff there is z ∈ F such that x ∧ z = y ∧ z.

b) If I ⊆ L is an ideal in L, define, for x, y ∈ L,

x ∼I y iff there is z ∈ I such that x ∨ z = y ∨ z.

c) If θ is a congruence on L, set

Fθ = {x ∈ L : x θ >} and Iθ = {x ∈ L : x θ ⊥}.
d) In the case θ is the congruence generated in L by f (3.7), the sets Fθ and Iθ
are called the cokernel and kernel of f , respectively :

coker f = {x ∈ L : fx = >} and ker f = {x ∈ L : fx = ⊥}.

Proposition 4.10. Let L be a distributive lattice.

a) For θ, θ′ ∈ Con(L), θ ⊆ θ′ ⇒ Fθ ⊆ Fθ′ and Iθ ⊆ Iθ′ .

b) If A is a filter or ideal in L, then ∼A is a congruence in L. Moreover,{
F∼A = A if A is a filter;

I∼A = A if A is an ideal.

c) For filters or ideals F , G in L, F ⊆ G iff ∼F ⊆ ∼G.

Proof. Item (a) is straightforward. In the remaining items, we treat only
the case of filters; the proofs for ideals are analogous.

b) ∼A is an equivalence relation : Reflexivity and symmetry are immediate. For
transitivity, let x, y, t ∈ L with x ∼A y and y ∼A t. Choose u and z in A such that
x ∧ u = y ∧ u and y ∧ z = t ∧ z. Since A is a filter, we have u ∧ z ∈ A, and so

x ∧ (u ∧ z) = (x ∧ u) ∧ z = (y ∧ u) ∧ z = (y ∧ z) ∧ u = (t ∧ z) ∧ u
= t ∧ (u ∧ z),

showing that x ∼A t.

∼A is a congruence : Suppose x ∼A a and y ∼A b; let u, z be elements of A such
that x ∧ u = a ∧ u and y ∧ z = b ∧ z. Then, u ∧ z ∈ A and we have

(u ∧ z) ∧ (x ∨ y) = (x ∧ u ∧ z) ∨ (y ∧ u ∧ z)
= (a ∧ u ∧ z) ∨ (b ∧ u ∧ z)
= (u ∧ z) ∧ (a ∨ b).

showing that (x ∨ y) ∼A (a ∨ b). Similar calculations, in fact not involving dis-
tributivity, will verify that ∼A is a congruence with respect to ∧. For the displayed
equation, note that

x ∈ F∼A iff x ∼A > iff for some z ∈ A, x ∧ z = > ∧ z = z

iff for some z ∈ A, x ≥ z.

Since A is a filter, we conclude that A = F∼A , as desired. Item (c) is a straight-
forward consequence of (a) and (b). �

4.11. Notation. If A is a filter or an ideal in a distributive lattice L, we adopt
the following notation, where x ∈ L :

∗ x/A is the equivalence class of x by the congruence ∼A;
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∗ L/A for the quotient lattice of L by the congruence ∼A;

∗ πA : L −→ L/A for the canonical quotient morphism. 2

Corollary 4.12. Let L be a distributive lattice and θ ∈ Con(L). With no-
tation as in 4.9 and 4.11,

a) If A is a filter in L, then for all x, y ∈ L
x/A ≤ y/A iff ∃ z ∈ A such that x ∧ z ≤ y.

b) If A is an ideal in L, then for all x, y ∈ L
x/A ≤ y/A iff ∃ z ∈ A such that x ≤ y ∨ z.

c) Fθ is a filter and Iθ is an ideal in L. Furthermore, ∼Fθ ∪ ∼Iθ ⊆ θ.

d) The cokernel of a morphism is a filter and its kernel an ideal in L.

e) If A is a filter in L and θ ∈ Con(L), then ∼A ⊆ θ iff A ⊆ Fθ.

A corresponding statement holds for ideals.

Proof. We treat only the case of filters. For (a), note that if x, y ∈ L,

x/A ≤ y/A iff x/A ∧ y/A = (x ∧ y)/A = x/A iff (x ∧ y) ∼A x

iff ∃ z ∈ A such that x ∧ y ∧ z = x ∧ z.
To conclude, note that the last equation is equivalent to (x ∧ z) ≤ y.

c) It is straightforward that Fθ and Iθ are, respectively, a filter and an ideal. We
show that ∼Fθ ⊆ θ, leaving the analogous calculations for ∼Iθ to the reader. For
x, y ∈ L,

x ∼Fθ y iff ∃ z such that z θ > and x ∧ z = y ∧ z.
From x θ x, y θ y and z θ >, we get (x ∧ z) θ x and (y ∧ z) θ y. Since x ∧ z
= y ∧ z, transitivity yields x θ y, as required. Item (d) follows immediately from
(c), while (e) is a consequence of 4.10 and (c). �

For quotients by filters and ideals, Proposition 3.8 takes the following form,
when the source of a morphism is distributive :

Corollary 4.13. Let L be a distributive lattice, F be a filter on L and

L
f−→ P be a lattice morphism. The following are equivalent:

(1) There is a unique g : L/F −→ P

such that g ◦ πF = f ;

(2) F ⊆ coker f .

L - L/F

g f

P

πF

A
A
A
A
AAU

�
�
�
�
�
��

A corresponding statement holds for ideals.

Proof. By Proposition 3.8, the existence of g is equivalent to ∼F ⊆ θf , while
4.12.(e) implies that this condition is equivalent to F ⊆ Fθf = coker f . �

Complementing Proposition 4.10, we prove
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Lemma 4.14. Let L be a lattice. With notation as in 4.9, the following are
equivalent :

(1) L is a distributive lattice.

(2) For all filters A in L, the relation ∼A is a congruence in L.

(3) For all ideals A in L, the relation ∼A is a congruence in L.

(4) For all principal ideals A in L, ∼A is a congruence in L.

(5) For all principal filters A in L, ∼A is a congruence in L.

Proof. By 4.10, it is enough to verify that (5) ⇒ (1), i. e., if x, y, z ∈ L,
then

x ∧ (y ∨ z) ≤ (x ∧ y) ∨ (x ∧ y). (I)

Let A = x→; since x ∧ y = x ∧ (x ∧ y), we have y ∼A x ∧ y; analogously,
z ∼A x ∧ z. Since ∼A is a lattice congruence, we conclude that

(y ∨ z) ∼A [(x ∧ y) ∨ (x ∧ z)].
Hence, there is t ∈ x→, such that

t ∧ (y ∨ z) = t ∧ [(x ∧ y) ∨ (x ∧ z)] ≤ (x ∧ y) ∨ (x ∧ z). (II)

But (II) and x ≤ t immediately imply (I), as desired. �

Example 4.15. Let Li, i ∈ I, be a family of distributive lattices and F ⊆ 2I

be a filter in 2I (usually one says a filter on I). For s, t ∈
∏
Li, define,

s ∼F t iff {i ∈ I : s(i) = t(i)} ∈ F .

Then, ∼F is a congruence on
∏
Li; the quotient lattice, written

∏
Li/F , is called

the reduced product of the Li by F . The elements of this quotient will be
written s/F . For s, t ∈

∏
Li, we have

s/F ≤ t/F iff {i ∈ I : s(i) ≤ t(i)} ∈ F . 2

Example 4.16. If T is a topological space and S ⊆ T , let

νS = {U ∈ Ω(T ) : S ⊆ U}.
This is a filter in Ω(T ), the neighborhood filter of S in T . If S = {x}, write νx
for νS (as in section 1.2).

With the topology induced by T , S is a topological space and there is a canon-
ical surjective lattice morphism,

πS : Ω(T ) −→ Ω(S), given by πS(U) = U ∩ S.

Clearly, coker πS = νS . It is left as an exercise for the reader to verify that Ω(S)
isomorphic to the quotient of Ω(T ) by the congruence generated by πS .

By Proposition 4.10, the congruence generated by νS is contained in that
arising from πS . If S is open in T , then they are the same, and so Ω(T )/νS is
isomorphic to Ω(S). In general, these congruences may be different. To see this,
let T = R and S = [0, 1), the unit interval, closed at 0 and open at 1. Let

U = (1/2, 2) and V = (−1, 0) ∪ (1/2, 1).

Clearly, U ∩ S = V ∩ S; however, any open setW containing S will contain an open
interval around 0 and, hence, will have non-empty intersection with (−1, 0). But
the latter interval is disjoint from U . This shows that U and V are not equivalent
with respect to the congruence generated by νS . Proposition 4.10 guarantees that,
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in fact, the congruence associated to πS is distinct from all that arise from filters
on Ω(T ). 2

Example 4.17. As a simpler example of the fact that not all congruences
on a distributive lattice come from filters or ideals, consider the real unit interval
[0, 1] and P = {0, 1/2, 1}, with the usual ordering. Define f : [0, 1] −→ P by

fx =

 0 if x = 0
1 if x = 1
1/2 otherwise

If θ is the congruence generated by f , then Fθ = {1} and Iθ = {0}, which are,
respectively, the cokernel and kernel of f . 2

The poset of congruences in a lattice yield important examples of distributive
lattices. Before proving this result, we show

Lemma 4.18. Let A be an algebra (2.49) and let {θi}, i ∈ I, be a family of
congruences in A. Then, the congruence generated by

⋃
θi,
∨
θi, is given by

∨
θi = {〈x, y 〉 ∈ A2 :

∃ s0, . . . , sn ∈ A, i1, . . . , in ∈ I such that

s0 = x, sn = y and 〈 sk−1, sk 〉 ∈ θik ,

∀ 1 ≤ k ≤ n.


Proof. Let S be the right hand side of the stated equality. First observe

that if θ is a congruence containing
⋃
θi then it must contain S, because every

pair of successive terms 〈 sk, sk+1 〉 appearing in the definition of S will be in θ.
Quite clearly, θi ⊆ S, for all i ∈ I. Thus, it suffices to show that S is a congruence
on A.

S is an equivalence relation : It is immediate that S is reflexive. If 〈x, y 〉 ∈ S, there
are s0, s1, . . . , sn in A and i1, . . . , in in I with the properties described above. To
verify that 〈 y, x 〉 ∈ S, just consider t0, . . . , tn given by tk = sn−k, 0 ≤ k ≤ n.

For transitivity, suppose 〈x, y 〉, 〈 y, z 〉 ∈ S. Let s0, . . . , sn in A and i1, . . . , in
in I “connect” x and y as in the statement; suppose further that t0, . . . , tm in A
and k1, . . . , km in I do the same for y and z. Recall that sn = y = t0; now :

a) Define elements uj ∈ A, 0 ≤ j ≤ m+ n, by

uj =

{
sj 0 ≤ j ≤ n
tj−n n+ 1 ≤ j ≤ m+ n

b) Define elements lj ∈ I, 1 ≤ j ≤ m+ n, by

lj =

{
ij 1 ≤ j ≤ n
kj−n n+ 1 ≤ j ≤ n+m

It is easily verified that the finite sequences in (a) and (b) “connect” x and z,
proving the transitivity of S.

S is a congruence : Let α be a (m+ 1)-ary operation in A and let 〈x,~a 〉 ∈ Am+1,
where ~a = 〈 a1, . . . , am 〉. Suppose 〈x, y 〉 ∈ S, with s0, . . . , sn in A and i1, . . . , in
in I, “connecting” x and y, as above. Then, the sequences α(sk, ~a) (0 ≤ k ≤ n)
in A and i1, . . . , in in I “connect” α(x, ~a) and α(y, ~a), and so 〈α(x,~a), α(y,~a) 〉
is in S.
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The above argument can be carried out for any coordinate, holding the others
fixed. Changing one coordinate at a time, from 1 to m+1, we can show that for all
~x, ~z ∈ Am+1, if 〈xk, zk 〉 ∈ S for all k ≤ m+ 1, then 〈α(~x), α(~z) 〉 ∈ S, completing
the proof that S is a congruence on A. �

Recall that Con(A) is the poset of congruences on an algebra A. In Example
2.49, it is shown that Con(A) has sups and infs for all of its subsets, being therefore
a lattice. We now prove

Proposition 4.19. If L is a (not necessarily distributive) lattice, then Con(L)
is a distributive lattice.

Proof. First observe that in any lattice,

For all x, y, z, (x ∧ y) ∨ (x ∧ z) ≤ x ∧ (y ∨ z).
Thus, if θ, β and γ are congruences on a lattice L, it suffices to show that

θ ∩ (β ∨ γ) ⊆ (θ ∩ β) ∨ (θ ∩ γ).

Let 〈x, y 〉 ∈ θ and 〈x, y 〉 ∈ (β ∨ γ); this last assertion means, by 4.18, that there
are s0, s1, . . . , sn in L such that s0 = x, sn = y and for all k ≤ n, 〈 sk, sk+1 〉 is in
β or γ. We wish to produce, again by 4.18, a sequence “connecting” x and y, such
that each pair of successive terms is either in (θ ∩ β) or in (θ ∩ γ).

For 1 ≤ k ≤ n, define a sequence in L, as follows :

tk = x ∨ (s1 ∧ y) ∨ . . . ∨ (sk ∧ y).

Fact. For all 1 ≤ k ≤ n,

∗ 〈 sk−1, sk 〉 ∈ β ⇒ 〈 tk−1, tk 〉 ∈ θ ∩ β;

∗ 〈 sk−1, sk 〉 ∈ γ ⇒ 〈 tk−1, tk 〉 ∈ θ ∩ γ.

Proof. We treat only the case in which 〈 sk−1, sk 〉 ∈ β, the other being similar.
Observe that the sequence tk is increasing, as well as that

tk = tk−1 ∨ (sk ∧ y), 1 ≤ k ≤ n. (I)

Suppose sk−1 β sk; taking the meet with y, we get

(y ∧ sk−1) β (y ∧ sk),

and so the join with tk−1 on both sides yields

[tk−1 ∨ (y ∧ sk−1)] β [tk−1 ∨ (y ∧ sk)].

Hence, the absorption laws (3.15.(iii)) and (I) imply 〈 tk−1, tk 〉 ∈ β. It remains to
show that 〈 tk−1, tk 〉 ∈ θ. From x θ y we get

(x ∧ sk) θ (y ∧ sk),

and thus,

[tk−1 ∨ (x ∧ sk)] θ [tk−1 ∨ (y ∧ sk)]. (II)

Since tk−1 ≥ x, (I) and (II) imply the desired conclusion.

To complete the proof, note that tn = x ∨ y and t0 = x. It follows from the
Fact that the sequences tk in L and i1, . . . , in in I, “connect” x and (x ∨ y), by
steps which are either in (θ ∩ β) or in (θ ∩ γ). We conclude that for all x, y ∈ L,

〈x, y 〉 ∈ θ ∩ (β ∨ γ) ⇒ 〈x, x∨ y 〉 ∈ (θ ∩ β) ∨ (θ ∩ γ).

But then, it is also true that 〈 y, x∨ y 〉 ∈ (θ ∩ β) ∨ (θ ∩ γ). Now, symmetry and
transitivity will finish the proof. �
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The filters and ideals essential in establishing the important connections be-
tween Lattice theory, Logic and Topology are defined in

Definition 4.20. Let L be a distributive lattice.

a) A proper filter A is prime iff for all x, y in L,

x ∨ y ∈ A ⇒ x ∈ A or y ∈ A.

b) A proper ideal is prime if for all x, y ∈ L,

x ∧ y ∈ A ⇒ x ∈ A or y ∈ A.

c) A proper filter (ideal) is maximal iff for all proper filters (resp., ideals) G,
A ⊆ G ⇒ A = G.

Remark 4.21. We shall consider ultrafilter as synonymous with maximal
filter. Reduced products by ultrafilters on a set are called ultraproducts. 2

Lemma 4.22. Let L be a distributive lattice.

a) If L = A ∪ B, with A ∩ B = ∅, then A is a prime filter iff B is a prime ideal.

b) Every maximal filter or ideal in L is prime.

c) If L
f−→ K is a lattice morphism, then the inverse image of a prime filter is a

prime filter.

Proof. Item (a) is left to the reader. In (b), we discuss only the case of
filters. Let F ⊆ L be a maximal filter, with (x ∨ y) ∈ F . Set S = F ∪ {x} and
T = F ∪ {y}. Notice that if either S or T have the fip (3.13), then they generate
a proper filter containing F . Since F is maximal, we would get x ∈ F or y ∈ F ,
the desired conclusion. Suppose then that both S and T do not have the fip. Select
s1, . . . , sn and t1, . . . , tm in F such that

x ∧
∧n
i=1 si = ⊥ = y ∧

∧m
k=1 tk.

Since F is a filter, finite intersections of elements of F are in F , and so the above
equations are equivalent to the existence of z, w ∈ F such that

x ∧ z = ⊥ = y ∧ w.

But now observe that since (z ∧ w) and (x ∨ y) are in F , we get

(x ∨ y) ∧ (z ∧ w) = ⊥,

a contradiction, because F is a proper filter.

c) By 3.14, the inverse image of a proper filter is a proper filter. For F prime in
K, write G for f−1(F ). If x, y ∈ L are such that x ∨ y ∈ G, then fx ∨ fy ∈ F ,
and so either fx ∈ F or fy ∈ F . Hence, x ∈ G or y ∈ G, and G is prime in L. �

Remark 4.23. Suppose A ⊆ L is a filter in a lattice L and x ∈ L. To show
that A ∪ {x} has the fip, it is enough to check that for z ∈ A, x ∧ z 6= ⊥. A dual
statement holds for ideals and the fup property. 2

One of the main results of this Chapter is the following

Theorem 4.24. (M. Stone, G. Birkhoff) Let L be a distributive lattice with
⊥ and >. Let F be a filter in L and S a non-empty ud subset of L, such that
F ∩ S = ∅. Then, there is a prime filter P , such that F ⊆ P and P ∩ S = ∅.
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Proof. Let

V = {G ⊆ L : G is a filter, F ⊆ G and G ∩ S = ∅}
ordered by inclusion. Since F ∈ V , V is not empty. By 3.17 (or 2.32), V satisfies
the hypothesis of Zorn’s Lemma (2.20). Thus, there is a filter P , which is maximal
in V . Clearly, P is proper filter (S 6= ∅), F ⊆ P and P ∩ S = ∅. It remains to
verify that P is prime.

Suppose x, y in L are such that (x ∨ y) ∈ P . If neither x nor y is in P , then
the filters generated by P ∪ {x} and P ∪ {y} contain P properly and so both
have non-empty intersection with S. Hence, there are z, t ∈ P , u, v ∈ S such that

(x ∧ t) ≤ u and (y ∧ z) ≤ v.

Since S is ud, we can select w ∈ S such that u, v ≤ w. Since t ∧ z is in P , we get

(x ∨ y) ∧ (z ∧ t) ≤ (x ∧ t) ∨ (y ∧ z) ≤ u ∨ v ≤ w.

Hence, w ∈ P ∩ S, an impossibility which ends the proof. �

There is, of course, a statement dual to the above, involving a proper ideal in
L and a non empty dd subset of L, which are disjoint. This result is actually a
consequence of Theorem 4.24. With an similar argument one proves

Theorem 4.25. Every proper filter (ideal) in a distributive lattice is contained
in a maximal filter (resp., ideal).

Corollary 4.26. Let L be a distributive lattice.

a) If a ≤ b is false in L, then there is a prime filter containing a, to which b does
not belong.

b) Every filter (ideal) in L is the intersection of the prime filters (resp., ideals)
that contain it. In particular, the intersection of all prime filters in L is {>} and
the intersection of all prime ideals is {⊥}.

Proof. a) Just notice that the filter a→ does not intersect the ideal b← and
apply Theorem 4.24.

b) Let F be a filter and V = {P ⊆ L : P is a prime filter and F ⊆ P}; clearly,
⋂
V

contains F . Now, if a 6∈ F , the ideal a← is disjoint from F and so Theorem 4.24
yields a prime filter P containing F and disjoint from a←. Thus,

⋂
V = F . �

It is clear that the intersection of a prime filter/ideal in L with a sublattice of
L is a prime filter/ideal in the sublattice. The lifting of primes in sublattices of L
to primes in L is described in

Theorem 4.27. Let L be a distributive lattice and let D be a sublattice of L.
If P is a prime filter (ideal) in D, then there is a prime filter (resp., ideal) Q in
L such that Q ∩ D = P .

Proof. Assume that P is a prime filter in D and let I = D − P ; I is a prime
ideal in D (4.22.(a)) and so a non-empty upward directed set in L. Since P 6= D,
P has the fip in L and so generates a proper filter F in L. Since P is closed under
finite meets, F = f(P ) (3.13.(a)) is given by

F = {x ∈ L : ∃ y ∈ P such that y ≤ x}.
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It follows that F ∩ I = ∅. By Theorem 4.24, there is a prime filter Q in L such
that F ⊆ Q and Q ∩ I = ∅. Quite clearly, Q ∩ D = P . �

Exercises

4.28. Let f : X −→ Y be a continuous map of topological spaces. With
notation as in 4.6 and for 〈V,W 〉 ∈ Ω(X) × Ω(Y ),

a) Show that f∗W ⊆ V iff W ∩ f(X − V ) = ∅.
b) Show that f∗V = int(Y − f(X − V )).

c) Prove formula (∗) in 4.6. 2

4.29. Let X be a topological space and x ∈ X.

a) Let 0̂ : X −→ {0} be the constant map with value 0. Determine 0̂∗ and 0̂∗.

b) Let x̌ : {0} −→ X be the continuous map which sends 0 to x. Determine x̌∗

and x̌∗. 2

4.30. Let L be a lattice. Show that the following are equivalent :

(1) L is a distributive lattice;

(2) The lattice of ideals in L, I(L), is a distributive lattice;

(3) The lattice of filters in L, F(L), is a distributive lattice. 2

4.31. Let L be a lattice. A filter F in L is irreducible if it is proper and for
all filters G1, G2 in L

F = G1 ∩ G2 ⇒ F = G1 or F = G2.

a) If L is a distributive lattice, a filter is irreducible iff it is prime.

b) Give examples of lattices with non-prime irreducible filters. 2
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CHAPTER 5

Boolean Algebras

It is customary to introduce algebraic constructions by requiring that certain
systems of equations have a solution. If L is a distributive lattice with ⊥ and >
and b is an element of L, consider the system of equations in one unknown,{

x ∧ b = ⊥
x ∨ b = >

(*)

The above system may be generalized, for a ≤ b ≤ c in L, by{
x ∧ b = a

x ∨ b = c
(**)

We have

Lemma 5.1. Let L be a distributive lattice.

a) If the systems (∗) and (∗∗) have a solution in L, then it is unique.

b) The following are equivalent :

(1) For all b ∈ L, system (∗) has a solution in L.

(2) For all a ≤ b ≤ c in L, system (∗∗) has a solution in L.

Proof. a) It is enough to verify uniqueness of solutions for systems of the
type (**). Fix a ≤ b ≤ c in L. Note that if z is a solution of (**), then a ≤ z ≤ b.
If x and t satisfy (**), then a ≤ (x ∧ t) and so

x = x ∧ c = x ∧ (t ∨ b) = (x ∧ t) ∨ (x ∧ b) = (x ∧ t) ∨ a = x ∧ t,
showing that x ≤ t. Since the argument is symmetrical, we conclude that x = t,
as claimed.

b) Clearly, (2) ⇒ (1). For the converse, let ¬ b be the unique solution of (*) with
parameter b. To get a solution for the system (**), with parameters a ≤ b ≤ c, set
t = a ∨ (¬ b ∧ c); then

t ∧ b = [a ∨ (¬ b ∧ c)] ∧ b = (a ∧ b) ∨ (b ∧ ¬ b ∧ c) = a ∨ ⊥ = a,

while

t ∨ b = a ∨ (¬ b ∧ c) ∨ b = (¬ b ∧ c) ∨ b = (¬ b ∨ b) ∧ (c ∨ b)
= > ∧ c = c,

completing the proof. �

Remark 5.2. A lattice may be distributive and systems of the type (*) might
not have solutions for b 6= ⊥, >. We shall see a whole category of these, when we
treat Heyting algebras in the next chapter. However, just as an example, consider
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L = [0, 1], the real unit interval. If b 6= 0, 1, then the system (*) with parameter
b has no solution in L.

If L is not distributive, it may happen that all systems of type (*) have a solu-
tion in L, but uniqueness is lost. As an example, consider the lattice
L = {⊥, x1, x2, x3, >}, where the xis are unrelated.

>
•

x1 x2• x3�
�
�

• @
@
@

•

•
⊥

�
�
�

@
@
@

If i = 1, 2, 3 and j, k are the elements in {1, 2, 3} distinct from i, then the system{
x ∧ xi = ⊥
x ∨ xi = >

has both xj and xk as solutions. Another example of this sort is the lattice of
closed subspaces of a Hilbert space of dimension greater than 1 (4.3). We do not
know if a lattice in which every system of type (∗) (or (**)) has a unique solution
must be distributive. 2

Definition 5.3. Let L be a distributive lattice with ⊥ and >. An element
b ∈ L is complemented or clopen iff the system

x ∧ b = ⊥ and x ∨ b = > (∗)
has a solution in L. The unique solution of this system (5.1.(a)) is written ¬ b and
called the complement of b in L. Write B(L) for the set of clopen (or complemented)
elements in L.

A Boolean algebra (BA) is a distributive lattice with ⊥ and > in which
every element is complemented. A subset S of a BA B is a a sub-Boolean al-
gebra (sub-BA) of B iff ⊥, > ∈ S and S is closed under meets, joins and
complementation.

A sublattice of L is a sub-BA of L iff it is a sub-BA of B(L).

A morphism of BAs is a morphism in the category of distributive lattices.

Standard references on Boolean algebras are [3], [54], [60] and [69].

It follows from Lemma 5.1.(b) that Boolean algebras are the distributive lat-
tices with ⊥, >, such that all systems of type (**), have a unique solution.

The class of BAs may be defined equationally by adding a new unary opera-
tion, ¬ , to the lattice operations, and adding the following axioms to those of a
distributive lattice with ⊥ and > :

∗ ∀ x (x ∨ ¬x = > and x ∧ ¬x = ⊥).

∗ ¬⊥ = > and ¬> = ⊥.

Example 5.4. If X is a set, then 2Xand Bλ(X) are BAs (2.9). In particular,
2 = {⊥, >} (subsets of a singleton) is a BA.
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If T is a topological space, the lattice of clopens in T (3.6, 4.6), B(T ), is pre-
cisely B(Ω(T )), and hence a BA. It will be shown latter that all Boolean algebras
are isomorphic to B(X), for some topological space X.

The lattice of regular opens in T , Reg(T ), is also a BA (1.14) although not a
sub-BA of Ω(T ). 2

Definition 5.5. If B is a Boolean algebra and a, b ∈ B, define the operation
of implication by the rule

a → b = ¬ a ∨ b.
We also define the operations of equivalence and symmetric difference by

a ↔ b = (a → b) ∧ (b → a) and a 4 b = (a ∧ ¬ b) ∨ (b ∧ ¬ a),

respectively.

Lemma 5.6. Let L
f−→ K be a morphism of distributive lattices and let

x, y ∈ L.

a) If x ∈ B(L), then fx ∈ B(K) and f(¬x) = ¬ f(x).

b) If L is a Boolean algebra, then,

i) f(¬x) = ¬ f(x); ii) f(x → y) = fx → fy;

iii) f(x ↔ y) = fx ↔ fy; iv) f(x 4 y) = fx 4 fy.

Moreover, f is a BA-morphism from L into B(K).

c) If L is a BA, f(L) is a sub-BA of K.

Proof. a) Since f preserves ∧ and ∨, as well as ⊥ and >, we have{
x ∧ ¬x = ⊥
x ∨ ¬x = >

implies

{
fx ∧ f(¬x) = ⊥
fx ∨ f(¬x) = >

which, in view of the distributivity of K and 5.1, shows that f(¬x) is ¬ f(x).
Items (b) and (c) follow from (a) and the definitions of →, ↔ and 4. �

Lemma 5.7. Let B be a BA and let x, y, z be elements in B. Then,

a) (The law of double negation) ¬¬x = x.

b) (x ∧ y) ≤ z iff x ≤ (¬ y ∨ z).

c) x ∧ y = ⊥ iff x ≤ ¬ y.

d) (The contrapositive law) x ≤ y iff ¬ y ≤ ¬x.

e) ¬ (x ∧ y) = ¬x ∨ ¬ y; ¬ (x ∨ y) = ¬x ∧ ¬ y.

f) For all S ⊆ B,

(1) If
∨
S exists in B, then both

∧
s∈S ¬ s and

∨
s∈S (x ∧ s) exist in B and

x ∧
∨
S =

∨
s∈S (x ∧ s) and ¬

∨
S =

∧
s∈S ¬ s.

(2) If
∧
S exists in B, then both

∨
s∈S ¬ s and

∧
s∈S (x ∨ s) exist in B and

x ∨
∧
S =

∧
s∈S (x ∨ s) and ¬

∧
S =

∨
s∈S ¬ s.

Proof. a) Follows immediately from the uniqueness of complements.

b) If x ∧ y ≤ z, then

x = x ∧ > = x ∧ (y ∨ ¬ y) = (x ∧ y) ∨ (x ∧ ¬ y) ≤ z ∨ (x ∧ ¬ y)

= (z ∨ x) ∧ (z ∨ ¬ y) ≤ z ∨ ¬ y.
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Conversely, if x ≤ z ∨ ¬ y, then

x ∧ y ≤ (z ∨ ¬ y) ∧ y = (z ∧ y) ∨ (¬ y ∧ y) = (z ∧ y) ∨ ⊥
= z ∧ y ≤ z,

as desired. Item (c) is an immediate consequence of (b), with z = ⊥.

d) If x ≤ y, then

x ∧ ¬ y ≤ y ∧ ¬ y = ⊥,

and hence x ∧ ¬ y = ⊥. But then, (c) implies that ¬ y ≤ ¬x. The converse is
similar, using (a).

e) With distributivity, it is straightforward to check that the sated formulas are
solutions of the system of equations defining complements.

f) For the first equality in (1), let b ∈ B satisfy (x ∧ s) ≤ b, for all s ∈ S. By
(b), we get s ≤ ¬x ∨ b. Thus,

∨
S ≤ ¬x ∨ b; another application of (a) yields

x ∧
∨
S ≤ b. Hence,

∨
s∈S (x ∧ s) exists in B and is equal to x ∧

∨
S.

For the version of de Morgan’s law in (1), let b ∈ B be such that b ≤ ¬ s,
for all s ∈ S. Then, ∀ s ∈ S, b ∧ s = ⊥ and so

∨
s∈S (b ∧ s) = b ∧

∨
S = ⊥.

Hence, b ≤ ¬ (
∨
S). It remains to show that ¬ (

∨
S) ≤

∧
s∈S ¬ s. The method

is the same as above and will be omitted. The proof of (2) is similar, and in fact,
a consequence of (1), by complementation. �

The basic properties of the operation 4 are described in

Lemma 5.8. Let B be a Boolean algebra. For x, y, z ∈ B,

a) 〈B,4,⊥〉 is an Abelian group of exponent 2 (i.e., x 4 x = ⊥), whose zero is
⊥.

b) x 4 y = ⊥ iff x = y; x 4 y = > iff x = ¬ y.

c) x ∧ (y 4 z) = (x ∧ y) 4 (x ∧ z).
d) 〈B,4,∧,⊥,>〉 is a commutative ring with identity >, with ∧ as product and
4 as addition.

e) (x ∧ y) ∧ (x 4 y) = ⊥; x 4 y = x ∨ y iff x ∧ y = ⊥.

f) x ∨ y = x 4 y 4 (x ∧ y) = (x 4 y) ∨ (x ∧ y).

g) (y 4 z) ≤ x iff x ∨ y = x ∨ z.

Proof. Items (a) through (d) are left to the reader.

e) For the first equation, we compute as follows, recalling (b) and (c) :

(x ∧ y) ∧ (x 4 y) = (x ∧ y ∧ x) 4 (x ∧ y ∧ y)

= (x ∧ y) 4 (x ∧ y) = ⊥.

It x ∧ y = ⊥, then, by 5.7.(c), x ≤ ¬ y and y ≤ ¬x. Hence,

x 4 y = (x ∧ ¬ y) ∨ (y ∧ ¬x) = x ∨ y,

as claimed. Conversely, if x ∨ y = x 4 y, then x ≤ x 4 y. Thus, using (c), we get

x = x ∧ (x 4 y) = x 4 (x ∧ y),

and so the cancellation law in the group 〈B,4,⊥〉 yields x ∧ y = ⊥, as desired.

f) For a, b ∈ B, we have

a = a ∧ > = a ∧ (b ∨ ¬ b) = (a ∧ b) ∨ (a ∧ ¬ b).
Hence,
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x ∨ y = [(x ∧ y) ∨ (x ∧ ¬ y)] ∨ [(y ∧ x) ∨ (y ∧ ¬x)]

= (x ∧ y) ∨ [(x ∧ ¬ y) ∨ (y ∧ ¬x)] = (x ∧ y) ∨ (x 4 y)

= (x ∧ y) 4 (x 4 y),

where the last equality comes from item (e).

g) First assume that (y 4 z) ≤ x. Then,

y 4 z = x ∧ (y 4 z) = (x ∧ y) 4 (x ∧ z), (I)

and so, since B is an Abelian group under 4, (I) is equivalent to

y 4 (x ∧ y) = z 4 (x ∧ z). (II)

Hence, item (f) and (II) yield

x ∨ y = x 4 y 4 (x ∧ y) = x 4 z 4 (x ∧ z) = x ∨ z.
For the converse, assume that x ∨ y = x ∨ z. This equality can be written as

x 4 y 4 (x ∧ y) = x 4 z 4 (x ∧ z),
which upon cancellation of x on both sides, leads us back to (II). But we know
that (II) is equivalent to (I), ending the proof. �

The fundamental properties of implication and equivalence are in

Lemma 5.9. Let B be a Boolean algebra. For x, y and z ∈ B, the following
hold :

a) x ≤ (y → z) iff x ∧ y ≤ z;

b) x → y = max {a ∈ B : x ∧ a ≤ y}.
c) x ≤ y iff x → y = >; ¬x = (x → ⊥).

d) (modus ponens) x ∧ (x → y) ≤ y.

e) (contrapositive) (x → y) = (¬ y → ¬x).

f) x ≤ (y ↔ z) iff x ∧ y = x ∧ z.

Proof. (a) follows immediately from the definition of (y → z), while (b), (c)
and (d) are simple applications of (a).

e) To show that (x → y) ≤ (¬ y → ¬x), it is enough to verify, by (a), that

¬ y ∧ (x → y) ≤ ¬x,

or equivalently, by Lemma 5.7.(c), that

x ∧ ¬ y ∧ (x → y) = ⊥.

But this follows immediately from the law of modus ponens (item (d)). Similarly,
the reverse inequality is equivalent to

x ∧ (¬ y → ¬x) ≤ y. (I)

Since y = ¬¬ y (5.7.(a)), (5.7.(c)) implies that (I) is equivalent to

¬ y ∧ x ∧ (¬ y → ¬x) = ⊥,

which is, once again, a consequence of the law of modus ponens.

f) If x ≤ (y → z) = (y → z) ∧ (z → y), then (a) yields

x ∧ y ≤ z and x ∧ z ≤ y,

and so x ∧ y = x ∧ z. The converse is similar and left to the reader. �

Our next result characterizes filters, ideals and the congruences they generate
in terms of the operations of implication, equivalence and symmetric difference.
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Lemma 5.10. Let B be a Boolean algebra and x, y ∈ B.

a) A downward directed subset S of B is a filter iff

(F )

{
> ∈ S and

∀ x, y ∈ B, x, (x → y) ∈ S ⇒ y ∈ S.

b) An upward directed subset S of B is an ideal iff

(I)

{
⊥ ∈ S and

∀ x, y ∈ B, x, (x 4 y) ∈ S ⇒ y ∈ S.

c) With notation as in 4.9

(1) If F is a filter in B, then x ∼F y iff (x ↔ y) ∈ F .

(2) If I is an ideal in B, then x ∼I y iff (x 4 y) ∈ I.

Proof. a) Suppose that S satisfies (F ); if x ∈ S and x ≤ y, then, by 5.9.(c),
(x → y) = > ∈ S, and so, y ∈ S. Moreover, if x, y ∈ S, since it is dd, there
is t ∈ S, such that t ≤ (x ∧ y). But then, we conclude from what has just been
proven, that (x ∧ y) ∈ S, and S is a filter (by 3.10.(a)).

Conversely, if S is a filter, it suffices to show that x ∈ S and (x → y) ∈ S,
entails y ∈ S. But this follows immediately from the law of modus ponens (5.9.(d)).
The proof of item (b) is analogous and we omit it.

c) We treat the case of ideals, leaving that of filters to the reader. For x, y ∈ B,
we have suppose that x ∼I y. Then, there is t ∈ I, such that

x ∨ t = t ∨ y.

By Lemma 5.8.(g), (x4 y) ≤ t, and so (x4 y) ∈ I. Conversely, another application
of 5.9.(g) yields

x ∨ (x 4 y) = y ∨ (x 4 y),

showing that (x 4 y) ∈ I implies x ∼I y. �

A characterization of BAs among distributive lattices is given by

Proposition 5.11. Let L be a distributive lattice with ⊥ and >. Then, L is
a BA iff for all θ ∈ Con(L), the congruence generated by Fθ is equal to θ.

Proof. By Exercise 5.18.(b), any congruence with respect to the lattice
operations in a BA is a congruence with respect to ¬.

Suppose L is a BA and θ ∈ Con(L). By Corollary 4.12, it is enough to prove
that θ ⊆ ∼Fθ . To simplify notation, set

F = Fθ = {x : x θ >} and α = ∼Fθ .
It must be shown that x θ y implies x ∼F y. Taking joins with ¬x on both sides
of (x θ y), yields (¬x ∨ x) θ (¬x ∨ y). Thus, (¬x ∨ y) is in F . Similarly, we have
(¬ y ∨ x) ∈ F . F being a filter, we conclude

(x ↔ y) = (¬x ∨ y) ∧ (¬ y ∨ x) ∈ F .

It follows from Lemma 5.10.(c) that x ∼F y.

For the converse, we have to find a complement for each x ∈ L. Consider the
ideal I = x← and the congruence ∼I on B (4.10). By 5.18.(a), there is a filter
F ⊆ B such that
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∀ a, b ∈ B, a ∼I b iff a ∼F b.

Since x ∼I ⊥, there is y ∈ F , with x ∧ y = ⊥. Because y ∈ F , we get y ∼F > and
so y ∼I >; this means that there is t ≤ x, such that y ∨ t = > ∨ t = >. Clearly,
y ∨ x = >, ending the proof. �

In BAs, primeness and maximality for filters and ideals coincide.

Proposition 5.12. Let B be a Boolean algebra and let A be a proper filter
or ideal in B. The following are equivalent :

(1) A is prime.

(2) For all x ∈ L, either x ∈ A or ¬x ∈ A.

(3) A is maximal.

Proof. Suppose that A is a filter in B. As usual, the case of ideals is dual.
Since for all x ∈ B, x ∨ ¬x = > ∈ A, it is clear that (1) ⇒ (2). Now assume (2)
and let G be a proper filter containing A. If x ∈ G, then ¬x cannot be in A, since
x ∧ ¬x = ⊥ and G is proper. Consequently, G ⊆ A and A is maximal. (3) ⇒ (1)
follows from Lemma 4.22.(b). �

Corollary 5.13. Let B be a Boolean algebra. There is a natural bijective
correspondence between the set of ultrafilters in B and the set of BA morphisms
from B to 2 = {⊥, >}, given by f 7→ cokerf .

Proof. Left to the reader. �

Another characterization of Boolean algebras is given by

Proposition 5.14. A distributive lattice with ⊥ and > is a Boolean algebra
iff every prime ideal is maximal.

Proof. We already know (5.12) that in a BA a filter is prime iff it is maximal.
For the converse, suppose x ∈ L is not clopen. In particular x 6= ⊥, >. Set

A = {z ∈ L : x ∧ z = ⊥}.
Then, A is an ideal and A ∪ {x} has the fup, otherwise x would have a complement.
Let

F = {y ∈ L : x ∨ y = >} and I = i(A ∪ {x}) 1.

Clearly, F is a filter and I an ideal. To see that I ∩ F = ∅, consider what would
happen if there was t ∈ F ∩ I : in this case, x ∨ t = > and t ≤ x ∨ z, for some
z ∈ A. But then

> ≤ (x ∨ t) ≤ x ∨ (x ∨ z) = x ∨ z,
and z would be the complement of x. By Theorem 4.24, there is a prime filter P
such that F ⊆ P and P ∩ I = ∅. In particular, x 6∈ P and P ∩ A = ∅. This last
equation means that P ∪ {x} has the fip; thus the proper filter it generates is
strictly larger than P , contradicting its maximality. �

We invite the reader to supply a proof of the following preservation result.

1i(∗) is the ideal generated by ∗, as in 3.12.
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Proposition 5.15. The product, fiber product, and reduced product of Boolean
algebras are Boolean algebras.

The statement of the next result should be compared with 4.27.

Theorem 5.16. Let C ⊆ B be BAs. For every b ∈ B − C, there is an
ultrafilter F in C and ultrafilters F1, F2 in B, such that

(i) Fi ∩ C = F ; (ii) b ∈ F1 and ¬ b ∈ F2.

Proof. We freely employ the results in 5.7, without explicit mention.

Since b 6∈ C, the ideal I = b← ∩ C and the filter G = b→ ∩ C are disjoint in
C. By Theorem 4.24 (and 5.12) , there is a ultrafilter F in C such that G ⊆ F
and F ∩ I = ∅.

We now verify that both F ∪ {b} and F ∪ {¬ b} have the fip (3.13). If F ∪ {b}
did not have the fip, then for some a ∈ F , a ∧ b = ⊥. Hence, b ≤ ¬ a, and so
¬ a ∈ G ⊆ F , which is impossible, because F is a proper filter. If F ∪ {¬ b} did
not have the fip, then for some a ∈ F , we would have a ≤ b, untenable, because
this implies a ∈ I and F is disjoint from this ideal, by construction.

By Theorem 4.25, there are ultrafilters F1, F2 in B, such that F ∪ {b} ⊆ F1

and F ∪ {¬ b} ⊆ F2. Since F is maximal in C, it is clear that Fi ∩ C = F , ending
the proof. �

The definitions of monic and epic appear in 16.8.

Proposition 5.17. Let A
f−→ B be a BA morphism. Then,

a) f is monic iff it is injective iff coker f = >.

b) f is epic iff it is surjective.

Proof. a) is straightforward and left to the reader.

b) The argument here is more sophisticated, needing 5.16. All we have to do is
verify that epic implies surjective (Exercise 16.38).

Suppose f is epic and there is b ∈ B − f(A). By 5.6.(c), f(A) is a sub-BA of
B. Let F , Fi, i = 1, 2 be the ultrafilters in f(A) and B constructed in 5.16. By
5.13, B/Fi may be identified with 2 = {⊥, >}. Let

B -
-

h1

h2

{⊥, >}

be the quotient maps induced by F1, F2, respectively. For a ∈ A,

h1(f(a)) = > iff f(a) ∈ F1 ∩ f(A) iff f(a) ∈ F2 ∩ f(A)

iff h2(f(a)) = >,

which shows that h1 ◦ f = h2 ◦ f . But this contradicts the hypothesis that f is
epic, since h1(b) = >, while h2(b) = ⊥, that is, h1 6= h2. �
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Exercises

5.18. Recall (2.32, 3.17) that if L is a lattice, F(L), I(L) are the poset of
filters and ideals in L. Let B be a Boolean algebra.

a) Show that the map x 7→ ¬x induces an isomorphism from B onto Bop (which is
also a BA). Show that the above map induces a natural bijective correspondence
between filters and ideals in B as follows

F ∈ F(B) 7→ ¬ F = {b ∈ B : ¬ b ∈ F} ∈ I(B).

Prove that this correspondence originates, in turn, a natural bijection between the
congruences generated by filters and ideals, in such a way that for all filters F in
B, B/F is naturally isomorphic to B/¬ F .

b) Show that any lattice congruence on B is also a BA congruence, that is,
preserves the operation ¬ . Conclude that any lattice congruence in a Boolean
algebra preserves implication, equivalence and symmetric difference.

c) If F is a filter in a BA B, then B/F is a BA and the canonical projection,

B
πF−→ B/F , is a BA morphism. 2

5.19. Let B be a Boolean algebra. Show that the map

F ∈ F(B) 7−→ ∼F ∈ Con(B)

is an isomorphism between the lattice of filters in B (3.17.(d)) and the lattice of
congruences in B. Conclude that the lattice of filters in a BA is a distributive
lattice. State and prove a similar result for the lattice of ideals in a BA. 2
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CHAPTER 6

Heyting Algebras

The concept of Heyting algebra is an algebraic encoding of a constructive
theory of implication.

Definition 6.1. A Heyting algebra (HA) is a distributive lattice with ⊥
and >, H, such that for all x, y ∈ H

max {z ∈ H : z ∧ x ≤ y} exists in H.

This element of H is denoted by x → y (x implies y). Hence, for all x, y, z ∈ H
[→] x ∧ z ≤ y iff z ≤ (x → y).

If H and L are Heyting algebras, a map f : H −→ L is a HA-morphism iff
f is a lattice morphism such that

∀ x, y ∈ H, f(x → y) = fx → fy.

Heyting algebras and their morphisms form a category, written HA.

Standard references on HAs are [3], [60] and [59].

Example 6.2. The algebra of opens of a topological space T provides one of
the fundamental examples of Heyting algebras. The operation → is given by

U → V = int((T − U) ∪ V ).

In this Chapter it is recommended that the reader keep in mind the topological
example, together with the results in 1.14, that yield geometrical significance to
most of the constructions that follow.

A BA, B, is a Heyting algebra because for all x, y ∈ B, (¬x ∨ y) is the largest
z ∈ B such that z ∧ x ≤ y (Lemma 5.7.(b)).

Chains or linear orders (with first and last element) are also HAs, where

x → y =

{
> if x ≤ y

y otherwise
2

Remark 6.3. The class of HAs is equationally definable by adding a binary
operation, →, to those of a lattice and adding, to the set of identities defining
distributive lattices with ⊥ and >, the following rules :

[HA 1] : x ∧ (x → y) = x ∧ y.

[HA 2] : x ∧ (y → z) = x ∧ ((x ∧ y) → (x ∧ z)).
[HA 3] : z ∧ ((x ∧ y) → x) = z.

The reader is referred to Theorem IX.4.1, pg. 177, of [3]. In any case, this follows
easily from the results to be presented below. 2
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Some of the basic properties of Heyting algebras are presented in

Lemma 6.4. For x, y, z in a Heyting algebra H,

a) x ≤ y iff x → y = >.

b) (Modus Ponens) x ∧ (x → y) ≤ y.

c) x ≤ (x → y) → y and x ∧ (x → y) = x ∧ y.

d) y ≤ z implies


(x → y) ≤ (x → z)

and

(z → x) ≤ (y → x).

e) (y ∨ z) → x = (y → x) ∧ (z → x).

f) x → (y ∧ z) = (x → y) ∧ (x → z).

g) (x → t) ∨ (y → z) ≤ (x ∧ y) → (t ∨ z).

h) x → (y → z) = (x ∧ y) → z.

i) x ∧ (y → z) = x ∧ ((x ∧ y) → (x ∧ z)).

Proof. (a) is clear; (b) comes from the fact that (x → y) is the largest z in
H such that z ∧ x ≤ y. From (b), the definition of → will immediately yield the
first statement in (c), while, taking the meet with x on both sides of (b), will give
us the second.

d) Note that (x → y) ≤ (x → z) is true iff x ∧ (x → y) ≤ z. But this follows
immediately from (b) and y ≤ z. Similarly, we have

y ∧ (z → x) ≤ z ∧ (z → x) ≤ x,

which is equivalent to the second assertion in (d).

e) It follows directly from (d) that the left side of (e) is less than or equal to its
right hand side. For the other inequality, note that

(y ∨ z) ∧ (y → x) ∧ (z → x) =

= [y ∧ (y → x) ∧ (z → x)] ∨ [z ∧ (y → x) ∧ (z → x)]

≤ [x ∧ (z → x)] ∨ [x ∧ (y → x)] ≤ x ∨ x = x.

Items (f) and (g) are similar and left to the reader.

h) Applying the definition of → successively, we get

t ≤ [x → (y → z)] iff x ∧ t ≤ (y → z) iff y ∧ x ∧ t ≤ z

iff t ≤ [(x ∧ y) → z],

as needed. Item (i) is left to the reader. �

The reader will surely notice the resemblance of the above with some of the
usual laws of Logic.

Definition 6.5. Let H be a Heyting algebra. For each x ∈ H, write

¬x =def (x → ⊥),

called the pseudo-complement of x in H.

Remark 6.6. a) If H
f−→ K is a HA-morphism, then f preserves pseudo-

complement, that is, f(¬x) = ¬ fx, ∀ x ∈ H.

b) Note that for x in a HA H,
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¬x is the largest z in H such that z ∧ x = ⊥.

In particular, ¬⊥ = > and ¬> = ⊥. Observe also that if an element x of H has a
complement then it must be equal to ¬x. Hence, this notation is consistent with
that adopted for BAs. In fact,

H is a BA iff for all x ∈ H, x ∨ ¬x = >. (*)

i.e., ¬x is the complement of x (see Exercise 6.26.(a)). 2

Example 6.7. a) In the HA of opens of a topological space T we have

¬U = int(T − U).

It is therefore easy to give examples of HAs of this type, in which the only clopen
elements are ⊥ and >.

b) In a chain, ¬x = ⊥ for all x 6= ⊥. 2

The basic rules governing pseudo-complementation are described in

Lemma 6.8. For all x, y, t, z in a HA H, we have

a) y ≤ z ⇒ ¬ z ≤ ¬ y.

b) x ≤ ¬¬x and x ≤ y ⇒ ¬¬x ≤ ¬¬ y.

c) t ∧ x = ⊥ iff t ∧ ¬¬x = ⊥.

d) ¬x = ¬¬¬x and x ≤ ¬ y ⇒ ¬¬x ≤ ¬ y.

e) ¬ (y ∨ z) = ¬ y ∧ ¬ z.

f) ¬ (x ∧ y) = ¬¬ (¬x ∨ ¬ y).

g) ¬¬ (x ∧ y) = ¬¬x ∧ ¬¬ y.

h) (¬x ∨ y) ≤ (x → y) ≤ ¬¬ (¬x ∨ y).

i) ¬ (x → y) = ¬¬x ∧ ¬ y.

j) ¬¬ (x → y) = ¬¬x → ¬¬ y.

k) ¬¬x ≤ ¬¬ [(x ∧ ¬ y) ∨ y].

l) ¬ (x ∨ ¬x) = ⊥; ¬¬ (x ∨ ¬x) = >.

Proof. Item (a) comes from the second statement in Lemma 6.4.(d), with
x = ⊥. The first part of (b) is an instance of the first inequality in Lemma 6.4.(c),
with y = ⊥, while the second comes from a double application of (a).

c) Clearly, (b) yields t ∧ ¬¬x = ⊥ ⇒ t ∧ x = ⊥. On the other hand,

t ∧ x = ⊥ ⇒ t ≤ ¬x ⇒ ¬¬x ≤ ¬ t ⇒ t ∧ ¬¬x = ⊥.

The assertions in (d) are direct consequences of (c). Item (e) comes directly from
Lemma 6.4.(e), with x = ⊥.

f) Lemma 6.4.(g), with t = z = ⊥, yields ¬x ∨ ¬ y ≤ ¬ (x ∧ y); from item (d)
above, we get ¬¬ (¬x ∨ ¬ y) ≤ ¬ (x ∧ y). On the other hand, (e) and a repeated
use of (d) yield that ¬ (x ∧ y) ∧ x ∧ y = ⊥ implies

¬ (x ∧ y) ∧ ¬¬x ∧ ¬¬ y = ¬ (x ∧ y) ∧ ¬ (¬x ∨ ¬ y) = ⊥,

showing that ¬ (x ∧ y) ≤ ¬ (¬x ∨ ¬ y), completing the proof of (f). Item (g)
follows easily from (e) and (f).

h) Since x ∧ (¬x ∨ y) = x ∧ y, it follows that (¬x ∨ y) ≤ (x → y). For the other
inequality in (h), we again use (d) and (e) :
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x ∧ ¬ y ∧ (x → y) = ⊥ ⇒ ¬¬x ∧ ¬ y ∧ (x → y) = ⊥
⇒ ¬ (¬x ∨ y) ∧ (x → y) = ⊥
⇒ (x → y) ≤ ¬¬ (¬x ∨ y).

Item (i) is an immediate consequence of (a), (c) and (h).

j) By (g), (b) and Modus Ponens (6.4.(b)), we have

¬¬x ∧ ¬¬ (x → y) = ¬¬ (x ∧ (x → y)) ≤ ¬¬ y,

and the adjunction [→] in 6.1 yields ¬¬ (x → y) ≤ ¬¬x → ¬¬ y. For the reverse
inequality, from item (i) and Modus Ponens comes

(¬¬x → ¬¬ y) ∧ ¬ (x → y) = (¬¬x → ¬¬ y) ∧ ¬¬x ∧ ¬ y
≤ ¬¬ y ∧ ¬ y = ⊥,

and so, by (a), (¬¬x → ¬¬ y) ≤ ¬¬ (x → y), as needed. Items (k) and (l) are left
to the reader. �

Definition 6.9. If H is a HA, define, for x, y ∈ H,

x ↔ y = (x → y) ∧ (y → x),

called the equivalence operation in H.

Lemma 6.10. For x, y, z in a HA H,

a) z ≤ (x ↔ y) iff x ∧ z = y ∧ z.

b) (x ↔ y) = max {z ∈ H : z ∧ x = z ∧ y}. 2

Proposition 6.11. If L is a distributive lattice, then F(L) and I(L) 1 are
Heyting algebras.

Proof. Write F for F(L). We shall prove the result for F , leaving the
corresponding statement for I(L) to the reader. We start by

Fact. F is a distributive lattice.

Proof. It is sufficient to verify that for F,K,G ∈ F ,

F ∩ (G ∨ K) ⊆ (F ∩ G) ∨ (F ∩ K).

Recall that F ∨ G is the filter generated by F ∪ G, as well as that in F , ⊥ = {>}
and > = L.

If x ∈ (G ∨ K), by Lemma 3.13.(a), there are A ⊆f G and B ⊆f K, such that
x ≥

∧
A ∧

∧
B. Thus,

x = (x ∨
∧
A) ∧ (x ∨

∧
B) = [

∧
a∈A (x ∨ a)] ∧ [

∧
b∈B (x ∨ b)]. (I)

If x ∈ F , then (x ∨ a) ∈ (F ∩ G), ∀ a ∈ A. Similarly, if b ∈ B, then (x ∨ b) ∈
(F ∩ K). Hence, (I) expresses x as a meet of elements in (F ∩ G) ∪ (F ∩ K), as
needed.

The same argument will prove something stronger, namely, that for all F ∈ F
and {Gi : i ∈ I} ⊆ F ,

F ∩ (
∨
Gi) =

∨
(F ∩ Gi).

To finish the proof, observe that for F,G,K ∈ F ,

F ∩ K ⊆ G ⇒ For all k ∈ K and x ∈ F , (x ∨ k) ∈ G.

1The lattice of filters and ideals in L, as in 2.32 and 3.17.(d).
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The set of all z ∈ L that satisfy this property is easily seen to be a filter in L, that
is,

F → G = {z ∈ L : ∀ x ∈ F , (x ∨ z) ∈ G},
and F is indeed a HA. �

Remark 6.12. Let L be a distributive lattice. With notation as in Proposition
6.11, if F ∈ F , then

¬F = {z ∈ L : ∀ x ∈ F , (x ∨ z) = >}.
In the case of I(L), we have, for I, J ∈ I(L){

I → J = {z ∈ L : ∃ x ∈ I such that x ∧ z ∈ J};
¬ I = {z ∈ L : ∃x ∈ I such that (x ∧ z) = ⊥}.

The lattice of congruences of any lattice is also a HA. We defer the proof of this
fact to a later chapter. 2

Example 6.13. a) If B is a BA and x, y ∈ B, then

(x ↔ y) = (¬x ∨ y) ∧ (¬ y ∨ x) = (x ∧ y) ∨ (¬x ∧ ¬ y).

Hence, (x ↔ y) = ¬ (x 4 y) = > 4 (x 4 y), where 4 is symmetric difference
(5.5).

b) If T is a topological space and U, V ∈ Ω(T ), then

(U ↔ V ) = int((T − U) ∪ V ) ∩ int((T − V ) ∪ U)

= int [(U ∩ V ) ∪ ((T − U) ∩ (T − V ))].

Thus, ↔ in Ω(T ) is the interior of ↔ in 2T . 2

Example 6.14. a) If f : X −→ Y is a continuous map of topological spaces
X,Y , in general, f∗ : Ω(Y ) −→ Ω(X) (4.6) will not be a HA-morphism. The
same counterexample presented in 4.6 for the non-preservation of regular opens,
shows that ¬ need not be preserved by f∗. This will, in fact, lead to a change in
the concept of morphism when we deal with frames 2. Nevertheless, the definition
of HA-morphism given above has enough importance to merit discussion. It is
interesting to find conditions on f such that f∗ is a HA-morphism. One such is
that f be open.

b) If C and L are chains, then f : C −→ L is a HA-morphism iff f is strictly
increasing on C − coker f . 2

Proposition 6.15. Let H be a HA and F be a filter in H.

a) The equivalence relation ∼F generated by F is a congruence with respect to all
the operations on H. Furthermore, for x, y ∈ H

x ∼F y iff (x ↔ y) ∈ F .

b) The following are equivalent :

(1) F is an ultrafilter;

(2) F is prime and for all x ∈ H, ¬¬x ∈ F ⇒ x ∈ F ;

(3) For all x ∈ H, either x ∈ F or ¬x ∈ F .

c) If θ is a Heyting algebra congruence on H, then ∼Fθ = θ. The mapping

2Called complete Heyting algebras in [15] and complete pseudo-Boolean algebras in [60].
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F ∈ F(H) 7→ ∼F ∈ Con(H)

is an isomorphism from F(H) onto Con(H), the lattice of HA congruences on
H.

d) If f is a HA-morphism, then f is injective iff coker f = {>}.

Proof. a) We first verify that

x ∼F y iff (x ↔ y) ∈ F .

If x ∼F y, then, there is z ∈ F such that x ∧ z = y ∧ z. By 6.10.(a), z ≤ (x↔ y),
and so (x ↔ y) ∈ F . The converse is consequence of 6.10.(b), that is,

x ∧ (x ↔ y) = y ∧ (x ↔ y).

To complete the proof of (a), it is sufficient to show that

x ∼F y and a ∼F b ⇒ (x → y) ∼F (a → b).

Using the result just proven and Exercise 6.23.(b), we get

z = [(x ↔ y) ∧ (a ↔ b)] ∈ F and z ∧ (x → y) = z ∧ (a → b),

and so ∼F is a congruence with respect to →.

b) (1) ⇒ (2) : By 4.22, every ultrafilter is prime. If x 6∈ F , then the filter generated

by F and {x} cannot be proper. By 3.13.(a), there is a ∈ F such that a ∧ x = ⊥,
that is, a ≤ ¬x. But then, ¬x ∈ F and F is not a proper filter. Hence, x ∈ F , as
desired.

(2) ⇒ (3) : By 6.8.(l), for all x ∈ H, ¬¬ (x ∨ ¬x) = > ∈ F ; therefore, (2) entails

(x ∨ ¬x) ∈ F and primeness yields the alternative in (3).

(3) ⇒ (2) : The proof is the same as that for BAs, in 5.12.

c) By 4.12.(c), it is enough to verify that θ ⊆ ∼Fθ . If x θ y, applying (x → ·) to
both sides of this relation yields > θ (x→ y). Similarly, we can show > θ (y → x).
Hence, (x ↔ y) ∈ Fθ, which entails, by item (a), x ∼Fθ y. The remainder of (c),
as well as (d), are left to the reader. �

Corollary 6.16. If F is a filter in a HA H, the quotient H/F is a Heyting
algebra and the quotient morphism, πF : H −→ H/F is a HA-morphism.

Remark 6.17. a) Note that 6.15.(c) refers only, – as it must –, to HA-
congruences. In 4.16 there is an example of a lattice congruence on the HA Ω(T )
which does not come from a filter or ideal in Ω(T ). By 6.15.(c), that congruence
is not a HA-congruence on Ω(T ), something that can be checked directly.

Since Proposition 5.14 guarantees that a distributive lattice L is a BA iff all
lattice congruences on L come from filters, and Ω(T ) is not a BA, such examples
were certain to exist.

b) In general, the equivalence relation determined by ideals in a HA will not
preserve →, i.e., ∼I is not a HA-congruence. As an example, consider the ideal
I = (0,∞)←, generated by the open positive axis in the HA of opens of the real
line, Ω(R). Clearly, (0, ∞) ∼I ⊥; but ¬ (0, ∞) = ( −∞, 0) is not equivalent to
>, since there is no U ∈ I such that U ∪ (−∞, 0) = R. Hence, 6.16 is false for
ideals. 2

Example 6.18. Let H = [0, 1] be the real unit interval.
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a) DH = (0, 1], because for all x 6= 0 in H, ¬x = 0.

b) The filters on H are the principal filters and the intervals (x, 1], x 6= 0, all
prime filters. But the only ultrafilter is DH = (0, 1]. This very simple example
already displays an important fact : in Heyting algebras, prime filters have greater
significance than ultrafilters. 2

The next theme is the discussion of a special type of filter in HAs, that will
lead to a connection between Heyting and Boolean algebras. The analogy with
topological spaces is at the root of

Definition 6.19. Let H be a Heyting algebra and let x, y be elements of H.

a) x is dense in y iff x ≤ y ≤ ¬¬x. Write D(y) for the set of elements dense
in y.

b) x is dense iff ¬¬x = >. Write DH for the set of dense elements of H. When
H is clear from context it will be omitted from the notation.

c) x is regular iff ¬¬x = x. Write Reg(H) is the set of regular elements in H.

Proposition 6.20. Let H be a HA and x, y ∈ H.

a) (x ∨ ¬x) ∈ D.

b) If y ∈ Reg(H), then

{
x → y = ¬¬x → y;

(x → y) ∈ Reg(H).

c) D is a proper filter in H and Reg(H) is closed under meets. Moreover, for all
x, y ∈ H, x ∼D y iff ¬¬x = ¬¬ y.

d) A prime filter in H is maximal iff it contains D.

e) F and G are ultrafilters in H, then

F = G iff F ∩ Reg(H) = G ∩ Reg(H).

f) If H
f−→ P is a HA-morphism, then

f(DH) ⊆ DP and f(Reg(H)) ⊆ Reg(P ).

Proof. Item (a) is a consequence of 6.8.(l).

b) To prove the equality in the statement, it is enough, by 6.4.(d), to show that
(x → y) ≤ (¬¬x → y). By the fundamental adjunction [→] in 6.1, this means

¬¬x ∧ (x → y) ≤ y. (I)

But we have, recalling 6.8.(j) and Modus Ponens

¬¬x ∧ (x → y) ≤ ¬¬x ∧ ¬¬ (x → y) = ¬¬x ∧ (¬¬x → ¬¬ y)

≤ ¬¬ y = y,

establishing (I), as needed. It now clear that if y ∈ Reg(H), then ¬¬ (x → y) =
x → y, completing the proof of (b).

c) The first assertion in (c) is an immediate consequence of the fact that ⊥ 6∈ D
and 6.8.(g). For x, y ∈ H, by 6.15.(a) and 6.8.(g)

x ∼D y iff (x ↔ y) ∈ D iff ¬¬ (x ↔ y) = > = (¬¬x ↔ ¬¬ y)

iff ¬¬x = ¬¬ y,

as desired. Items (d) and (e) follow from 6.15.(b), while (f) is straightforward. �
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Proposition 6.21. If H is a HA, then H/D is a BA, satisfying the following
universal property :

For all BAs B and all HA-morphisms H
f−→ B, there is a unique HA-

morphism, H/D
g−→ B, such that g ◦ πD = f .

B

H

?

- H/D

�
�
�

�
�
�	

f

πD

g

Moreover, the map

u ∈ Reg(H) 7→ u/D ∈ H/D
is a BA-isomorphism of Reg(H) (6.24) onto H/D.

Proof. We already know that H/D is a HA. Note that for x ∈ H
x/D ∨ ¬x/D = (x ∨ ¬x)/D = >/D,

because ¬¬ (x ∨ ¬x) = > (6.20.(a) and (c)). It now follows from (*) in Remark
6.6.(b) that H/D is a Boolean algebra. If f : H −→ B is a HA-morphism and
x ∈ D, then

f(x) = ¬¬ f(x) = f(¬¬x) = f(>) = >,

and so D ⊆ coker f . By 4.13, there is a unique lattice morphism, g : L/D −→ B,
making the displayed diagram commute. It now follows from 5.6.(b) that g is a
BA-morphism. The remaining assertions are left to the reader. �

The preceding results yield

Corollary 6.22. Let H be a HA. With notation as in 6.21, there are natural
bijective correspondences between

(1) The ultrafilters in H/D and the ultrafilters in H, given by F 7→ π−1
D (F ).

(2) The HA-morphisms from H into 2 = {⊥, >}, and the ultrafilters in H, given
by f 7→ cokerf .

Exercises

6.23. If ∗ is any of the binary operations in a HA H, then, for x, y, a, b ∈ H,

a) (a ∗ x) ∧ (x ↔ y) = (a ∗ y) ∧ (x ↔ y).

b) (a ∗ x) ∧ (x ↔ y) ∧ (a ↔ b) = (b ∗ y) ∧ (x ↔ y) ∧ (a ↔ b). 2

6.24. If H is a HA, define an operation ∨∗ on H by

a ∨∗ b = ¬¬ (¬¬ a ∨ ¬¬ b) = ¬¬ (a ∨ b).
a) Reg(H) is closed under the operation ∨∗ and for a, b ∈ Reg(H),
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a ∨∗ b = sup {a, b} in the poset Reg(H).

b) Show that Reg(H) is a BA (the BA of regular elements in H.). 2

6.25. Let H be a HA and S be a subset of H. Show that

a) If
∨
S exists in H, then so does

∧
s∈S ¬ s and ¬ (

∨
S) =

∧
s∈S ¬ s.

b) Investigate what happens in the case dual to (a). 2

6.26. Let H be a HA.

a) The following are equivalent :

(1) H is a BA.

(2) For all x ∈ H, x ∨ ¬x = >.

(3) For all x ∈ H, ¬¬x = x.

(4) The only dense element in H is >.

(5) Every prime filter in H is maximal.

(6) For all x, y ∈ H, (x → y) = ¬x ∨ y.

b) The following are equivalent :

(1) For all x, y ∈ H, ¬ (x ∧ y) = ¬x ∨ ¬ y.

(2) For all x ∈ H, ¬x ∨ ¬¬x = >. 2
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CHAPTER 7

Complete Lattices

One could view lattices as finitely complete posets. We now introduce their
complete counterparts.

Definition 7.1. A partially ordered set L is complete (or a complete
lattice) if it satisfies the following equivalent conditions :

[
∨

] : For all S ⊆ L,
∨
S exists in L;

[
∧

] : For all S ⊆ L,
∧
S exists in L.

A subset S of a complete lattice L is a subbasis for L iff every element of L
is the join of finite meets of elements of S. S is a basis for L if every element of
L is the join of elements of S.

Note that all complete lattices have ⊥ and >. Among the examples in Chapter
2, the reader will find many complete lattices. Of special importance here are the
distributive ones, particularly the algebra of opens of a topological space.

Remark 7.2. Let X be a set and S ⊆ 2X . In view of Lemma 1.8,

(i) S is a subbasis for τ(S), the topology generated by S on X.

(ii) S is a basis for a topology on X iff every element of B(S) is the union of ele-
ments of S. In particular, this holds whenever S is closed under finite intersections,
in which case B(S) = S. 2

Let A be a class of algebras, in which, among others, are defined the (possibly
infinitary) partial operations ω1, . . . , ωn. If A, B ∈ A and f : A −→ B is a map,
we say that

f is a [ω1, . . . , ωn]-morphism

iff f preserves all the operations ω1, . . . , ωn, that is, for all 1 ≤ j ≤ n, if ωj is defined
in a = 〈 aα 〉α∈λ ∈ Aλ (λ a cardinal), then ωj is defined in f(a) = 〈 f(aα) 〉α∈λ and

f(ωj(a)) = ωj(f(a)).

Definition 7.3. Let L and P be posets. Let f : L −→ P be a morphism of
posets. Then,

a) f is a
∨

-morphism iff for all S ⊆ L,∨
S exists in L ⇒

∨
f(S) exists in P and f(

∨
S) =

∨
f(S).

We may also write that f preserves joins.

b) f is a
∧

-morphism iff for all S ⊆ L,∧
S exists in L ⇒

∧
f(S) exists in P and f(

∧
S) =

∧
f(S).

We may also write that f preserves meets.

80



Chapter 7. Complete Lattices 81

c) f is a [∧,
∨

]-morphism iff f preserves finite meets and all joins.

d) f is a complete morphism iff f is a [
∨
,
∧

]-morphism.

e) f is a regular embedding iff f is an injective [
∨
,
∧

]-morphism.

A sublattice L ⊆ P is a regular sublattice if the canonical map from L to
P is a regular embedding.

Note that all the notions of morphism introduced above are closed under com-
position.

Remark 7.4. In the definition of maps preserving infinitary operations, it is
not assumed that the posets involved are complete. In particular, for a sublattice
to be a regular sublattice, it is necessary and sufficient that any joins or meets
existing in the sublattice also exist and be the same in the larger one. As an
example, consider the rationals naturally embedded in R. This will be important
when we discuss completions. 2

One of the basic tools in constructing complete lattices is

Theorem 7.5. (Tarski) Let f : L −→ L be a poset morphism, with L a
complete lattice. Then, the set of fixed points of f ,

Fix(f) = {x ∈ L : fx = x},
with the po induced by L, is a complete lattice. In particular, Fix(f) 6= ∅. Moreover,

a) If f satisfies ∀ x ∈ L, fx ≥ x, then the meet of all S ⊆ Fix(f) are the same
as in L, that is, the natural injection of Fix(f) into L is a

∧
-morphism.

b) If f satisfies ∀ x ∈ L, fx ≤ x, then the join of all S ⊆ Fix(f) are the same as
in L, that is, the natural injection of Fix(f) into L is a

∨
-morphism.

Proof. Let S ⊆ Fix(f); we show that
∧
S exists in Fix(f), in the partial

order induced by L. Consider

T = {p ∈ L : ∀ s ∈ S (p ≤ s and p ≤ fp)}.
It is straightforward to check that for p ∈ T , fp ∈ T . It is also clear that S ⊆ T .

Let q =
∨
T , this join taken in L. Note that

x ∈ Fix(f) and x ≤ s, for all s ∈ S ⇒ x ∈ T .

Therefore, to verify that q =
∧
S in Fix(f), it is enough to show that q ∈ Fix(f).

Since p ≤ s, for all 〈 p, s 〉 ∈ T × S, q is a lower bound for S. Furthermore, for
each p ∈ T , p ≤ q and so p ≤ fp ≤ fq. This means that fq is an upper bound for
T and thus, q ≤ fq. We have shown that q ∈ T ; but then fq ∈ T and so fq ≤ q,
proving that q ∈ Fix(f).

Now suppose fx ≥ x, ∀ x ∈ L. Let S ⊆ Fix(f) and t =
∧
S, this meet taken

in L. If t is proven to be a fixed point of f , then t will also be the meet of S in
Fix(f), as desired. Since f is increasing, we have ft ≤ fs = s, for all s ∈ S. Thus,
ft is a lower bound for S in L. Consequently, ft ≤ t =

∧
S, and so ft = t. The

case fx ≤ x is handled similarly. This ends the proof. �

Example 7.6. In general, Fix(f) is not a sublattice of L. One simple reason
is that ⊥ and/or > might not be in their proper places. We now discuss slightly
more elaborate examples.
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If T is a topological space we defined in section 1.2 two increasing maps of 2T

into itself, given by A 7→ int A and A 7→ A, whose basic properties are described
in 1.10. Notice that the fixed points of the first are the open sets in T , while the
fixed points of the second are the closed sets in T ; in both cases, the lattice of
fixed points is a sublattice of 2T with arbitrary unions of opens being open and
arbitrary intersections of closed sets being closed, illustrating the parts (b) and
(c) of Theorem 7.5.

Now consider f , g : 2T −→ 2T given by

fA = intA and gA = int A.

Both maps are increasing, with Fix(f) corresponding to the regular closed sets
i.e., closed sets F such that F = intF and Fix(g) corresponding to the lattice of
regular opens in T (3.6). If T = R, with its usual topology, then finite meets in
Fix(f) and finite joins in Fix(g) are not the same as in 2R. Simple examples may
be obtained by considering contiguous intervals, for instance [0, 1] and [1, 2] in
Fix(f) and (0, 1), (1, 2) in Fix(g). Although Fix(f) is a sub-∨-semilattice and
Fix(g) is a sub-semilattice of 2R, neither is a sublattice of 2R.

To construct an example such that neither finite meets nor finite joins are
preserved, it is sufficient to consider

f × g : 2R × 2R −→ 2R × 2R, given by (A,B) 7→ (fA, gB),

where the product lattice has its natural coordinatewise structure. Clearly, f × g
is increasing and Fix(f × g) = Fix(f) × Fix(g). Thus, finite meets and joins
are not those induced by 2R × 2R. 2

Theorem 7.5 has many applications. Exercise 7.11 indicates two of these.

In complete lattices, a very general form of associativity holds for both meets
and joins, the proof of which is left to the reader :

Lemma 7.7. Let L be a complete lattice and Si, i ∈ I, be a family of subsets
of L. Then

a)
∨
i∈I (

∨
Si) =

∨
{
∨
i∈I s(i) : s ∈

∏
i∈I Si}.

b)
∧
i∈I (

∧
Si) =

∧
{
∧
i∈I s(i) : s ∈

∏
i∈I Si}. 2

With the infinitary versions of the distributive laws, the situation is quite
distinct. In Chapter 8, we discuss this situation in more detail (Proposition 8.7).

We now generalize what was done in Example 4.6.

Theorem 7.8. Let L and P be complete lattices. There is a natural bijective

correspondence between
∨

-morphisms, L
f−→ P , and

∧
-morphisms, P

g−→ L,
defined by the rule :

[ad] ∀ u ∈ L and ∀ v ∈ P , fu ≤ v iff u ≤ gv.

In particular,

a) f ◦ g ≤ IdP and g ◦ f ≥ IdL.

b) g ◦ f ◦ g = g and f ◦ g ◦ f = f .

Proof. If g : P −→ L is a
∧

-morphism, define f : L −→ P by
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fu =
∧
{v ∈ P : u ≤ gv}.

It is immediate that f is increasing and that u ≤ gv ⇒ fu ≤ v. Assume now
that fu ≤ v. Since g is increasing, g(fu) ≤ gv, while, the fact that g preserves

∧
yields

g(fu) = g(
∧
{v ∈ P : u ≤ gv}) =

∧
{gv : u ≤ gv} ≥ u.

Thus, u ≤ g(fu) ≤ gv and [ad] is verified.

To prove that f is a
∨

-morphism, let S ⊆ L. Since f is increasing we have∨
s∈S fs ≤ f(

∨
S). To show equality, it is enough to verify that for v ∈ P , if

fs ≤ v, ∀ s ∈ S, then v ≥ f(
∨
S). This can be obtained from [ad] as follows :

∀ s ∈ S (fs ≤ v) ⇒ ∀s ∈ S (s ≤ gv) ⇒
∨
S ≤ gv,

and so f(
∨
S)≤ v, as desired. Given a

∨
-morphism, f : L−→ P , define g : P −→ L

by dualizing what was done above :

gv =
∨
{u ∈ L : fu ≤ v}.

Analogous arguments will show that [ad] holds and that g is a
∧

-morphism. It is
straightforward to show that the property [ad] uniquely determines the pair 〈 f, g 〉,
as well as that it implies items (a) and (b) in the statement. �

A pair (f , g) as in Theorem 7.8 will be called an adjoint pair with f the left
adjoint of g and g the right adjoint of f .

Corollary 7.9. Let f : L −→ P and g : P −→ L be an adjoint pair of maps
between complete lattices, with f a

∨
-morphism and left adjoint to g.

a) The following conditions are equivalent :

(1) f is onto; (2) g is a section for f , that is, f ◦ g = IdP ;

(3) g is injective; (4) ∀ v ∈ P , g(v) = max f−1(v).

b) The following conditions are equivalent :

(1) f is injective; (2) f is a section for g, that is g ◦ f = IdL;

(3) g is onto; (4) ∀ u ∈ L, f(u) = min g−1(u).

Proof. We give a proof of the equivalence in (a), leaving the dual (b) as an
exercise. Recall that the following adjointness condition is verified :

[ad] ∀ (u, v) ∈ L × P , fu ≤ v iff u ≤ gv,

as well as relations (a) and (b) in the statement of Theorem 7.8.

For (1) ⇒ (2), note that Theorem 7.8.(b) and the fact that f is onto yield, for
v = fu,

f(g(v)) = f(g(f(u))) = fu = v,

as needed. (2) ⇒ (3) is clear. For (3) ⇒ (4), we have, for v ∈ P , g(f(g(v))) = gv
(7.8.(b)); the injectivity of g implies f(g(v)) = v and so gv ∈ f−1(v). It follows
directly from [ad] that gv is the largest element in f−1(v). (4) ⇒ (1) is immediate
and the proof is ended. �

Remark 7.10. Although in important cases (e.g., Example 6.2) the
∨

-
morphism f in Theorem 7.8 is a [∧,

∨
]-morphism, g will not be a [∨,

∧
]-morphism,
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that is, g will not be a lattice morphism (it is always increasing or a poset mor-
phism). As an example, consider the absolute value function av : R −→ R+. With
notation as in Example 6.2 and using the formula given therein for av∗, it is easily
checked that

(i) av∗((0, ∞)) = av∗(( −∞, 0)) = ∅, while (ii) av∗(R − {0}) = R+ − {0}. 2

Most authors register the fact that Theorem 7.8 is a consequence of the Adjoint
Functor Theorem (see Theorem 16.35).

In [17] adjoint pairs are called Galois connection; [17] contains interesting
applications of adjoint pairs, as well as references to the literature.

Exercises

7.11. Show that Theorem 7.5 implies the Cantor-Bernstein Theorem and the
possibility of defining functions by transfinite induction over well ordered sets. 2

7.12. This exercise consists in showing that the conditions in Theorem 7.8 are
equivalent.

Let f : L −→ P and g : P −→ L be a
∨

-morphism and a
∧

-morphism of
complete lattices, respectively. The following are equivalent :

(1) 〈 f, g 〉 is an adjoint pair;

(2) f ◦ g ≤ IdP and g ◦ f ≥ IdL;

(3) g ◦ f ◦ g = g and f ◦ g ◦ f = f . 2
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Frames

We now introduce the algebraic constructs that are fundamental in all that
follows.

Definition 8.1. A complete lattice, L, is a frame if it satisfies the following
distributive law :

[∧,
∨

] For all S ⊆ L and all x ∈ L, x ∧
∨
S =

∨
s∈S x ∧ s.

It is clear that any frame is a distributive lattice.

If L and L′ are frames, a map f : L −→ L′ is a frame morphism iff it is
a [∧,

∨
]-morphism of complete lattices, i.e., f preserves finite meets and arbitrary

joins.

If L is a frame, a subset K of L is a subframe of L if, when endowed with
the lattice structure induced by L, the canonical map from K to L is a frame
morphism.

Write Frame for the category of frames and their morphisms.

Example 8.2. If X is a set, 2X with the usual set-theoretic operations is a
frame. Moreover, the subframes of 2X are exactly the topologies on X. Although
topologies are fundamental examples of frames, other important instances of this
notion will appear below. 2

Example 8.3. If (P , ≤) is a poset, let U(P ) be the topology on P generated
by the set {x→ : x ∈ P} (1.8). Note that :

i) Each x ∈ P has a smallest open neighborhood, namely x→.

ii) Opens of the form x→ are super compact, that is, any open covering has an
one element sub covering.

iii) The frame of opens of this topology on P is an algebraic frame, since every
open U can be written as U =

⋃
x∈U x→.

In [15], the frame of opens of this topology on P are called Kripke models. 2

Induction and the [∧,
∨

] law yields

Corollary 8.4. Let H be a frame and S1, . . . , Sn be subsets of H. Then∧n
i=1 (

∨
Si) =

∨
{
∧n
i=1 t(i) : T ∈

∏
Si}. 2

Lemma 8.5. A frame L has a natural structure of Heyting algebra, with im-
plication given, for p, q ∈ L, by

p → q =
∨
{x ∈ L : x ∧ p ≤ q},

and satisfying the fundamental adjunction [→] in Definition 6.1.
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Proof.1 Fix p, q ∈ L and set

t =
∨
{x ∈ L : x ∧ p ≤ q}. (1)

If S is the subset of L in the right-hand side of (1), the fact that L satisfies the
[∧,
∨

]-law yields

p ∧ t = p ∧
∨
S =

∨
x∈S p ∧ x ≤ q,

showing that, in fact, t = max {x ∈ L : p ∧ x ≤ q}, as needed. �

If L is a frame, the operation of implication in L will always be the
canonical operation associated to L as in Lemma 8.5.

It was shown in Lemma 7.7, that a very general form of associativity holds in
any complete lattice. On the other hand, infinitary versions of distributivity yield
characterizations of some the algebraic objects we have been describing. We start
with

Definition 8.6. Let L be a lattice.

a) L is a [∧,
∨

]-lattice iff it satisfies

[∧,
∨

]
For all S ⊆ L and all x ∈ L, if

∨
S exists in L, then∨

s∈S (x ∧ s) exists in L and x ∧
∨
S =

∨
s∈S (x ∧ s).

b) L is a [∨,
∧

]-lattice iff it satisfies

[∨,
∧

]
For all S ⊆ L and all x ∈ L, if

∧
S exists in L, then∧

s∈S (x ∨ s) exists in L and x ∨
∧
S =

∧
s∈S (x ∨ s).

Proposition 8.7. a) Chains and BAs are [∨,
∧

]−lattices.

b) Every HA is a [∧,
∨

]-lattice. In particular, every BA and all chains are [∧,
∨

]-
lattices.

c) A HA is a frame iff it is complete as a lattice. In particular, complete chains
are frames.

Proof. a) The statement for BAs follows from 5.7.(g). For chains, the veri-
fication is straightforward.

b) Let L be a HA, S ⊆ L and suppose that
∨

S exists in L. Assume that for
t, x ∈ L, we have t ≥ x ∧ s, ∀ s ∈ S. Then, s ≤ x → t, for all s ∈ S and so∨

S ≤ x → t. But this means that x ∧
∨
S ≤ t. This reasoning proves, in one

stroke, that
∧
s∈S (x ∧ s) exists in L and is equal to x ∧

∨
S. Item (c) follows

immediately from (b) and Definition 8.1, ending the proof. �

Remark 8.8. Important references in the subject, [15] among them, use the
term complete Heyting algebras (cHa) for what we here are designating as frames.
Proposition 8.7 surely describes grounds on which this nomenclature is reasonable.
It should be nevertheless registered that a frame and a Heyting algebra, that is
complete as a lattice, are algebras of different types, although in a certain sense
interpretable in one another.

In [60], frames and cHas are called complete pseudo Boolean algebras . 2

1See also Exercise 8.27.
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Definition 8.9. A complete Boolean algebra (cBa) is a BA that is com-
plete as a lattice. The category cBa of complete Boolean algebras is the category
whose objects are cBas and whose morphisms are [∧,

∨
]-morphisms. By Proposi-

tion 8.7.(b) cBa is a subcategory of Frame.

Example 8.10. It is clear that 2X is a complete Boolean algebra. By Lemma
1.14 and Example 5.4, if T is a topological space, Reg(T ) is a complete Boolean
algebra. 2

Definition 8.11. A frame morphism, f : L −→ R, is

a) implication preserving (ip) if

For all p, q ∈ L, f(p → q) = fp → fq.

b) open if it is an implication preserving, [
∨
,
∧

]-morphism, of complete lattices.

Remark 8.12. Our definition of frame morphism has its origin in Topology
(Examples 4.6 and 6.14). Analogy with Topology is also the source of the term
“open” for a complete morphism which preserves implication : if f : X −→ Y is a
continuous open map of topological spaces, then f∗ : Ω(Y ) −→ Ω(X) is a complete
morphism such that, for all U, V ∈ Ω(Y ), f∗(U → V ) = f∗U → f∗V .

In [15], open is used for what we here call a complete morphism. Hence, the
examples below may be instructive :

1. A regular embedding that does not preserve implication. Let [0, 1] be the closed
real unit interval and L = Ω((0, 1)) be the frame of opens of the open unit interval
(0, 1). Define f : [0, 1] −→ L by r 7→ (0, r) (with f(0) = ∅); clearly, f is a complete
embedding. On the other hand, for all r < s in (0, 1),

s → r = r in [0, 1], while (0, s) → (0, r) = (0, r) ∪ (s, 1) in L.

2. An implication preserving frame morphism that is not open. If L is a frame, let

D = {¬¬x ∈ L : x ∈ L},
be the filter of dense opens in L, where as usual ¬x =def x → ⊥. Corollary 10.5
and Example 8.18, the canonical quotient map from L to L/D is an implication
preserving frame morphism, that, in general, does not preserve arbitrary meets.

In view of (1) and (2), it seemed reasonable to reserve the term open for those
morphisms that had properties more closely resembling the topological case.

Example (1) also shows that a subobject in the category Frame may not be
a Heyting subalgebra. 2

Other examples of frames are described in

Corollary 8.13. If L is a lattice, then Con(L) is a frame.

Proof. If θ and {γi} are in Con(L), it is sufficient to show that

θ ∧ (
∨
γi) ⊆

∨
(θ ∧ γi).

By 4.18, this reduces to showing that for A ⊆f {γi} 2, θ distributes over the join
of the elements in A. But this comes immediately from 4.19, that guarantees the
distributivity of Con(L). �

2⊆f means “finite subset of”.
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There is method in this madness.

Proposition 8.14. A distributive algebraic lattice satisfies [∧,
∨

]. In partic-
ular, any complete distributive algebraic lattice is a frame.

Proof. Let L be a distributive algebraic lattice and S ⊆ L be such that
∨
S

exists in L. We will prove that for all x ∈ L,∨
{x ∧ s : s ∈ S} = x ∧

∨
S.

Fix a set C of compact elements in L such that x ∧
∨

S =
∨

C. Let p ∈ L be
such that p ≥ x ∧ s, for all s ∈ S. For each c ∈ C, c ≤ x and c ≤

∨
S and so,

there is a finite subset {s1, . . . , sn} ⊆ S such that

c ≤ x ∧ (
∨n
i=1 si) =

∨n
i=1 x ∧ si.

From p ≥ x ∧ s, s ∈ S, we get p ≥ c. Since this holds for all c ∈ C, we conclude
that p ≥ x ∧

∨
S, ending the proof. �

In spite of the observation at the end of Remark 8.12, the following simple
result will prove useful.

Corollary 8.15. Let H be a HA, P be a frame and H
f−→ P be an injective

lattice morphism such that f(H) is a basis for P . Then, f is a HA-morphism, that
is, for all x, y ∈ H, f(x → y) = fx → fy.

Proof. Since f is increasing and preserves meets, Modus Ponens yields

fx ∧ f(x → y) = f(x ∧ (x ∧ y)) ≤ f(y),

and so the adjunction [→] in 6.1 entails f(x → y) ≤ fx → fy. To prove equality
it is enough to check, again by [→], that

For all t ∈ P , t ∧ fx ≤ fy ⇒ t ≤ f(x → y).

Since f(H) is a basis for P , we may write t =
∨
z∈A fz, with A ⊆ H. Therefore,

the [∧,
∨

]-law in P yields

t ∧ fx = fx ∧
∨
z∈A fz =

∨
z∈A fx ∧ fz =

∨
z∈A f(x ∧ z) ≤ fy.

Hence, for z ∈ A, we have f(x ∧ z) ≤ fy, or equivalently,

f(x ∧ z ∧ y) = f(x ∧ z);
since f is injective, this implies x ∧ z ≤ y and so z ≤ x → y. But then,

For all z ∈ A, f(z) ≤ f(x → y),

that entails t =
∨
z∈A fz ≤ f(x → y), as desired. �

The behavior of implication and pseudocomplementation with respect to the
infinitary operations in a frame is described in

Lemma 8.16. Let H be a frame and S ∪ {x} ⊆ H.

a)
∧
s∈S (x → s) = x →

∧
S.

b)
∧
s∈S (s → x) =

∨
S → x.

c)
∨
s∈S (x → s) ≤ x →

∨
S.

d)
∨
s∈S (s → x) ≤

∧
S → x.

e) ¬ (
∨
S) =

∧
s∈S ¬ s.

f) ¬ (
∧
S) ≥ ¬¬ (

∨
s∈S ¬ s) = ¬

∧
s∈S ¬¬ s.
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g) ¬¬
∧
s∈S ¬¬ s =

∧
s∈S ¬¬ s.

h) ¬¬ (
∨
S) = ¬ (

∧
s∈S ¬ s) = ¬¬ (

∨
s∈S ¬¬ s).

In particular, in a cBa we have the de Morgan laws

¬
∨

S =
∧
s∈S ¬ s and ¬

∧
S =

∨
s∈S ¬ s.

Proof. Part (a) is Exercise 8.28.(c). We prove (b), leaving (c) and (d) to
the reader. For each s ∈ S,

s ∧ (
∧
s∈S (s → x)) ≤ s ∧ (s → x) ≤ x,

and so (
∨

S) ∧
∧
s∈S (s → x) ≤ x. Thus,

∧
s∈S (s → x) ≤

∨
S → x. By 6.4.(d),

(
∨

S → x) ≤ (s → x). Thus,
∨

S → x ≤
∧
s∈S (s → x), verifying (b).

e) We have

(
∧
s∈S ¬ s) ∧

∨
S =

∨
{t ∧

∧
s∈S ¬ s : t ∈ S} = ⊥.

Thus, (
∧
s∈S ¬ s) ≤ ¬ (

∨
S). To show equality, assume that

x ∧
∨

S =
∨
{x ∧ s : s ∈ S} = ⊥.

Clearly, we must have, x ∧ s = ⊥, that is, x ≤ ¬ s, for all s ∈ S. From this, (e)
follows immediately.

f) The equality in (f) follows from (e). For the inequality, note that

(
∧

S) ∧
∨
s∈S ¬ s =

∨
{(¬ t) ∧

∧
s∈S ¬¬ s) : t ∈ S} = ⊥.

This yields
∨
s∈S ¬ s ≤ ¬

∧
S. Therefore, taking the contrapositive (6.8.(a)) twice

(or using 6.8.(c)), yields the required result. The remaining items follow straight-
forwardly from what has been proven. �

Remark 8.17. It was shown in Lemma 5.7 that the general forms of the
de Morgan laws held in a BA, whenever the appropriate joins and meets existed.
Hence, if H is a frame and B a cBa,

every [∧,
∨

]-morphism from B to H is an open morphism.

In particular, in the category cBa all morphisms are open. 2

Example 8.18. For finite subsets S of a HA we have

a) ¬
∧

S = ¬¬
∨
s∈ S ¬ s (Lemma 6.8.(e));

b) ¬¬
∧

S =
∧
s∈S ¬¬ s (Lemma 6.8.(f)).

However, these formulae do not hold for infinite subsets of a frame. As an example,
consider, in Ω(R), the family S = {R - {p} : p ∈ R}. Then, for all U ∈ S, ¬¬U = R
and

∧
S = ∅. Thus, ¬

∧
S = >, while ¬¬

∨
U∈S ¬U = ∅. Similarly, ¬¬

∧
S =

∅, while ¬¬
∧
U∈S ¬¬U = R. Note that S ⊆ D, where D is the filter of dense

elements in Ω(R).

The reader is invited to prove that if H is a frame and S ⊆ H, then (a) is
equivalent to (b).

A modification of the above example shows that Ω(R) does not satisfy[∨,
∧

] :
let S be as before and V 6= R be an open set, containing the rationals Q. Then,
V ∨

∧
S is distinct from

∧
U∈S V ∨ U .

In [3] there is a characterization, due to Chang and Horn, of the lattices that
satisfy [∧,

∨
] and [∨,

∧
] (Thm. XII.1.7, pg. 230). We have already remarked that

BAs and chains satisfy both generalized distributive laws (Proposition 8.7). 2
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Although Example 8.18 shows that the [∨,
∧

] distributive law does not hold in
a frame L, there is a subset of L for which it holds true : the BA, B(L), of clopens
in L (Definition 5.3). An important class of distributive lattices is described in

Definition 8.19. A complete distributive lattice L is zero-dimensional
iff B(L) is a basis for L.

In Chapter 18 of Part II, we present a whole class of frames, the algebra
of opens of totally disconnected spaces, that are significant examples of zero-
dimensional frames.

The clopens in a distributive lattice have a number of useful properties, some
of which are described in

Lemma 8.20. Let L be a complete distributive lattice and b an element of
B(L).

a) The laws [∨,
∧

] and [∧,
∨

] hold for b and all S ⊆ L, that is

b ∨ (
∧
S) =

∧
s∈S (b ∨ s) and b ∧

∨
S =

∨
s∈S (b ∧ s).

b) If L is a zero-dimensional frame, any element satisfying the [∨,
∧

] law for all
S ⊆ L is clopen.

c) If c is compact in L then b ∧ c is compact in L.

Proof. a) For the first equality, it is enough to show that∧
s∈S (b ∨ s) ≤ b ∨

∧
S.

Suppose t ≤ (b ∨ s), s ∈ S; then,

(t ∧ ¬ b) ≤ ¬ b ∧ (b ∨ s) = ¬ b ∧ s,
and so (t ∧ ¬ b) ≤ ¬ b ∧

∧
S. From b ∨ ¬ b = >, we get

t = (t ∧ b) ∨ (t ∧ ¬ b) ≤ (t ∧ b) ∨ (¬ b ∧
∧
S) ≤ b ∨

∧
S,

giving the desired inequality. The proof of the second equation in the statement is
similar.

b) If L is zero-dimensional, let b ∈ L satisfy [∨,
∧

] law, for all S ⊆ L. Since B(L)
is a basis for L, we have b =

∨
p∈A p, with A ⊆ B(L). For each p ∈ A, p ≤ b entails

b ∨ ¬ p = >. Thus,

> =
∧
p∈A (b ∨ ¬ p) = b ∨

∧
p∈ A ¬ p.

Since L is a frame, we also have

b ∧
∧
q∈A ¬ q =

∨
p∈A (p ∧

∧
¬ q) = ⊥,

showing that b is complemented in L.

c) Let S ⊆ L be such that
∨
S ≥ b ∧ c. Then

¬ b ∨
∨

S ≥ (c ∧ ¬ b) ∨ (c ∧ b) = c.

By compactness, ¬ b ∨
∨

K ≥ c, with K ⊆f S. It is clear that
∨
K ≥ c ∧ b, and

b ∧ c is compact in L. �

Definition 8.21. An element of a (not necessarily distributive) lattice L is
linear if it satisfies the [∨,

∧
]-law for all S ⊆ L.

Remark 8.22. It is clear that the set of linear elements in any lattice is closed
under finite sups.
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By Lemma 8.20.(a), in distributive lattices, clopens are linear. However, the
clopens are, in general, only a proper subset of the linear elements. For instance,
in chains all elements are linear, but the only clopens are ⊥ and >. 2

We have already met a setting in which a complete lattice has to be a frame
(Proposition 8.14). Another such situation is described in

Proposition 8.23. A complete zero-dimensional lattice is a frame iff it is
distributive.

Proof. Let L be a complete zero-dimensional distributive lattice and let
S ∪ {x} ⊆ L. It is enough to verify that x ∧

∨
S ≤

∨
s∈S (x ∧ s). Let p ∈ B(L)

satisfy p ≤ x ∧
∨
S; then, p ∨ ¬ p = > yields

¬ p ∨ (x ∧
∨
S) = (¬ p ∨ x) ∧

∨
s∈S (¬ p ∨ s) = >,

wherefore, ¬ p ∨ x = > and
∨
s∈S (¬ p ∨ s) = >. Hence, since ¬ p is linear (Lemma

8.20(a)),

¬ p ∨
∨
s∈S (x ∧ s) =

∨
s∈S ¬ p ∨ (x ∧ s)

=
∨
s∈S (¬ p ∨ x) ∧ (¬ p ∨ s) = >,

and so p ≤
∨
s∈S (x ∧ s). Since L is zero-dimensional and p is an arbitrary clopen

below x ∧
∨
S, we obtain the inequality establishing that L is a frame. �

An analysis of the proof of Proposition 8.23 leads to a very interesting result,
due to Isbell ([31]; also [70]), giving a criterion for a complete lattice to be a
zero-dimensional frame, which circumvents first verifying that it is distributive.
This will later be applied to show that the lattice of congruences in a frame is
zero-dimensional. We follow, with minor modifications, the exposition of Isbell’s
result in [15].

We introduce a notion dual to that of basis. Let L be a complete lattice. A
subset S of L is a cobasis for L iff for all x, y ∈ L,

x ≤ y iff ∀s ∈ S (x ∨ s = > ⇒ y ∨ s = >).

With these preliminaries we are ready to prove

Theorem 8.24. (Isbell) A complete lattice is a zero-dimensional frame iff the
set linear elements is a cobasis.

Proof. If L is a zero-dimensional frame, Lemma 8.20.(b) tells us that the
set of linear elements is precisely B(L). Since L is distributive, for p ∈ B(L) and
x ∈ L, we have p ≤ x iff ¬ p ∨ x = >. Thus, for all x, y ∈ L,

x ≤ y iff ∀ p ∈ B(L) (p ≤ x ⇒ p ≤ y)

iff ∀ q ∈ B(L) (q ∨ x = > ⇒ q ∨ y = >)

and so the set of linear elements is a cobasis for L. For the converse, we first verify
that L is a frame. For {x} ∪ S ⊆ L, we must prove that x ∧

∨
S ≤

∨
s∈S (x ∧ s).

Suppose that z is a linear element in L, such that z ∨ (x ∧
∨
S) = >. Once it is

proven that

z ∨
∨
s∈S (x ∧ s) = >,
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the fact that the linear elements form a cobasis will give us the desired inequality.
From z ∨ (x ∧

∨
S) = > and the linearity of z comes

(*) z ∨ x = > = z ∨
∨

S =
∨
s∈S (z ∨ s).

Thus, Lemma 7.7, the linearity of z and (*) yield

z ∨
∨
s∈S (x ∧ s) =

∨
s∈S z ∨ (x ∧ s) =

∨
s∈S (z ∨ x) ∧ (z ∨ s)

=
∨
s∈S z ∨ s = >,

showing that L is a frame. It remains to verify that the clopens in L are a basis
for L. A path is suggested by 8.20.(b) : prove that linear elements are clopen and
so B(L) will be the set of linear elements. For, suppose that this is the case. If t
is linear and x ∨ t = >, then ¬ t ≤ x and so

t ∨
∨
{z ∈ B(L) : z ≤ x} ≥ t ∨ ¬ t = >;

the linears being a cobasis, we obtain x ≤
∨
{z ∈ B(L) : z ≤ x} and B(L) is a

basis for L.

For a linear element t ∈ L, let z =
∧
{y ∈ L : t ∨ y = >}. By linearity, one

has t ∨ z = >. To prove that t ∈ B(L), it is sufficient to show that t ∧ z = ⊥. Let
q be linear, such that q ∨ (t ∧ z) = >, that is, q ∨ t = > and q ∨ z = >. Since
q ∨ t = >, we get z ≤ q. But then, q = z ∨ q = >. The above argument shows
that for all linear q in L, if q ∨ (t ∧ z) = >, then q = q ∨ ⊥ = >. The cobasis
property then yields t ∧ z = ⊥, as needed. �

We end this Chapter with the frame version of “disjointing an union of sets”.

Proposition 8.25. Let {pi : i ∈ i} be a family of elements in a frame H.
Then, there is {qi : i ∈ I} ⊆ H, such that

(1) For all i ∈ I, qi ≤ pi;

(2) For all i 6= j in I, qi ∧ qj = ⊥;

(3)
∨
i∈I qi is dense in

∨
i∈I pi (6.19.(a)).

Proof. We assume that I is well-ordered, with first element i0. By transfinite
recursion, define

∗ qi0 = pi0 ;

∗ Having defined qi, for i < j, set qj = pj ∧ ¬
∨
i<j pi.

It is clear that condition (1) is satisfied. If i 6= j, we may assume that i < j. But
then, since qi ≤ pi ≤

∨
k<j pk, we obtain

qi ∧ qj = qi ∧ pj ∧ ¬
∨
k<j pk = ⊥,

verifying (2). To establish (3) it is enough to show that for all j ∈ J ,

(*) pj ≤ ¬¬
∨
i≤j qi,

which shall be done by transfinite induction; clearly, (*) holds for the first element
i0 of I. Assume that (*) holds for all i < j. Note that the induction hypothesis
entails

(**) ¬
∨
i<j qi = ¬

∨
i<j pi.

Hence, (**), (e) and (k) in 6.8, together with 8.16.(e), yield
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¬¬
∨
i≤j qi = ¬¬

(
qj ∨

∨
i<j qi

)
= ¬

(
¬ qj ∧ ¬

∨
i<j qi

)
= ¬

(
¬ qj ∧ ¬

∨
i<j pi

)
= ¬¬

(
qj ∨

∨
i<j pi

)
= ¬¬

(
(pj ∧ ¬

∨
i<j pi) ∨

∨
i<j pi

)
≥ ¬¬ pj ,

ending the proof. �

The law of double negation in Boolean algebras (5.7.(a)) yields

Corollary 8.26. Let {pi : i ∈ i} be a family of elements in a cBa B. Then,
there is {qi : i ∈ I} ⊆ B, such that

(1) For all i ∈ I, qi ≤ pi;

(2) For all i 6= j in I, qi ∧ qj = ⊥;

(3)
∨
i∈I qi =

∨
i∈I pi.

Exercises

8.27. Use Theorem 7.8 to construct implication in a frame and to immediately
conclude item (a) in Lemma 8.16. 2

8.28. a) Show that the class of frames is closed under products and images
by frame morphisms.

b) Examine what happens in 7.8 if we assume that L and P are cBas.

c) Let L be a complete lattice and d : L −→ L × L be the diagonal map,
dx = 〈x, x 〉. Compute the right and left adjoints of d. 2

8.29. A distributive lattice is compact if >is compact (compare 2.43.(e)).
Prove that a complete lattice is a compact zero-dimensional frame iff it is isomor-
phic to the lattice of ideals of a BA. 2
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CHAPTER 9

Radical Ideals and Multiplicative Subsets

In general, the lattice of ideals of a commutative ring with identity, R, is not
distributive. The first section of this chapter is devoted to the construction of a
lattice of ideals in R that is distributive and, in fact, an algebraic frame : the lattice
of radical ideals. When R is a Gaussian domain or Noetherian, there is another
algebraic frame associated to R, that of its saturated multiplicative subsets,
discussed in section 2. The last section presents the ring of fractions generated
by a multiplicative subset of R. Most facts we shall use concerning commutative
rings, if proofs are not provided, can be found in any standard text in Commutative
Algebra, e.g., [2].

In what follows, all rings are commutative with identity 1.

1. Radical Ideals

Definition 9.1. Let R be a ring and S ⊆ R.

a) S is an ideal in R if for all x, y ∈ R
∗ x, y ∈ S ⇒ x + y ∈ S; ∗ x ∈ R ⇒ xy ∈ S.

An ideal is proper if it is distinct from R.

b) The ideal generated by S is

(S) = {t ∈ R :
∃ s1, . . . , sn ∈ S and λ1, . . . , λn ∈ R

such that t =
∑n
i=1 λisi.

}
Remark 9.2. Let R be a ring and S ⊆ R.

a) Clearly, 0 is in any ideal. Moreover, an ideal I is proper iff 1 6∈ I.

b) The intersection of any family of ideals in R is an ideal in R. The union of a
up-directed family of ideals in R is an ideal in R.

c) (S) is also the intersection of all ideals that contain S.

d) If Ik, k ∈ K, is a family of ideals in R, then∑
k∈K Ik = {t ∈ R :

∃ k1, . . . , kn ∈ K and xki ∈ Iki ,
1 ≤ i ≤ n, such that t =

∑n
i=1 xki

}
is an ideal, called the sum of the Ik. It is straightforward that∑

k∈K Ik =
(⋃

k∈K Ik
)
.

e) For ideals I, J in R, their product is defined by

IJ = {t ∈ R :
∃ a1, . . . , an ∈ I and b1, . . . , bn ∈ J ,

such that, t =
∑n
i=1 aibi

}
f) It is clear that if I, J are ideals in R, then IJ ⊆ I ∩ J . 2
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Definition 9.3. a) An ideal P in R is prime iff

For all x, y ∈ R (xy ∈ P ⇒ x ∈ P or y ∈ P ).

Spec(R), the spectrum of R, is the set of proper prime ideals in R.

b) A subset S of R is multiplicative iff 1 ∈ S and

∀ x, y ∈ R, x, y ∈ S ⇒ xy ∈ S.

S is proper if 0 6∈ S. Write M(R) for the family of multiplicative subsets of R.

Lemma 9.4. Let R be a ring.

a) If P ∈ Spec(R), then P c ∈ M(R).

b) Every proper ideal is contained in a maximal ideal 1.

c) All maximal ideals are prime.

Proof. Left to the reader. For (b), one needs Zorn’s Lemma. �

The fundamental facts we shall need about prime ideals and multiplicative
sets are collected in

Theorem 9.5. Let R be a ring.

a) Let I be an ideal in R and S a multiplicative subset of R, such that S ∩ I = ∅.
Then, there is a prime ideal P in R such that I ⊆ P and P ∩ S = ∅.
b) If P1, . . . , Pn are prime ideals in R and I is an ideal in R, then

I ⊆
⋃n
i=1 Pi ⇒ ∃ i ≤ n such that I ⊆ Pi.

c) If I1, . . . , In are ideals in R and P is a prime ideal in R, then⋂n
j=1 Ij ⊆ P ⇒ ∃ j ≤ n such that Ij ⊆ P .

If P =
⋂n
j=1 Ij, then, P = Ij, for some 1 ≤ j ≤ n.

Proof. a) Consider

V = {J ⊆ R : J is an ideal, I ⊆ J and J ∩ S = ∅},
partially ordered by inclusion. By Zorn’s Lemma (2.20), there is P maximal in
V . Clearly, I ⊆ P and P ∩ S = ∅. If P is not prime, there are u, v ∈ R, such
that uv ∈ P and neither u nor v are in P . Let K and J be the ideals generated
by P ∪ {u} and P ∪ {v}, respectively. Then, K and J must have non-empty
intersection with S. Hence, there are x, y ∈ S, a, b ∈ P and λ, β ∈ R such that

x = a + λu and y = b + βv.

But then xy = ab + aβv + bλu + βλuv ∈ P ∩ S, a contradiction that ends
the proof of (a).

b) We proceed by induction on n, the result being obvious for n = 1. Assume it

holds for n ≥ 1 and let P1, . . . , Pn, Pn+1 be primes in R, such that I ⊆
⋃n+1
i=1 Pi.

We contend that I is contained in the union of some subset of n elements of the
Pi. If not, for each 1 ≤ j ≤ (n+ 1), there is xj ∈ R such that

xj ∈ (I ∩ Pj) −
⋃
i 6=j Pi.

i.e., xj is outside the union of primes with index distinct from j, but in I ∩ Pj .
Let

1An ideal is I maximal if for all proper ideals J , I ⊆ J ⇒ I = J .
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x =
∑n+1
j=1 x1x2 . . .xj−1xj+1 . . .xn+1.

It is clear that x ∈ I; on the other hand, x 6∈ Pj , for all 1 ≤ j ≤ (n + 1). To see
this, fix j between 1 and (n + 1); since all terms in x, except the jth, have xj as
a factor, they are in Pj . Consequently, the difference between x and the sum of
these terms is in Pj , that is,

x1x2 . . .xj−1xj+1 . . .xn ∈ Pj .
But this is impossible, because for i 6= j, xi is outside

⋃
k 6=i Pk ⊇ Pj . Hence,

for some α ⊆ {1, . . . , (n + 1)} of cardinality n, I ⊆
⋃
k∈α Pk and the induction

hypothesis entails that I ⊆ Pi, 1 ≤ i ≤ (n+ 1), completing the induction.

c) Suppose xj ∈ Ij − P , for 1 ≤ j ≤ n; then x = Πn
i=1 xj ∈

⋂n
j=1 Ij , but x 6∈ P ,

because all xj are outside P . The remaining statement is clear. �

Closely associated to prime ideals are radical ideals.

Definition 9.6. An ideal I in R is radical iff

For all x ∈ R and all n ∈ N (xn ∈ I ⇒ x ∈ I).

Or equivalently, ∀ x ∈ R, x2 ∈ I implies x ∈ I. Write Rad(R) for the set of radical
ideals in R.

Note that the complement S of a proper radical ideal is a subset of R satisfying

1 ∈ S and for all x ∈ R (x ∈ S ⇒ ∀ n ∈ N, xn ∈ S).

Clearly all primes ideals are radical ideals, but the converse is, in general, false.
The next result is straightforward.

Lemma 9.7. a) Rad(R) is closed under arbitrary intersections.

b) Partially ordered by inclusion, Rad(R) is a complete lattice. 2

Example 9.8. If R is a principal ideal domain 2, an ideal (y) is radical iff y is
square free, that is, if p is a prime in R, such that pn divides y, then n = 1. This
applies, in particular, to Z and to rings of polynomials in one indeterminate with
coefficients in a field. 2

Example 9.9. It is not true that the sum of radical ideals is a radical ideal.
To see this, let F be a field in which −1 does not have a square root. In the ring of
polynomials in two indeterminates with coefficients in F , R = F (X, Y ), we have

Fact. a) (XY ) is a radical ideal.

b) The polynomial X2 + Y 2 is irreducible.

Proof. It is clear that (X) and (Y ) are primes in R. Thus, (XY ) = (X) ∩ (Y ) is
a radical ideal (9.7.(a)). Moreover, X2 + Y 2 6∈ (XY ). For item (b), suppose that

X2 + Y 2 = p(X, Y )q(X, Y ). (I)

Substituting 1 for Y in this equation yields

p(X, 1)q(X, 1) = X2 + 1.

Since X2 + 1 is irreducible in F (X) – otherwise F would contain a square root of
−1 –, we conclude, without loss of generality, that

2A commutative ring with 1, in which every ideal is of the form (x).
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p(X, 1) = u(X2 + 1) and q(X, 1) = 1
u

,

with u 6= 0 in F . It follows that the variable X does not occur in q, that is,
q = q(Y ). Hence, (I) becomes

X2 + Y 2 = p(X, Y )q(Y ). (II)

If 1 is substituted for X in (II), we get 1 + Y 2 = p(1, Y )q(Y ); reasoning as above,
we are led to the following alternatives, where w is a non-zero element of F :

(i) p(1, Y ) = w and q(Y ) =
(1 + Y 2)

w
or

(ii) p(1, Y ) =
(1 + Y 2)

w
and q(Y ) = w

Note that (i) is impossible: it implies p = p(X) and (I) yields X2 + Y 2 =
p(X)q(Y ); since the constant term on both sides is zero, X2 + Y 2 would be
in (XY ). Therefore, we are left with alternative (ii), which guarantees that nei-

ther X nor Y occur in q, i.e., q is a constant non-zero polynomial, q = 1
u

, while

p = u(X2 + Y 2), completing the proof of the Fact.

Let I = (XY ) and J = (X2 + Y 2); since R is a Gaussian domain (see 9.32),
it follows from item (b) in the Fact that J is a prime ideal in R. Now, observe that

(X + Y )2 = X2 + Y 2 + 2XY ∈ (I + J),

but a degree argument shows that (X + Y ) 6∈ I + J . 2

Definition 9.10. If S is a subset of R, the radical ideal generated by S
is √

S =
⋂
{I : I ∈ Rad(R) and S ⊆ I}.

When S = {x}, write
√
x for the radical of {x}.

Lemma 9.11. Let R be a ring and S ⊆ R. Let Ik, k ∈ K, be a family of
radical ideals in R.

a)
√
S =

√
(S).

b) The sup of the Iks in the lattice Rad(R) is given by∨
Ik =

√
(
∑
k∈K Ik).

Proof. Left to the reader. �

Proposition 9.12. Let I be an ideal in R, S a subset of R and t an element
of R.

a) If {tn : n ∈ N} ∩ I = ∅, then there is a prime ideal P in R, such that I ⊆ P
and t 6∈ P .

b)
√
I = {t ∈ R : ∃ n ∈ N such that tn ∈ I};

c)
√
S = {t ∈ R : ∃ n ∈ N such that tn ∈ (S)} 3.

d) If I is a proper ideal, then
√
I =

⋂
{P ∈ Spec(R) : I ⊆ P}.

e) If K is a family of ideals in Rad(R), then

3(S) is the ideal generated by S, as in 9.1.
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∨
K = {t ∈ R :

∃ m ∈ N and I1, . . . , In ⊆ K,

such that tm ∈
∑n
i=1 Ii.

}
Proof. For (a), just note that {tn : ≥ 0} is a multiplicative set and apply

9.5.(a). The other items are straightforward consequences of (a). �

Corollary 9.13. The intersection of all prime ideals in R − the radical of
0 − is the ideal of nilpotent elements of R. 2

Write η for the ideal of nilpotent elements in R. Note that η is the ⊥ of the
lattice Rad(R).

Corollary 9.14. Let I, J be ideals in R.

a) The operation of taking radical is satisfies the following properties :

[rad 1] : I ⊆
√
I;

[rad 2] :
√√

I =
√
I;

[rad 3] :
√

(I ∩ J) =
√
I ∩
√
J .

In particular,
√

is increasing, that is, I ⊆ J implies
√
I ⊆

√
J .

b)
√

(IJ) =
√
I ∩
√
J =

√
(
√
I
√
J).

c) If I, J ∈ Rad(R), then
√
IJ = I ∩ J .

Proof. a) Properties [rad 1] and [rad 2] are straightforward. For [rad 3],
9.12.(b) yields, for t ∈ R

t ∈
√
I ∩
√
J iff ∃n, m ∈ N, such that tn ∈ I and tm ∈ J ;

thus, tn+m ∈ I ∩ J , and so t ∈
√

(I ∩ J). This show that√
I ∩
√
J ⊆

√
(I ∩ J),

which, in view of [rad 1], implies [rad 3]. Clearly,
√

is increasing.

b) Since IJ ⊆ I ∩ J , [rad 3] yields
√

(IJ) ⊆
√
I ∩
√
J . Next, we have

t ∈
√
I ∩
√
J ⇒ t2 ∈

√
I
√
J ⇒ t ∈

√
(
√
I
√
J).

Hence, to complete the proof of the stated equality, it remains to check that√
(
√
I
√
J) ⊆

√
(IJ). But if P is a prime ideal in R, then 9.45 and 9.12.(d) yield

IJ ⊆ P ⇒ I ⊆ P or J ⊆ P ⇒
√
I ⊆ P or

√
J ⊆ P

⇒
√
I
√
J ⊆ P ,

and we conclude by 9.12.(d). Item (c) follows immediately from (b). �

Remark 9.15. Simple examples show that
√

(IJ) =
√
I
√
J is (frequently)

false. By Corollary 9.14.(b), this would imply, for instance, that all prime ideals in
R are idempotent, that is, I2 = I. There are, however, important examples were
many ideals are idempotent, as is the case of closed left or right ideals in a
C∗-algebra. See [52] for more details, further references and examples. 2

Rad(R) is yet another example of an algebraic frame :

Proposition 9.16. Let R be a ring. With notation as above,

a) For all x ∈ R,
√
x is a compact element of the lattice Rad(R).

b) For all I ∈ Rad(R), I =
∨
x∈I
√
x.

c) Rad(R) is a distributive lattice and an algebraic frame.
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d) For I, J ∈ Rad(R),

I → J = {r ∈ R : rI ⊆ J},
where rI = {rx : x ∈ I}.

Proof. a) For x ∈ R, suppose that
√
x ⊆

∨
Ik =

√
(
∑
k∈K Ik). Since x ∈

√
x,

by 9.12.(a) there is m ∈ N, such that xm ∈
∑
k∈K Ik. By the definition of sum of

ideals (9.2.(d)), there are k1, . . . , kn ∈ K and xki ∈ Iki , 1 ≤ i ≤ n, such that

xm =
∑n
i=1 xki .

Thus, xm ∈
∑n
i=1 Iki . Hence, 9.12.(a) yields x ∈

∨n
i=1 Iki and so

√
x ⊆

∨n
i=1 Iki .

Item (b) is clear.

c) Let I, J and K ∈ Rad(R); if x ∈ I and x ∈ (J ∨ K), then there is n ∈ N such
that xn ∈ (J + K) (9.12.(a)). Hence, xn = a + b, for some a ∈ J and b ∈ K.
Therefore,

xn+1 = ax + bx ∈ (I ∩ J) + (I ∩ K),

and so x ∈ (I ∩ J) ∨ (I ∩ K), verifying distributivity. The remaining assertion in
(c) follows from (a), (b) and Proposition 8.14. Item (d) is left to the reader. �

In Commutative Algebra the ideal (I → J) of 9.16.(d) is written (J : I) and the
operation (? : ?) is called residuation or ideal quotient. Some of the properties
of this operation are discussed in Exercise 9.46.

2. Multiplicative Subsets

Henceforth, the expression prime ideal is synonymous with proper prime ideal.
The concept of multiplicative subset of R is defined in 9.3. Recall (9.3.(a)) that

Spec(R) = {P : P is a proper prime ideal in R}.

Definition 9.17. Let R be a ring.

a) Write

U(R) = {x ∈ R : ∃ y ∈ R such that xy = 1}
for the multiplicative group of units or invertible elements in R.

b) An element a ∈ R is a zero-divisor, if there is y 6= 0 such that ya = 0. Write

nzd(R) = {x ∈ R : x is not a zero-divisor in R}
for the set of non zero-divisors in R.

c) For T ⊆ R, set

ZT = {P ∈ Spec(R) : P ∩ T = ∅}.
When T = {a} write Za for Z{a}. Hence,

Za = {P ∈ Spec(R) : a 6∈ P}.
d) A multiplicative subset S of R (9.3.(b)) is saturated if it satisfies

[sat] ∀ x, y ∈ R, xy ∈ S ⇒ x, y ∈ S.

e) Write Mσ(R) for the set of saturated multiplicative subsets of R.

Example 9.18. Recall that M(R) is the set of multiplicative subsets of R
(9.3.(b)).
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a) The smallest element of M(R) (under inclusion) is {1}; its largest element is
R. In general, the proper multiplicative subsets of R have no largest element. An
example will be given in 9.20, below. On the other hand, in some important cases,
for instance if R is an integral domain 4, then

R − {0} = nzd(R)

is the largest proper multiplicative subset of M(R).

b) Note that U(R) is a saturated multiplicative subset of R, indeed, the smallest
element in Mσ(R), since all saturated multiplicative subsets of R must contain
U(R). As above, Mσ(R) will not, in general, possess a largest proper element. 2

Lemma 9.19. a) M(R) and Mσ(R) are closed under arbitrary intersections.

b) Partially ordered by inclusion, M(R) and Mσ(R) are complete lattices, whose
bottom and top are given by{

⊥M(R) = {1} and ⊥Mσ(R) = U(R);

>M(R) = R = >Mσ(R).

c) The union of an up-directed family of proper multiplicative sets is a proper
multiplicative set. A similar statement holds for saturated multiplicative sets.

Proof. Items (a) and (b) are straightforward. Let 〈 I,≤〉 be an up-directed
poset and Si, i ∈ I, be proper multiplicative subsets ofR, such that i ≤ j ⇒ Si ⊆ Sj .
Let S =

⋃
i∈I Si. Clearly, 1 ∈ S and 0 6∈ S. For x, y ∈ S, select i, j ∈ I, with

x ∈ Si and y ∈ Sj . Since I is up-directed, there is k ≥ i, j; then, x, y ∈ Sk and so
xy ∈ Sk ⊆ S. The preservation of saturation is clear. �

Example 9.20. In general, M(R) is not distributive. Let R = Z × Z, with
its natural product structure. Then,

T1 = Z × {1,−1} and T2 = {−1, 1} × Z
are multiplicative subsets of R, which are, in fact, saturated 5. It is easily estab-
lished that the only subset of R containing (T1 ∪ T2) and closed under products
is R itself (the example promised in 9.18). Hence

T1 ∨ T2 = R,

both in M(R) and Mσ(R). Let

S = {〈 a, a 〉 ∈ R : a 6= ∅},
a proper multiplicative subset of R. Now, note that

S ∩ T1 = S ∩ T2 = {〈 a, a 〉 ∈ R : a = ±1}.
Hence, S = S ∩ (T1 ∨ T2), while

(S ∩ T1) ∨ (S ∩ T2) = {〈 1, 1 〉, 〈−1,−1 〉},
proving that M(R) is not distributive. 2

To characterize joins in M(R), we introduce the following

9.21. Notation. If α ⊆f R is a finite subset of R, write

Π α =def Πa∈α a

4xy = 0 ⇒ x = 0 or y = 0.
5In Z, xy = ±1 ⇒ x, y = ±1
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for the product of the elements in α. If {Si : i ∈ I} ⊆ M(R), define∏
i∈I Si = {Π α : α ⊆f

⋃
i∈I Si}.

For S, T ∈ M(R) we have

S ∨ T = {xy : x ∈ S and y ∈ T},
which is frequently written as S · T . 2

Lemma 9.22. Let S ∈ Mσ(R) and {Si : i ∈ I} ⊆ M(R).

a)
∏
i∈I Si is the join of the Si in M(R).

b) S ∩
∏
i∈I Si =

∏
i∈I S ∩ Si.

Proof. a) Write S for
∏
i∈I Si. It is clear that 1 ∈ S and that any multi-

plicative subset of R that contains the Si must contain S. If x, y ∈ S, there are
α, β ⊆f

⋃
i∈I Si, such that x = Π α and y = Π β. Then, γ = α ∪ β is a finite

subset of
⋃
i∈I Si and xy = Π γ ∈ S.

b) It is enough to check that

S ∩
∏
i∈I Si ⊆

∏
i∈I S ∩ Si.

Suppose that x ∈ S and there is α ⊆f
⋃
i∈I Si such that x = Π α. Since S is

saturated, it follows that α ⊆ S. Hence,

α ⊆f S ∩
⋃
i∈I Si =

⋃
i∈I S ∩ Si,

and so x = Π α ∈
∏
i∈I S ∩ Si, as desired. �

Example 9.20 shows the hypothesis of saturation of S in 9.22.(b) is essential.

Proposition 9.23. Let R be a ring. For S ∈ M(R), set

σ(S) = {x ∈ R : ∃ y ∈ R, such that yx ∈ S}.
Then, for {S} ∪ {Ti : i ∈ I} ⊆ M(S)

a) σ(S) is the smallest saturated multiplicative set in R containing S. Moreover,

(1) 0 ∈ σ(S) iff 0 ∈ S; (2) S ⊆ T ⇒ σ(S) ⊆ σ(T );

(3) σ(σ(S)) = σ(S); (4) S ∈ Mσ(R) iff σ(S) = S.

b) If Ti ∈ Mσ(R), i ∈ I, then∨
i∈I Ti = σ

(∏
i∈I Ti

)
is the join of the Ti in Mσ(R).

Proof. a) Clearly, 1 ∈ σ(S); if x, y ∈ σ(S), there are s, t ∈ R such that sx,
ty ∈ S. Thus, (st)(xy) ∈ S and so xy ∈ σ(S). Now suppose that ab ∈ σ(S); then
there is s ∈ R such that sab ∈ S. From

(sa)b ∈ S and (sb)a ∈ S
we get a, b ∈ σ(S), proving that σ(S) ∈ Mσ(R). It is clear that σ(S) is contained
in any element ofMσ(R) that includes S. Item (1) − (4) are straightforward and
left to the reader.

b) Set S =
∏
i∈I Ti; since S is the join of the Ti in M(R), any saturated mul-

tiplicative set containing the Ti, must contain S. But then, item (a) entails that
σ(S) is the least element of Mσ(R) containing Ti, as needed. �
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Definition 9.24. a) For S ∈ M(R), the saturated multiplicative set σ(S),
defined in 9.23, is the saturation of S in R.

b) For a ∈ R, define

σ(a) = σ({an : n ≥ 0}).

Lemma 9.25. For S ∈ Mσ(R) and a ∈ R
a) σ(a) is compact in Mσ(R).

b) S =
∨
s∈S σ(s).

c) Mσ(R) is a complete algebraic lattice.

Proof. a) For Si ∈ Mσ(R), i ∈ I, suppose that σ(a) ⊆
∨
i∈I Si. By items

(a) and (b) in 9.23 this implies

a ∈ σ
(∏

i∈I Si
)
,

that is, there is y ∈ R and α ⊆f
⋃
i∈I Si, such that ya = Π α. But then,

a ∈ σ
(∏

i∈α Si
)
,

and σ(a) ⊆
∨
i∈α Si, with α finite in I, as needed.

b) Clearly, S ⊆
∨
s∈S σ(s); if x ∈

∨
s∈S σ(s) = σ(

∏
s∈S σ(s)), then there is y ∈ R

and α ⊆f
⋃
s∈S σ(s), such that yx = Π α. Write

α = {t1, . . . , tn}.
For each 1 ≤ j ≤ n, there is sj ∈ S with tj ∈ σ(sj); hence, there are zj ∈ R and
integers kj ≥ 0 such that for 1 ≤ j ≤ n,

zjtj = s
kj
j

Therefore, if z =
∏n
j=1 zj , we have

(zy)x = z Π α =
∏n
j=1 zjtj =

∏n
j=1 s

kj
j ∈ S,

and so x ∈ σ(S) = S (9.23.(a).(4)), as desired. Item (c) is an immediate conse-
quence of (a) and (b). �

To establish that Mσ(R) is a frame, we must take a closer look at the rela-
tionship between saturated multiplicative sets and collections of primes in R. This
will also yield the saturated multiplicative set generated by any subset of R 6. With
notation as in 9.17, we start with

Lemma 9.26. For S, T ⊆ R and a ∈ R
a) ZS =

⋂
s∈S Zs.

b) Za = ∅ ⇔ a ∈ η 7.

c) S is proper in M(R) ⇔ ZS 6= ∅.
d) Set S · T = {xy : x ∈ S and y ∈ T} 8. Then,

1 ∈ (S ∩ T ) ⇒ ZS·T = ZS ∩ ZT .

Proof. Item (a) is immediate from the definition, while (b) is a consequence
of 9.13. For (c), if ZS 6= ∅, then there is a prime P such that P ∩ S = ∅. Hence,

6The map σ of 9.23 and 9.24 only works for elements in M(R).
7The ideal of nilpotents in R.
8Generalizing notation in 9.21
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0 6∈ S and S is proper. Conversely, if S is a proper multiplicative subset of R, then
(0) ∩ S = ∅, and Theorem 9.5 yields a prime ideal P such that P ∩ S = ∅, that
is, P ∈ ZS . For (d), note that 1 ∈ (S ∩ T ) implies that S, T ⊆ S · T . Hence, any
prime disjoint from S · T must be disjoint from S and T , i.e.,

ZS·T ⊆ ZS ∩ ZT .

For the reverse inclusion, observe that

x ∈ P ∩ (S · T ) ⇒ x = st ∈ P ⇒ s ∈ P ∩ S or t ∈ P ∩ T .

Hence, ZS ∩ ZT ⊆ ZS·T , as desired. �

Proposition 9.27. a) If P is a family of prime ideals R, then

MP =def

⋂
{P c : P ∈ P}

is a saturated multiplicative subset of R. Moreover,

P ⊆ Q ⇒ MQ ⊆ MP .

b) If S is a multiplicative subset of R, then

S is saturated ⇔ S = MZS =
⋂
{P c : P ∩ S = ∅}.

c) If T ⊆ R, then MZT is the least saturated multiplicative set containing T .
Moreover, MT is proper iff ZT 6= ∅.

Proof. a) Write M for MP ; we may assume that P 6= ∅, otherwise M = R.
Clearly, 1 ∈ M (all P in P are proper) and 0 6∈ M . Since the elements of P are
prime, M is closed under products. If xy ∈ M , then xy 6∈ P , for all P ∈ P. Since
these are ideals, we obtain x, y 6∈ P and so x, y ∈ M , establishing saturation. The
remaining assertion is immediate.

b) By (a), it is enough to prove (⇒). Moreover, clearly S ⊆ MZS . For the reverse
containment, suppose b ∈ R − S; then (b) ∩ S = ∅. For if there was y ∈ R such
that yb ∈ S, then saturation would imply b ∈ S, contrary to assumption. We now
apply Theorem 9.5 to obtain a prime ideal P such that b ∈ P and P ∩ S = ∅.
Hence, b 6∈ MZS , as needed.

c) If S ∈ Mσ(R) contains T , then any prime that is disjoint from S is disjoint
from T . Thus, ZS ⊆ ZT and so (a) and (b) entail

MZT ⊆ MZS = S,

as needed. The properness claim is clear. �

Definition 9.28. If T ⊆ R, the multiplicative saturation of T is

σ(T ) =def MZT =
⋂
{P c : P ∈ ZT }.

Remark 9.29. Propositions 9.23.(a) and 9.27.(c) guarantee that the map

T ∈ 2R 7−→ MZT

is an extension of the map

T ∈ M(R) 7−→ {x ∈ R : ∃ y ∈ R such that yx ∈ T},
and we shall employ the same symbol for both, namely σ. 2

We now show that if R is a Gaussian domain, then Mσ(R) is a frame. In
section 3 of Chapter 2 of [20] the reader will find a good exposition of the basic
properties of Gaussian domains. We collect the main properties needed in the
results that follow.
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Theorem 9.30. Let R be a Gaussian domain.

a) For a ∈ R, a is irreducible iff a is prime iff (a) is a prime ideal in R.

b) For each a ∈ R, there is u ∈ U(R) together with a unique and finite 9 collection
of pairs {〈 pk,mk 〉 : k ∈ α}, where {pk : k ∈ α} are distinct primes in R and
{mk : k ∈ α} are integers ≥ 1, such that a = u Πk∈α p

mk
k . 10

c) All pairs of elements in R have a greatest common divisor and a least common
multiple.

The following result yields many examples of Gaussian domains.

Theorem 9.31. a) Every principle ideal domain is Gaussian.

b) The union of an up-directed family of Gaussian domains is Gaussian.

c) If R is a Gaussian domain, then R[X] 11 is Gaussian.

Example 9.32. a) All fields are Gaussian domains.

b) Since Z and k[X] are principal ideal domains (k a field), they are Gaussian
domains.

c) From 9.31.(c) it follows that if k is field, then the ring of polynomials in the
variables X1, . . . , Xn, k[X1, . . . , Xn], is a Gaussian domain.

d) To obtain a non-Noetherian example, just apply 9.31.(b) to get that
k[X1, X2, . . . , Xn, . . .], the ring of polynomials in an infinite number of variables
with coefficients in a field k, is a Gaussian domain. 2

Proposition 9.33. Let R be a Gaussian domain.

a) If S, T ∈ Mσ(R), then S ∨ T = S · T .

b) Mσ(R) is an algebraic frame.

Proof. a) Recall that for x, y ∈ R
x divides y iff ∃ z ∈ R such that zx = y iff y ∈ (x).

Since S ∨ T = σ(S · T ), it is enough to show that S · T is saturated. Assume
that xy = st ∈ S · T . By 9.30.(b) we may write

s = u Πi∈α p
mi
i and t = v Πk∈β q

nk
k ,

where pi and qk are primes in R and u, v ∈ U(R). Note that the saturation of S
and T guarantees that

(*) For all i ∈ α, k ∈ β and m ≥ 0, pmi ∈ S and qmk ∈ T .

Since an element of p is prime iff for all x, y ∈ R
p divides xy iff p divides x or p divides y,

it follows that

∀ primes p ∈ R, p divides x ⇒ p ∈ {pi : i ∈ α} ∪ {qk : k ∈ β}.
Hence, the unique factorization in 9.30.(b) implies that x is the product of a unit
in R by powers of some of the pi and some of the qk. Since U(R) ⊆ S ∩ T , (*)
then entails that x ∈ S · T . Similarly, one shows that y ∈ S · T , as needed.

9Possibly empty; recall that the empty product equals 1.
10Because of (a), this may be taken to be the definition of Gaussian domain.
11The ring of polynomials in the variable X.
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b) Since Mσ(R) is an complete algebraic lattice (9.25.(c)), it is enough, by 8.14,
to verify that Mσ(R) is distributive. But this follows from 9.22.(b). �

Remark 9.34. Recall that ring R is Noetherian if it satisfies the following
equivalent conditions :

[N 1] : If I1 ⊆ I2 ⊆ . . .⊆ In ⊆ . . . is a sequence of ideals in R, then there is m ≥ 1
such that Im = In, for all n ≥ m;

[N 2] : Every non-empty set of ideals in R has a maximal element 12;

[N 3] : Every ideal in R is finitely generated, that is, if I is an ideal in R, there are
a1, . . . , an ∈ R such that

I = {
∑n
i=1 ciai : ci ∈ R, 1 ≤ i ≤ n}. 2

Theorem 9.35. Let R be a Noetherian ring.

a) If S, T ∈ Mσ(R), then ZS ∩T = ZS ∪ ZT .

b) Mσ(R) is an algebraic frame.

Proof. a) Clearly, ZS ∪ ZT ⊆ ZS ∩T . Now suppose that P ∩ S ∩ T = ∅.
Then, by 9.27.(b) yields

P ∩
⋂
{Qc : Q ∈ ZS} ∩

⋂
{Rc : R ∈ ZT } = ∅,

that is,

P ⊆
⋃
{Q : Q ∈ ZS} ∪

⋃
{R : R ∈ ZT }.

Since P is finitely generated (R is Noetherian; see [N 3] in 9.34), there areQ1, . . . , Qn
in ZS and R1, . . . , Rm in ZT , such that

P ⊆
⋃n
i=1 Qi ∪

⋃m
j=1 Rj .

But then, 9.5.(b) implies that either P ⊆ Qi (i ≤ n), or P ⊆ Rj (j ≤ m). If former
alternative holds, then P ∈ ZS , while the latter entails P ∈ ZT , as needed.

b) SinceMσ(R) is a complete algebraic lattice (9.25.(c)), it is enough to check that
it is distributive (8.14). For S, T1, T2 ∈ Mσ(R), item (a), together with 9.26.(d)
and 9.27.(b), yields

S ∩ (T1 ∨ T2) = S ∩ σ(T1 · T2)

=
⋂
{P c : P ∈ ZS} ∩

⋂
{P c : P ∈ ZT1T2}

=
⋂
{P c : P ∈ ZS} ∩

⋂
{P c : P ∈ (ZT1

∩ ZT2
)}

=
⋂
{P c : P ∈ (ZS ∪ (ZT1

∩ ZT2
)}

=
⋂
{P c : P ∈ (ZS ∪ ZT1

) ∩ (ZS ∪ ZT2
)}

=
⋂
{P c : P ∈ (ZS ∩T1

∩ ZS ∩T2
)}

=
⋂
{P c : P ∈ Z(S ∩T1) · (S ∩T2)}

= (S ∩ T1) ∨ (S ∩ T2),

ending the proof. �

Although Gaussian domains and Noetherian rings are important classes of
commutative rings, we shall construct an even wider class of rings for which the
saturated multiplicative sets are an algebraic frame. This will be obtained as an

12With respect to inclusion.
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application of our development of structures of locally constant functions on a
topological space in section 5 of Chapter 24 (see Theorem 24.56).

3. Rings of Fractions

If S is a multiplicative subset of R (9.3.(b)), we can form a new ring

RS−1,

the ring of fractions of R by S, by the following procedure :

In the product R × S define a relation

〈 a, s 〉 ∼ 〈 b, t 〉 iff there is w ∈ S such that w(at − bs) = 0.

Then, ∼ is an equivalence relation in R × S. Let

RS−1 = {a
s

: a ∈ R and s ∈ S}
be the set o equivalence classes of R × S under ∼. Note that the class of 〈 a, s 〉
by ∼ is being written as a

s
. Hence,

[fraction] a
s

= b
t

iff ∃ w ∈ S, such that w(at − bs) = 0.

Define operations +, · in RS−1 by

a
s

+ b
t

= at+ bs
st

and a
s
b
t

= ab
st

.

It is straightforward that this is independent of representatives.

Proposition 9.36. Let R be a ring and S a multiplicative subset of R.

a) With the structure introduced above, RS−1 is a commutative ring with identity

1 = 1
1

.

b) The map a ∈ R 7−→ ιS(a) = a
1
∈ RS−1 is a ring homomorphism, such that for

all t ∈ S,

(1) t ∈ S ⇒ ιS(t) is a unit in RS−1, with inverse 1
t

;

(2) ιS(t) = 0 ⇒ ∃ s ∈ S such that ts = 0.

c) If R
f−→ R′ is a ring homomorphism such that for all s ∈ S, f(s) is a unit in

R′, then the map
a
s
7−→ f(a)f(s)−1

is the carrier of the unique ring homomorphism, g : RS−1 −→ R′, making the
following diagram commutative :

R - RS−1

f g

R′

ιS

A
A
A
A
A
AU

�
�
�
�
�
��
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Proof. Items (a) and (b) are clear; for (c), we must show that

g(a/s) = f(a)f(s)−1

is well defined. If a
s

= b
t
, then there is w ∈ S such that w(at − bs) = 0. Whence,

f(w)(f(a)f(t) − f(b)f(s)) = 0,

and so, since f(w) is a unit in R′, we get

f(a)f(t) = f(b)f(s),

wherefrom it follows that

g(a
s

) = f(a)f(s)−1 = f(b)f(t)−1 = g(b
t
).

It is straightforward that g is a ring homomorphism making the displayed diagram
commutative. Uniqueness is clear. �

Remark 9.37. Note that RS−1 = {0} iff 0 ∈ S 13. 2

Corollary 9.38. Let R be a ring and S ⊆ T be multiplicative subsets of R.

a) There is a unique ring homomorphism

ρST : RS−1 −→ RT−1, ρST (a
s

) = a
s

,

making the following diagram commutative :

R - RS−1

ιT ρST

RT−1

ιS

A
A
A
A
AAU

�
�
�
�
���

b) The following conditions are equivalent :

(1) ρST is an isomorphism; (2) T ⊆ σ(S) 14.

Proof. a) Let ιT : R −→ RT−1 be the canonical ring homomorphism of
9.36.(b); since for all s ∈ S, ιT (s) is a unit in RT−1, existence and uniqueness of
ρST follow from 9.36.(c). For a

s
∈ RS−1, the proof of 9.36.(c) yields

ρST (a
s

) = a
s

,

where the right-hand side of the equality is in RT−1.

b) For x ∈ R and A ⊆ R, set xA = {xa : a ∈ A}.
(1) ⇒ (2) : We first verify that for all x ∈ R

(*) 0 ∈ xT ⇒ 0 ∈ xS.

Indeed, if 0 ∈ xT , then ιT (x) = x
1

= 0 in RT−1. Since ιT = ρST ◦ ιS and ρST is

injective, we get x
1

= 0 in RS−1, that is, 0 ∈ xS.

13The ring {0} is called the zero ring.
14The saturation of S in R, as in 9.28.
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For t ∈ T , the fact that ρST is surjective yields a
s
∈ RS−1, such that, in RT−1,

ρST (a
s

) = a
s

= 1
t
.

Hence, there is t′ ∈ T , such that

t′(at − s) = 0.

By (*), there is s′ ∈ S, satisfying

s′(at − s) = 0,

that is, (as′)t = s′s ∈ S, and t ∈ σ(S), as desired.

(2) ⇒ (1) : For t ∈ T , select c ∈ R, with ct ∈ S. Then, if a ∈ R, we have

ρST (ac
ct

) = ac
ct

= a
t

,

in RT−1, showing that ρST is surjective. A similar technique establishes injectivity,
ending the proof. �

Proposition 9.39. Let R be a ring and S a multiplicative set in R.

a) If P ∈ ZS, then

PS−1 = {a
s

: a ∈ P and s ∈ S}

is the unique prime ideal in RS−1, such that ι−1
S (PS−1) = P .

b) The map

Q ∈ Spec(RS−1) 7−→ ιSZ(Q) =def ι−1
S (Q) ∈ Spec(R)

is a bijection between Spec(RS−1) and ZS, whose inverse is

P ∈ ZS 7−→ β(P ) = PS−1 ∈ Spec(RS−1).

Moreover, for a ∈ R and s ∈ S,

β−1(Za/s) = β−1(Za/1) = Za and ι−1
SZ(Za) = Za/1.

Proof. a) It is straightforward that PS−1 is a proper ideal in RS−1. To

prove primeness, suppose that a
s
b
t

= ab
st

= c
w

, with c ∈ P ; then, there is u ∈ S
such that

u(abw − cst) = 0.

Hence (uw)(ab) = c(ust) ∈ P . Since P ∩ S = ∅ and uw ∈ S, we obtain ab ∈ P .

Hence, a ∈ P or b ∈ P , and so either a
s

or b
t

are in PS−1.

Assume that Q ∈ Spec(RS−1) verifies ιSZ(Q) = ι−1
S (Q) = P . If a

s
∈ Q, then

s
1
· a
s

= a
1

= ιS(a),

and a ∈ P = ι−1
S (Q). But then a

s
∈ PS−1, and Q ⊆ PS−1. For the reverse

inclusion, note that if a ∈ P and s ∈ S, then
a
s

= a
1
· 1
s

and so, since Q is an ideal, we must have a
s
∈ Q, as needed.

b) Because every element Q of Spec(RS−1) is proper prime ideal and s is a unit
in RS−1, we cannot have ιSZ(Q) ∩ S 6= ∅. Hence, the image of ιSZ is contained
in ZS =

⋂
s∈S Zs. It follows from (a) that ιSZ is a bijection between Spec(RS−1)

and ZS , whose inverse is the map β in the statement.
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For a ∈ R and s ∈ S, in Spec(RS−1), we have

Za/s = Za,

because s is a unit in RS−1. Moreover, for all P ∈ Spec(R),

a 6∈ P iff a
1
6∈ PS−1,

wherefrom it is straightforward to conclude that

β−1(Za/1) = Za and ι−1
SZ(Za) = Za/1,

ending the proof. �

Corollary 9.40. Let R be a ring and P a prime ideal in R. If S = P c ∈
Mσ(R),

a) RS−1 is a local ring 15, whose only maximal ideal is PS−1.

b) The prime ideals in RS−1 correspond bijectively to the prime ideals contained
in P .

Proof. a) If x
s
6∈ PS−1, then x 6∈ P , that is, x ∈ S. Hence, x is a unit in

RS−1, the same being therefore true of x
s

. We have just verified that any element

outside PS−1 is a unit and so this ideal must be the only maximal ideal in RS−1.

b) Just apply 9.39.(b) to S = P c. �

Definition 9.41. The local ring of 9.40.(a) is called the localization of R
at the prime P , written RP . The canonical homomorphism from R to RP will
be written ιP : R −→ RP

16.

We shall now discuss how rings of fractions behave with respect to ring homo-
morphisms.

Lemma 9.42. Let f : A −→ B be a homomorphism of rings with identity 17.

a) If T is a multiplicative set in B, then

(1) f∗T =def f
−1(T ) is a multiplicative set in A, which is saturated if the same

is true of T . Moreover, f∗T is proper iff T is proper.

(2) The map a/s 7−→ fa/fs is the carrier of the unique ring homomorphism,
f∗T : A(f∗T )−1 −→ BT−1, making the diagram below-left commutative.

A(f∗T )−1

A

?

- B

ι

f

BT−1

ι

f∗T

?
- AS−1

A

?

- B

ι

f

B(f∗S)−1

ι

fS∗

?
-

15A ring is local if it has only one maximal ideal.
16Instead of ιPc .
17That is, B is a A-algebra.
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b) If S is a multiplicative set in A, then
(1) f∗S =def {fx : x ∈ S} is a multiplicative set in B, which is proper iff
S ∩ ker f = ∅.
(2) The map a/s 7−→ fa/fs is the carrier of the unique ring homomorphism,
fS∗ : AS−1 −→ B(f∗S)−1, making the diagram above-right commutative.

Proof. a) Clearly, f∗T is multiplicative; and it is proper iff T is proper. If
T ∈ Mσ(B) and xy ∈ f∗T , then f(xy) = f(x)f(y) ∈ T and so f(x), f(y) ∈ T .
Hence, x, y ∈ f∗T , as desired. Existence and uniqueness of f∗T comes from 9.36.(c),
applied to the ring homomorphism h = ιT ◦ f : A −→ BT−1. The verification of
(b) is similar and left to the reader. �

Remark 9.43. If f : A−→B is a ring homomorphism and S is a multiplicative
set in A such that S ∩ ker f 6= ∅, then B(f∗S)−1 = {0} is the zero ring (9.37) and
fS∗ (x) = 0, for all x ∈ AS−1. 2

Corollary 9.44. Let f : A −→ B be a homomorphism of rings with identity.
If P ∈ Spec(B), then f∗P ∈ Spec(A). Moreover, there is a unique ring homomor-
phism

f∗P : Af∗P −→ BP , f∗P (a/x) = f(a)/f(x),

making the following diagram commutative :

Af∗P

A

?

- B

ιf∗P

f

BP

ιP

f∗P

?
-

Proof. Just apply 9.42.(a) to T = P c, using the notational conventions of
9.41. Note that, consistently with the latter, the homomorphism induced by the
inverse image of P c by f is being written f∗P . �

Exercises

9.45. Let I, J be ideals in R. If P is a prime ideal in R, then IJ ⊆ P iff
I ⊆ P or J ⊆ P . 2

9.46. If I, J , K and Kp, p ∈ A, are ideals in R

a) I ⊆ (I : J).

b) (I : J)J ⊆ I.

c) ((I : J) : K) = (I : JK) = ((I : K) : J).

d)
(⋂

p∈A Kp : J
)

=
⋂
p∈A (Kp : J).

e)
(
I :

∑
p∈A Kp

)
=

⋂
p∈A (I : Kp). 2
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9.47. Show that nzd(R) 18 is a saturated multiplicative subset of R.

9.48. Saturation 19 is a map, 2R
σ−→ Mσ(R), with the following properties :

For T , S ⊆ R, and W , Si ∈ Mσ(R), i ∈ I,

a) T ⊆ σ(T ); T ⊆ W ⇒ σ(T ) ⊆ W .

b) ZT = Zσ(T ) and σ(σ(T )) = σ(T ).

c) S ⊆ T ⇒ σ(S) ⊆ σ(T ).

d) S ⊆ T ⊆ σ(T ) ⇒ σ(S) = σ(T ).

e) In Mσ(R),
∨
i∈I Si = σ

(⋃
i∈I Si

)
. 2

9.49. If R is a ring, recall (9.47) that N = nzd(R) is a saturated multiplicative
set in R. The ring RN−1 is called the total ring of fractions of R.

a) N is the largest multiplicative set S in R for which ιS : R −→ RS−1 is injective.

b) Every element of RN−1 is either a zero-divisor or a unit.

c) A commutative ring with identity in which every element is either a unit or a
zero-divisor is isomorphic to its total ring of fractions. 2

18Defined in 9.17.(b).
19See Definitions 9.24, 9.28 and Remark 9.29.
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CHAPTER 10∨
-Filters

We now turn to the construction of quotient frames. Our first topic is a char-
acterization of the filters whose quotient map is a frame morphism. In the next
chapter we discuss quotients in the category Frame using frame congruences,
while in Chapter 13, we shall develop an intuitionistically acceptable theory of
quotients, applying the fixed point Theorem 7.5 to certain types of operators.

Definition 10.1. Let H be a frame. A filter F in H is a
∨

-filter iff for all
S ⊆ H and x ∈ H,

If ∀s ∈ S, (s → x) ∈ F , then
∧
s∈S (s → x) ∈ F .

For b ∈ Reg(H), set Db = {x ∈ H : ¬¬x ≥ b}.

By Lemma 6.8.(f), Db is a filter, which is proper iff b 6= ⊥. Note that the filter
D, of dense elements in H, is precisely D>. The main properties of

∨
-filters are

described in

Proposition 10.2. Let H, P be frames and let F be a filter in H. Then

a) For all x ∈ H,
∨
x/F =

∨
{z → x : z ∈ F}.

b) The following are equivalent :

(1) F is a
∨

-filter.

(2) For all x ∈ H,
∨
{y ∈ H : y ∼F x} =

∨
x/F ∈ x/F .

(3) H/F is a frame and the quotient HA morphism, πF , is a frame morphism.

Moreover, for a HA morphism f : H −→ P , a necessary condition for f to be a
frame morphism is that coker f be a

∨
-filter. This condition is also sufficient in

case f is onto.

c) Principal filters and the filters Db, b ∈ Reg(H), are
∨

-filters.

d) The intersection of any family of
∨

-filters is a
∨

-filter.

e) If F is an
∨

-filter in H, then F ⊆ Db, for some b ∈ Reg(H). Further, the
following are equivalent :

(1) D = D> ⊆ F ;

(2) F = Dc, for some c ∈ Reg(H).

Proof. a) Recall that for x, b ∈ H, x ∼F b iff ∃ z ∈ F such that z ∧ x =
z ∧ b. Thus, if b ∼F x then, for some z ∈ F , z ∧ b ≤ x, and so b ≤ z → x. On
the other hand, by Modus Ponens, x ∼F (z → x), ∀ z ∈ F . Clearly, (a) follows
directly from these observations.
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b) (1) ⇒ (2) : For all x ∈ H, x ≤
∨
x/F , and so (x →

∨
x/F ) is always in F . If it

is shown that [(
∨
x/F ) → x] ∈ F , then x ∼F

∨
x/F (6.15.(a)). Now, if b ∈ x/F ,

then (b → x) ∈ F ; since F is a
∨

-filter, we get∧
{(b → x) : b ∈ x/F} = [(

∨
x/F ) → x] ∈ F ,

as required.

(2) ⇒ (1) : Initially we make note of two simple facts.

Fact 1. For a, b ∈ H, a → b ∈ F iff a ∧ b ∈ a/F iff a ∨ b ∈ b/F .

Proof. Corollary 8.13.(a) yields

a/F ≤ b/F iff ∃ z ∈ F such that a ∧ z ≤ b iff a → b ∈ F .

Hence, in H/F ,

{
a/F ∨ b/F = (a ∨ b)/F = b/F ;

a/F ∧ b/F = (a ∧ b)/F = a/F .

Similar considerations will yield

Fact 2. For a, b, c ∈ H,

a ≤ b ≤ c and a/F = c/F ⇒ a/F = b/F = c/F .

Suppose S ∪ {x} ⊆ H satisfies (s → x) ∈ F , ∀ s ∈ S; by Fact 1, (s ∨ x)
∈ x/F . Since x ≤ (

∨
S) ∨ x ≤

∨
x/F , (2) and Fact 2 yield (

∨
S) ∨ x ∈ x/F .

Another application of Fact 1 will give∧
s∈S (s → x) = (

∨
S) → x ∈ F ,

showing that F is a
∨

-filter.

(1) ⇒ (3) : We show that H/F is a frame and that πF is a frame morphism, by
proving that for all S ⊆ H,

πF (
∨
S) =

∨
πF (S).

Since πF is increasing, it is enough to prove that

x/F ≥ s/F , for all s ∈ S ⇒ x/F ≥ (
∨
S)/F = πF (

∨
S).

By Fact 1, x/F ≥ s/F means (s → x) ∈ F ; if F is a
∨

-filter, from x/F ≥ s/F we
get

∧
s∈S (s → x) = (

∨
S) → x ∈ F , yielding (

∨
S)/F ≤ x/F , as needed.

(3) ⇒ (1) : Since πF is a HA-morphism (6.16), it is enough to show that the

cokernel of any HA-morphism, which is a frame morphism, must be a
∨

-filter,
and so we discuss this in general.

Let H
f−→ P be a HA-morphism, preserving arbitrary joins. Let S ∪ {x} ⊆

H satisfy (s → x) ∈ coker f , s ∈ S. Then, f(s → x) = fs → fx = >. Therefore,
fs ≤ fx, ∀ s ∈ S. Since f preserves joins, f(

∨
S) =

∨
f(S) ≤ fx. Therefore,

(
∨
S → x) ∈ coker f , proving the latter to be a

∨
-filter.

If f is onto and F = coker f , P is naturally isomorphic to H/F , with πF
a frame morphism. Since any isomorphism is open, f , as a composition of frame
morphisms, will also be a frame morphism.

c) Fix b ∈Reg(H) and x ∈H. By (b), it is sufficient to prove that (
∨
x/Db) ∈ x/Db.

Since D ⊆ Db, we have x ∨ ¬x ∈ Db; thus, the equation

x ∧ (x ∨ ¬x) = ¬¬x ∧ (x ∨ ¬x)

guarantees that x/Db = ¬¬x/Db. Now, for each z ∈ Db, we obtain, using Lemmas
6.8.(a) and 6.4.(d)
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(z → ¬¬x) ≤ (¬x → ¬ z) ≤ (¬¬ z → ¬¬x) ≤ b → ¬¬x.

By (a),
∨
x/Db =

∨
¬¬x/Db = b → ¬¬x; from b ∈ Db and b ∧ (b → ¬¬x) =

b ∧ ¬¬x, we conclude that b → ¬¬x ∈ x/Db, completing the proof of (c). Item
(d) is straightforward.

e) For the first assertion in (e), if F is a
∨

-filter, let b =
∨
⊥/F ∈ ⊥/F . To show

that b is regular, note that

b ∼F ⊥ ⇒ ¬ b ∼F > ⇒ ¬¬ b ∼F ⊥,

that entails b = ¬¬ b. Thus, b, ¬ b ∈ Reg(H) and ¬ b ∈ F . Furthermore, if t ∈ F ,
then ¬ t ∈ ⊥/F and so ¬ t ≤ b. This immediately implies the inclusion of F in
D¬b. To verify the stated equivalence, it is enough to check that (1)⇒ (2). But the
argument above shows that if F is a

∨
-filter, then F ⊆ D¬b, where b =

∨
⊥/F

and ¬ b ∈ F . If D ⊆ F , then for all x ∈ H, x ∼F ¬¬x. Consequently,

x ∈ D¬b ⇒ ¬¬x ≥ ¬ b ⇒ ¬¬x ∈ F ⇒ x ∈ F ,

verifying that F = D¬b and concluding the proof. �

Remark 10.3. It follows immediately from 10.2.(d) that the only
∨

-filters
in a cBa are the principal ones. Thus, onto frame morphisms (which are the same
as onto open morphisms), originating in a cBa B, are in bijective correspondence
with the principal filters in B. 2

Remark 10.4. By Proposition 10.2.(d), a
∨

-filter, F , is contained in one of
the type Db, b ∈ Reg(H). The difference between them might be large : in the
frame [0, 1] ⊆ R, all filters are

∨
-filters, but the only one of type Db is (0, 1].

The inclusion F ⊆ Db is far from sufficient for F to be a
∨

-filter. In Ω(R), let
F be the filter of cofinite sets (every cofinite set is open); note that F ⊆ D, but
F is not a

∨
-filter : if U = R − ({1/n : n ≥ 1} ∪ {0}),

∨
U/F = R − {0} 6∈

U/F . In fact, 10.2.(d) requires that F = D, which is clearly not the case. 2

An useful consequence of Proposition 10.2 is the following

Corollary 10.5. Let D be the filter of dense elements in a frame H.

a) The quotient H/D is a cBa and the quotient morphism 1, πD : H −→ H/D,
preserves all joins in H. Further, we have the following universal property :

[reg]

For all cBas B and all implication preserving frame mor-
phisms f : H −→ B, there is an unique cBa morphism
g : H/D −→ B, such that g ◦ πD = f .

B

H

?

- H/D

�
�

�
�

�
�	

f

πD

g

1Which is a HA-morphism, by 6.16.
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b) For S ⊆ Reg(H), define∨∗
S = ¬¬ (

∨
S) and

∧∗
S =

∧
s∈S ¬¬ s,

where
∨

and
∧

are the join and meet in H. With these operations Reg(H) is a
cBa and the map x ∈ Reg(H) 7→ x/D ∈ H/D is an isomorphism of Reg(H) onto
H/D.

Proof. a) Propositions 6.21 and 10.2 imply that H/D is a cBa, that πD is an
implication preserving frame morphism and the uniqueness of the BA-morphism g,
making the displayed diagram commutative. It remains to verify that g preserves
sups (and so all operations, since B and H/D are cBas). For S ⊆ H, since both f
and πD are sup preserving, we get∨

s∈S g(s/D) =
∨
s∈S f(s) = f(

∨
S) = g(πD(

∨
S)) = g((

∨
S)/D),

as needed.

b) The assertions about meets and joins follow from (g) and (h) in 8.16 2. The
isomorphism claim follows from (a) and the fact that the map x 7−→ x/D is the
isomorphism of Proposition 6.21.(e). �

Remark 10.6. The universal property in Proposition 6.21 and Corollary 10.5
does not hold for a lattice or a frame morphism from H to a BA B. To see this,
consider i : Ω(R) −→ 2R, the canonical injection of the opens in R into the cBa
of parts of R. This map is a lattice morphism and a frame morphism (unions of
opens and finite intersections of opens are open); it is not open, since ¬ is not
preserved. In fact, there is no lattice morphism g : Ω(R)/D −→ 2R, such that
g ◦ πD = i, because coker i = {>} 6= D.

By 8.18, in general, πD will not preserve arbitrary meets, i.e., it is a frame
morphism and a HA-morphism, but it is not open. 2

Remark 10.7. Note that
∧

-filters and complete filters, which would originate
meet preserving and open quotient maps, respectively, are principal ! That is, if
F ⊆ H is a filter such that for all S ∪ {x} ⊆ H,

∀s ∈ S (x → s) ∈ F ⇒
∧
s∈S (x → s) = x →

∧
S ∈ F ,

then F is principal. Indeed, first note that ∀ x ∈ H, > → x = x; thus, the above
condition implies that

∧
x∈F (> → x) =

∧
F ∈ F and F is principal. There is a

result similar to 10.2 for this situation, whose statement and proof is left to the
reader, who is also invited to find interesting examples of this phenomenon. 2

Exercises

10.8. a) Construct a theory of frame quotients by ideals. Show in particular
that the quotient of a frame by a principal ideal is a frame and the natural quotient
map is a frame morphism. Give examples showing that these quotients cannot be
described by filters.

b) Give an example of an onto frame morphism f : H −→ P that is not isomorphic
to any quotient produced by filters or ideals. 2

2That should be compared with the analogous statements in 1.14.
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CHAPTER 11

Frame Congruences

In general, when dealing with quotients, we define congruence relations and
obtain quotients from these. Taking into account the morphisms we have in the
category Frame, we set down

Definition 11.1. Let H be a frame and R ⊆ H2 be an equivalence relation
on H. R is a frame congruence iff for all a, b, x, y ∈ H and {xi, yi}i∈I ⊆ H we
have

a) If 〈 a, x 〉 ∈ R and 〈 b, y 〉 ∈ R, then 〈 a ∧ b, x ∧ y 〉 ∈ R.

b) If, for all i ∈ I, 〈xi, yi 〉 ∈ R, then 〈
∨
xi,
∨
yi 〉 ∈ R.

Thus, R is a frame congruence iff it preserves finite meets and all joins. We
denote by C(H) the poset of all frame congruences on H, partially ordered by
inclusion.

We adopt the standard convention that a R b means 〈 a, b 〉 ∈ R.

If R is a frame congruence on H write H/R for the set of equivalence classes,
x/R, of elements x ∈ H. Let πR be the canonical quotient map H −→ H/R.

The basic properties of this construction are described in the following Propo-
sition, whose statement one should be obliged to write out in its entirety only once
each lifetime. The proof is straightforward and will be omitted.

Proposition 11.2. Let H be a frame, R a lattice congruence on H and
x, y, z ∈ H.

a) R is a frame congruence iff for all S ⊆ H, 〈
∨
S,
∨
s∈S

∨
(s/R) 〉 is in R. In

particular, if R is a frame congruence, then (
∨
x/R) ∈ x/R.

b) If R is a frame congruence then,

(1) x R (x ∧ y) iff y R (x ∨ y). The relation

x/R ≤ y/R iff x R (x ∧ y)

is independent of representatives and defines a partial order on H/R, with which
πR is an increasing map.

(2) The prescriptions

x/R ∧ y/R = (x ∧ y)/R and x/R ∨ y/R = (x ∨ y)/R,

are independent of representatives and define operations that make H/R into a
distributive lattice with ⊥ = ⊥/R and > = >/R, in the po described in (1).

(3) With the po described in (1) and the operations in (2), H/R is a frame and
the map πR is a frame morphism. For A ⊆ H/R,∨

A = πR(
∨
{x ∈ H : x/R ∈ A}).
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c) If H
f−→ P is an onto frame morphism, then

Rf = {〈x, y 〉 ∈ H × H : fx = fy}
is a frame congruence on H and there is a unique isomorphism, H/Rf

g−→ P ,
such that g ◦ πRf = f .

P

H

?

- H/Rf

�
�
�

�
�
�	

f

πR

g

We now consider the structure that can be found in the set of frame congru-
ences on a frame H. Since it is clear that the intersection of any family of frame
congruences is a frame congruence, C(H)C(H)C(H) is a complete lattice in the inclusion
po. The diagonal of H × H, ∆H, is the least element of C(H) and H × H is its
largest element. The preservation of the property of being a frame congruence by
arbitrary intersections allows us to define the frame congruence generated by
A ⊆ H × H,

[A] =
⋂
{R ∈ C(H) : A ⊆ R},

the least frame congruence containing A. If S ⊆ C(H) is a set of frame congruences
on H, then ∨

S = [
⋃
S].

We set down some special notation for filters and ideals.

Definition 11.3. If A is a filter or ideal in the frame H let

a) [A] = frame congruence generated by the lattice congruence ∼A
= [∼A].

b) Write µA for the quotient mapping H −→ H/[A] in case A is an ideal, and µA

in case A is a filter.

c) For principal filters and ideals, write
Ea = [a→] = {〈x, y 〉 ∈ H × H : a ∧ x = a ∧ y}

and

Ea = [a←] = {〈x, y 〉 ∈ H × H : a ∨ x = a ∨ y},
for the frame congruences generated by the filter a→ and the ideal a←, respectively.
The corresponding quotient morphisms will be indicated by µa and µa.

Proposition 11.4. With notation as above, let H be a frame.

a) For all R ∈ C(H) and a, b ∈ H, the following hold in C(H) :

(1) Ea ∨ R = {〈x, y 〉 ∈ H × H : 〈 a ∧ x, a ∧ y 〉 ∈ R}.
(2) Ea ∨ R = {〈x, y 〉 ∈ H × H : 〈 a ∨ x, a ∨ y 〉 ∈ R}.
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(3) Ea and Ea are linear in C(H).

(4) Ea ∨ Ea = > and Ea ∧ Ea = ⊥.

(5) (Ea ∧ Eb) ∨ (Ea ∨ Eb) = >.

b) For all a, b ∈ H and R ∈ C(H), are equivalent :

(1) 〈 a, b 〉 ∈ R.

(2) (Ea ∧ Eb) ∨ (Eb ∧ Ea) ⊆ R.

(3) R ∨ (Ea ∨ Eb) = > and R ∨ (Ea ∨ Eb) = >.

Proof. We must take care in our calculations for we do not (yet) know that
C(H) is distributive.

a) (1) Let S be the right-hand side of the equality in (1). Since the diagonal of
H × H, ∆H, is contained in R, we have Ea ⊆ S; since R is a lattice congruence,
〈x, y 〉 ∈ R implies 〈 a ∧ x, a ∧ y 〉 ∈ R. Thus, R ⊆ S and so Ea ∨ R ⊆ S. That S
is a frame congruence, comes directly from the [∧,

∨
] law in H. It remains to see

that every frame congruence containing Ea and R contains S. Let Θ be a frame
congruence, with Ea, R ⊆ Θ. If x, y ∈ H are such that 〈 a∧x, a∧ y 〉 ∈ R, then :

(i) 〈x, x ∨ (a ∧ y) 〉 ∈ R (take the join with x on both sides)

(ii) 〈 y ∨ (a ∧ x), y 〉 ∈ R (take the join with y on both sides)

(iii) 〈 y ∨ (a ∧ x), x ∨ (a ∧ y) 〉 ∈ Ea, (the meet of both coordinates of
this pair with a is a ∨ (x ∧ y)).

Since Θ is transitive, (i), (ii) and (iii) imply 〈x, y 〉 ∈ Θ, proving item (1). The
proof of (2) is similar (actually, dual) and will be omitted.

a) (3) Let Ri, i ∈ I, be a family of congruences in C(H); using (1) and the fact
that the meet in C(H) is set theoretic intersection, we obtain

Ea ∨
∧
Ri = {〈x, y 〉 ∈ H × H : 〈 a ∧ x, a ∧ y 〉 ∈

⋂
i∈I Ri}

=
⋂
i∈I {〈x, y 〉 ∈ H × H : 〈 a ∧ x, a ∧ y 〉 ∈ Ri}

=
∧

(Ea ∨ Ri).
The proof of the linearity (8.21) of Ea is analogous.

a) (4) Since 〈⊥, a 〉 ∈ Ea and 〈 a,>〉 ∈ Ea, 〈⊥,>〉 ∈ Ea ∨ Ea. Any lattice
congruence that declares ⊥ equivalent to >, has to be H × H (that is, > in
C(H)). For the second equation, if 〈x, y 〉 ∈ Ea ∧ Ea, then a ∧ x = a ∧ y and
a ∨ x = a ∨ y. Hence,

x = x ∨ (a ∧ y) = (a ∨ x) ∧ (x ∨ y) = (a ∨ y) ∧ (x ∨ y)

= y ∨ (a ∧ x) = y,

showing that Ea ∧ Ea = ∆H = ⊥ in C(H). (5) follows from (4) and the linearity
(8.21) of Ea and Eb.

b) (1) ⇒ (2) : We prove that Ea ∧ Eb ⊆ R; by symmetry, Eb ∧ Ea ⊆ R and the

statement in (2) follows. Assume 〈 a, b 〉 ∈ R and that x, y satisfy a ∧ x = a ∧ y,
as well as b ∨ x = b ∨ y. Then,

(*) y ∨ (b ∧ x) = (y ∨ b) ∧ (y ∨ x) = (b ∨ x) ∧ (y ∨ x)

= x ∧ (b ∨ y) = x ∧ (b ∨ x) = x.

Now, from 〈 a, b 〉 ∈ R, we get
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(i) 〈 a ∧ x, b ∧ x 〉 ∈ R (taking meet with x on both sides);

(ii) 〈 a ∧ y, b ∧ x 〉 ∈ R (from (i) and a ∧ x = a ∧ y);

(iii) 〈 y, y ∨ (b ∧ x) 〉 = 〈 y, x 〉 ∈ R (take the join with y on both sides
of (ii) and use (*))

showing that Ea ∧ Eb ⊆ R. (2) ⇒ (3) comes directly from (5) in (a).

(3) ⇒ (1) : From (1), (2) in (a) and the hypothesis in (3), we get

H × H = R ∨ (Ea ∨ Eb) = (R ∨ Ea) ∨ Eb
= {〈x, y 〉 ∈ H × H : 〈 a ∨ (b ∧ x), a ∨ (b ∧ y) 〉 ∈ R}.

Thus, taking x=⊥ and y => yields 〈 a, a ∨ b 〉 ∈ R. By symmetry, the assumption
R ∨ (Ea ∨ Eb) = > leads to 〈 b, b ∨ a 〉 ∈ R and so transitivity yields 〈 a, b 〉 ∈ R,
ending the proof. �

Proposition 11.4 is the fundamental step towards

Theorem 11.5. (Isbell) The lattice of frame congruences on a frame is a
zero-dimensional frame.

Proof. By Theorem 8.24, it is enough to verify that the linear elements of
C(H) form a cobasis. Given R, S in C(H), suppose that

(*) For all linear z ∈ C(H), S ∨ z = > ⇒ R ∨ z = >.

If 〈 a, b 〉 ∈ S, Proposition 11.4.(b) assures that

(**) S ∨ (Ea ∨ Eb) = > and S ∨ (Ea ∨ Eb) = >.

Item (3) in 11.4.(a) guarantees that Ex and Ex are linear. Since linearity is pre-
served by finite joins, it follows from (*) and (**) that R ∨ (Ea ∨ Eb) = > and
R ∨ (Ea ∨ Eb) = >. From this we get 〈 a, b 〉 ∈ R, proving that S ⊆ R and that
the linear elements are indeed a cobasis for C(H). �

By 11.4.(b), [〈 a, b 〉] = (Ea ∧ Eb) ∨ (Eb ∧ Ea). If one knew that C(H) was dis-
tributive, zero-dimensionality would follow immediately from item (4) in 11.4.(a).

Exercises

11.6. a) Try to prove directly that C(H) is a frame. Note that it is sufficient
to show that it is distributive (8.23).

b) Prove that Ea ∨ Eb = Ea∧b and Ea ∨ Eb = Ea∨b. 2
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CHAPTER 12

Points and Sober Spaces

One of the main examples of frames are the algebras of opens in topological
spaces. However, it is not true that every frame is isomorphic to one of this type.
We shall apply the results in Chapters 10 and 11 to exhibit a class of such examples.
We shall also develop a characterization of which frames come from Topology.

Recall that if X is a topological space, Ω(X) is the frame of opens in X and
νp is the filter of open neighborhoods of the point p in X. This filter has a special
property :

If
⋃
Ui ∈ νp then, for some i ∈ I, Ui ∈ νp.

We use this observation to give a general definition of “point”.

Definition 12.1. A proper filter F in a complete lattice L is a point in L
iff for all S ⊆ L,

∨
S ∈ F implies S ∩ F 6= ∅. Write pt(L) for the set of points

in L.

For a ∈ L, set Pa = {F ⊆ L : F is a point in L and a ∈ F}.

Some authors use completely prime or pure state for those filters we here
call points 1.

Lemma 12.2. Let L, R be a complete lattices and S ⊆ L and a, b ∈ L. Then,

a) Pa ∩ Pb = Pa∧b and P∨
S =

⋃
s∈S Ps.

b) P> = pt(L) and P⊥ = ⊥.

c) The collection {Pb}b∈L is a T0 topology on pt(L).

d) If λ : L −→ R is a [∧,
∨

]-morphism, then the map

pt(λ) : pt(R) −→ pt(L), defined by pt(λ)(P ) = λ−1(P ),

is continuous. The map λ 7→ pt(λ) preserves composition and pt(IdL) = Idpt(L).

Proof. (a) and (b) are immediate from the definitions. For (c), just note
that the collection in question contains ∅ and pt(L), being closed under finite
intersections and arbitrary unions. Thus, it is a topology. To check that it is T0
(1.20), note that

F 6= G in pt(L) ⇒ ∃ a ∈ (F − G) ∪ (G − F ),

that is, Pa ∈ νF 4 νG. Item (d) is straightforward. �

If L is a complete lattice, write Ω(pt(L)) for the frame of opens of the topo-
logical space pt(L), with the topology of 12.2.(c). We have a map

1See Exercise 12.14.
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αL : L −→ Ω(pt(L)), defined by αL(a) = Pa.

Lemma 12.3. Let L be a complete lattice. With notation as above,

a) The map αL is a surjective [∧,
∨

]-morphism.

b) If L = Ω(X), X a topological space, then αL is a frame isomorphism.

Proof. (a) is clear from 12.2.(a); (b) comes from the fact that if L is Ω(X),
then

U 6= V in Ω(X) iff ∃ a ∈ X such that a ∈ U 4 V

iff νa ∈ PU 4 PV ,

and so αL is injective. �

Lemma 12.4. Let X be a topological space.

a) With the topology in 12.2.(c), the map

νX : X −→ pt(Ω(X)), given by x 7→ νx,

is continuous, with ν−1
X (U) = PU , for all U ∈ Ω(X).

b) νX is injective iff X is T0.

c) νX is a homeomorphism iff it is bijective.

Proof. Item (a) is clear, while (b) is immediate from the definition of T0
(see 1.20). For (c), note that

νX(U) = PU iff
Every point F in Ω(X) such that
U ∈ F , is in the image of νX .

Hence, if νX is bijective, it is open and continuous and thus, a homeomorphism. �

Example 12.5. As an example, we verify that νX is a homeomorphism if X
is a Hausdorff space. Since every Hausdorff space is T0, by 12.4.(c), it is enough
to verify that νX is surjective. This can be accomplished in two stages : let F be
a point in Ω(X).

(i) There is p ∈ X such that νp ⊆ F .

If not, for p ∈ X select Up ∈ νp − F , to get get X =
⋃
p∈X Up ∈ F , contradicting

either that F is a point or that it is a proper filter.

(ii) Let p ∈ X be such that νp ⊆ F . Then, F = νp.

Assume, to get a contradiction, that there is U ∈ F − νp; because X is Hausdorff,

it follows that U =
⋃
V ∈νp U − V . Since F is a point, for some V ∈ νp we have

U − V ∈ F . But then, F is not a proper filter. 2

The preceding Example leads to

Definition 12.6. Let T be a topological space and H be a frame.

a) T is sober if the map νT : T −→ pt(Ω(T )) is a bijection 2.

b) H has enough points if the map αH is a frame isomorphism.

2Or equivalently, a homeomorphism, by 12.4.(c)).
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Thus, Hausdorff spaces are sober and frames of opens in topological spaces have
enough points. Also, all sober spaces are T0, but T1 and sober are incomparable
(see Exercise 12.15).

By Exercise 12.13, there are no points in atomless cBas. For instance,Reg(Ω(R))
has no points. With notation as in Chapter 11, a whole class of examples comes
from

Proposition 12.7. Let T be a Hausdorff topological space and F be the filter
of cofinite sets in T (which are all open). Let [F ] be the frame congruence generated
by F in Ω(T ). Then, Ω(T )/[F ] is a frame without points.

Proof. Write µ for the quotient map from Ω(T ) to Ω(T )/[F ]. We know that
µ is a [∧,

∨
]-morphism (11.2). If G ⊆ Ω(T )/[F ] is a point, it follows from Lemma

12.2.(d) that µ−1(G) is a point in Ω(T ). T being sober (12.5), there is p ∈ T such
that µ−1(G) = νp. Since U = T − {p} ∈ F , we have µ(U) = >. Thus, U ∈ µ−1(G).

On the other hand, because
⋂
V ∈νp V = {p}, we have U =

⋃
V ∈νp (U − V ). But

then, for some V ∈ νp, U − V ∈ µ−1(G) = νp, a contradiction. �

Our next step is to give an intrinsic characterization of sobriety. To that end,
we introduce

Definition 12.8. Let X be a topological space, E be a subset of X and p a
point in X.

a) E is irreducible in X if for all closed sets, F1, F2, in X

[irr] E ⊆ F1 ∪ F2 ⇒ E ⊆ F1 or E ⊆ F2.

b) p is a generic point of E if p ∈ E and E ⊆ {p}.

Remark 12.9. Let X be a topological space and E a closed set in X.

a) Because the finite intersection of closed sets is closed, E is irreducible in X iff
for all closed sets F1, F2 in X

E = F1 ∪ F2 ⇒ E = F1 or E = F2.

b) A point p ∈ E is generic iff {p} = E. 2

Lemma 12.10. Let X be a topological space, Ω(X) be the frame of opens in
X and let E ⊆ X.

a) The following conditions are equivalent :

(1) E is irreducible in X;

(2) For all U ∈ Ω(X), U ∩ E 6= ∅ ⇒ U ∩ E is dense in E;

(3) For all U , V ∈ Ω(X),

U ∩ E 6= ∅ and V ∩ E 6= ∅ ⇒ U ∩ V ∩ E 6= ∅;
(4) For all y ∈ E and V ∈ νy, E ∩ V = E.

b) If E is irreducible in X, the same is true of its closure, E.

c) If X is T0 and E has a generic point, then it is unique.

Proof. a) It is clear that (2), (3) and (4) are equivalent.
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(1) ⇒ (2) : Assume, to get a contradiction, that E is irreducible, but that there

is U ∈ Ω(X) such that U ∩ E 6= ∅ and this intersection is not dense in E. Hence,
there are q ∈ E and V ∈ νq such that

(i) q ∈ V and (ii) V ∩ U ∩ E = ∅.
Consider the closed sets F1 = U c and F2 = V c; by (ii) above, we have E ⊆ F1 ∪ F2.
On the other hand, because q ∈ E − F2 and U ∩ E is non-empty, we conclude
that neither E ⊆ F1, nor E ⊆ F2, contradicting the irreducibility of E.

(2) ⇒ (1) : We may assume that E 6= ∅. Let F1, F2 be closed sets in X such that
E ⊆ F1 ∪ F2. Hence,

E ∩ F c1 ∩ F c2 = ∅.
If E ∩ F c1 = ∅, then E ⊆ F1 and we are done; otherwise, (2) entails F c1 ∩ E is dense
in E and thus, since F c2 ∈ Ω(X), we get F c2 ∩ E = ∅, i.e., E ⊆ F2, establishing
the irreducibility of E, as needed.

b) Let U be an open set in X such that U ∩ E 6= ∅; then, U ∩ E 6= ∅ and, since
E is irreducible, item (2) of the equivalence in (a) yields

E = U ∩ E ⊆ U ∩ E ⊆ E,

showing that U ∩ E is dense in E. Another application of (a).(2) implies that E
is irreducible in X, as desired.

c) Let p, q ∈ E be generic points for E. If p 6= q, since X is T0, without loss of
generality we may assume that there is V ∈ Ω(X) such that p ∈ V and q 6∈ V .

But then, {q} ⊆ V c and so the closure of q does not contain E, contradicting its
genericity and ending the proof. �

Proposition 12.11. Let L be a complete lattice. Then, in the topological
space pt(L), every non-empty irreducible closed set has a generic point.

Proof. Since Pa, a ∈ L, is a basis for the topology on pt(L), if P , Q ∈ pt(L)
we have

(*) P ∈ {Q} iff P ⊆ Q.

Now let K 6= ∅ be an irreducible closed set in pt(L); we show that P =
⋃
K is a

point in L and that P ∈ K. By (*), P will be a generic point for K.

A moment of thought will convince the reader that, in the verification that P
is a completely prime filter, the only property that is not immediately forthcoming
is that P is closed under finite intersections. Let a, b ∈ P; note that this means
K ∩ Pa 6= ∅ and K ∩ Pb 6= ∅. We wish to show that a ∧ b ∈ P . Since all elements
of K are filters, if this were false, then for all Q ∈ K, either a 6∈ Q or b 6∈ Q. Thus,
we could write

K = (K ∩ P ca) ∪ (K ∩ P cb )

where (∗)c denotes complementation in pt(L). Since K has been written as the
union of two closed sets in pt(L), its irreducibility yields K ⊆ P ca or K ⊆ P cb . But
both alternatives lead to a contradiction. Therefore, a ∧ b belongs to P and P is
a point in L. It remains to prove that P ∈ K. Since P =

⋃
K, for any c ∈ P ,

Pc ∩ K 6= ∅. Hence, P ∈ K = K, as desired. �
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In any topological space the closure of a point is an irreducible closed set. To
require that in a T0 space all irreducible closed sets be of this type, is tantamount
to requiring that it be sober. We have

Theorem 12.12. For a topological space T , the following are equivalent :

(1) T is sober.

(2) T is T0 and every non-empty irreducible closed set in T has a generic
point.

(3) Every non-empty irreducible closed set in T has a unique generic point.

Proof. (1) ⇒ (2) : If T is sober, then νT : T −→ pt(Ω(T )) is a homeomor-

phism (12.4.(c)). It then follows from 12.2.(b) and 12.11, that T is T0 and all
irreducible closed sets have a generic point.

(2) ⇒ (3) : Immediate from 12.10.(c).

(3) ⇒ (1) : We must show that ν = νT : T −→ pt(Ω(T )) is bijective.

ν is injective : For any two points in a topological space,

νx = νy iff {x} = {y}.
Since closure of points are irreducible and irreducible closed sets in T have a
unique generic point, we get νx = νy implies x = y, proving that ν is injective (or
equivalently that T is T0).

ν is surjective : Let P be a point in Ω(T ). We must find x ∈ T , such that P = νx.
Define K = {x ∈ T : νx ⊆ P}; we shall prove that K is a non-empty irreducible
closed set in T . We start with

Fact 1. For all U ∈ P , U ∩ K 6= ∅. In particular, K 6= ∅.
Proof. If U ∩ K = ∅, for each y ∈ U we may select Vy ∈ νy − P . Therefore,
U =

⋃
y∈U Vy, with each Vy 6∈ P . Patently, such a U cannot be in P .

Fact 2. K is closed.

Proof. Let y ∈ K; then, for all V ∈ νy, V ∩ K 6= ∅ (1.10.(e)). Therefore, for each
V ∈ νy, there is z ∈ K such that V ∈ νz ⊆ P . Thus, νy ⊆ P and y ∈ K.

Fact 3. K is irreducible.

Proof. We verify that for y ∈ K and V ∈ νy, V ∩ K = K. By 12.10, this is assures
that K is irreducible. Suppose z ∈ K and U ∈ νz; since P is a proper filter and
νy ∪ νz ⊆ P , we must have V ∩ U ∈ P . Fact 1 then yields U ∩ V ∩ K 6= ∅,
showing that V ∩ K is dense in K.

By hypothesis, we have K = {x}, for some x ∈K. Note that this yields νx ⊆ P ;
we show that, in fact, P = νx. We ask the reader to verify the following

Fact 4. If T be a topological space, K is a subset of T and x ∈ T , then, K ⊆ {x}
iff ∀ y ∈ K, νy ⊆ νx.

Let U ∈ P ; by Fact 1, U ∩ K 6= ∅ and so U ∈ νy, for some y ∈ K. But then,
Fact 4 yields U ∈ νx and so P ⊆ νx, as desired. �
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Exercises

12.13. Show that in a cBa B, F is a point iff F is a principal ultrafilter
generated by an atom in B. 2

12.14. Let L be a complete lattice. A pure state in L is a surjective [∧,
∨

]-
morphism from L to {⊥, >}. Let PS(L) be the set of pure states in L. For a ∈ L,
define

Wa = {f ∈ PS(L) : fa = >}.
Show that there is a natural bijective correspondence pt(L)

ω−→ PS(L), such that
ω(Pa) = Wa, for all a ∈ L. 2

12.15. Let X be an infinite set and let Cofin be the filter of cofinite subsets
in X. Prove that {∅} ∪ Cofin is a T1 topology on X, which is not sober. 2

12.16. Generalize Proposition 12.7 to sober spaces. 2

12.17. Let Top be the category of topological spaces and continuous maps
and Frame that of frames and their morphisms.

a) Show that we can consider Ω(∗) as a contravariant functor from Top to Frame,
while the operation of taking ‘points’, pt(∗), induces a contravariant functor from
Frame to Top.

b) Prove that Ω(∗) is left adjoint to pt(∗).
c) There is a duality (contravariant equivalence) between the category of sober
topological spaces and continuous mappings and that of frames with enough points
and frame morphisms. 2

12.18. Continuous lattices (2.43) have a natural topology (the Scott topology)
to be described below. This exercise consists of a proof that the Scott topology is
sober. Let L be a continuous lattice.

a) For each a ∈ L, set La = {x ∈ L : a � x}. Show that

La ∩ Lb = La∨b.

Thus, {La}a∈L is a basis for a topology, the Scott topology on L.

b) For all x ∈ L, x =
∨
{a ∈ L : x ∈ La}.

c) Show that the Scott topology is sober. 2
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CHAPTER 13

Constructive Quotients

In our discussion of quotients via frame congruences, we made use of arbi-
trary choices, at least in proving that the quotient constructed is complete and a
frame. We now present a constructive way of discussing quotients, similar to that
expounded in [15] and [34].

To introduce this point of view, let L
f−→ P be a surjective [∧,

∨
]-morphism

of complete lattices. By Corollary 7.9, there is a
∧

-morphism g : P −→ L such
that {

(i) f ◦ g = IdP (ii) ∀ p ∈ P , gp = max f−1(p).

(iii) g ◦ f ≥ IdL (iv) g ◦ f ◦ g = g.

These relations readily imply that f|g(P )
◦ g = IdP and g ◦ f|g(P )

= Idg(P ). Thus,

g(P ) is isomorphic to P , via f|g(P )
. Consider J : L −→ L, given by J = g ◦ f ;

then J has the following properties, for x, y ∈ L :{
∗ Jx ≥ x; ∗ J(x ∧ y) = Jx ∧ Jy;

∗ J ◦ J = J ; ∗ Jx = x iff x ∈ g(P ), i.e., g(P ) = Fix(J).

Since f|Fix(J)
is an isomorphism, we have obtained an isomorphic copy of P , as the

lattice of fixed points of a certain type of operator on L. The preceding observations
suggest the development that follows.

Definition 13.1. Let L be a complete lattice. A map L
J−→ L is a Q-

operator on L, if it satisfies, for all x, y ∈ L
[Q 1] : Jx ≥ x. [Q 2] : J(x ∧ y) = Jx ∧ Jy.

If J and K are Q-operators on L, write

J ≤ K iff for all x ∈ L, Jx ≤ Kx,

that is a partial order on the set of Q-operators on L.

An operator, J : L −→ L, is a projection or idempotent iff J ◦ J = J . A
nucleus on L is an idempotent Q-operator on L.

If L is a HA, an implicative operator on L (I-operator) is a nucleus, J ,
such that ∀ x, y ∈ L, J(x → y) = Jx → Jy.

Write J(L) for the set of nuclei on L. J(L) is a poset, with the pointwise order.

Note that IdL and the constant function > on L are, respectively, ⊥ and > in
the complete lattice J(L). We now state
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Theorem 13.2. Let L be a complete lattice and let L
g−→ L be a Q-operator

on L. Then

a) Fix(g) is a complete lattice with the partial order induced by L. Moreover, meets
in Fix(g) are the same as in L.

b) For x ∈ L, define Gx =
∧
{y ∈ Fix(g) : y ≥ x}. Then, G is a nucleus on L,

the least nucleus on L such that G ≥ g and Fix(g) = Fix(G).

c) G is a [∧,
∨

]-morphism of L onto Fix(g) = Fix(G). In particular, if g is a
nucleus, then g is a [∧,

∨
]-morphism from L to the complete lattice Fix(g).

d) If L is a frame, then Fix(g) is a frame.

Proof. a) Since g is increasing (by [Q 2]) and satisfies [Q 1], Theorem 7.5
guarantees that Fix(g) is a complete lattice with the po induced by L, as well as
that all meets in Fix(g) are the same as those computed in L.

b) It follows from the definition of G and the fact that
∧

coincides in L and in
Fix(g), that for all x ∈ L

Fix(g) ⊆ Fix(G) and Gx ∈ Fix(g).

If y ∈ Fix(g) ∩ x→, then y = gy ≥ gx, and so that Gx ≥ gx ≥ x, for all x ∈ L.
These inequalities entail that Fix(G) = Fix(g), as well as that G verifies [Q 1].

Clearly, G is increasing and, for q ∈ Fix(g) and x ∈ L, q ≥ Gx iff q ≥ x. But then,
G must be idempotent. Straightforward calculations, using the general associative
laws in Lemma 7.7 and the fact that g preserves ∧, show that G satisfies [Q 2].
Thus, G is a nucleus on L, such that G ≥ g and with the same complete lattice of
fixed points as g. Let J be a nucleus on L, such that J ≥ g and Fix(J) = Fix(g).
For x ∈ L, note that Gx and Jx are both fixed points of g, greater than or equal
to x. The definition of G immediately entails G ≤ J .

For the remainder of this proof, to keep notation straight, write
∨∗

for the
join operation in Fix(g).

c) Since G is idempotent, we have Im G = Fix(G) = Fix(g). By [Q 2], G preserves
finite meets. To verify that it preserves joins, it suffices to show that for S ⊆ L,
G(
∨
S) ≤

∨∗
s∈S Gs. Let q ∈ Fix(G) be such that q ≥ Gs, s ∈ S; [Q 1] yields

q ≥
∨
S (in L) and so Gq = q ≥ G(

∨
S), as needed.

d) For Fix(g) to be a frame, it must be shown that if S ∪ {x} ⊆ Fix(g), then

(*) x ∧
∨∗

S ≤
∨∗
s∈S (x ∧ s).

Since ≤ is that induced by L, (*) is equivalent to

(**)
∨∗

S ≤ x →
∨∗
s∈S (x ∧ s),

in L. Since x ∧ s ≤
∨∗
s∈S (x ∧ s), we get s ≤ x →

∨∗
s∈S (x ∧ s). So, (**) would

follow if x →
∨∗
s∈S (x ∧ s) were in Fix(g). We have :

Fact. z, y ∈ Fix(g) ⇒ (z → y) ∈ Fix(g).

Proof. [Q 2] and z ∧ (z → y) ≤ y entail gz ∧ g(z → y) ≤ gy, that is,

g(z → y) ≤ gz → gy = (z → y).

But then, [Q 1] implies that g(z → y) = z → y, completing the proof of the Fact
and of the Theorem. �
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The argument at the beginning of this Chapter yields

Corollary 13.3. Let f : L −→ P be a surjective [∧,
∨

]-morphism of complete
lattices. Then, there is a nucleus J on L such that f|Fix(J)

: Fix(J) −→ P is an

isomorphism, making the following diagram commutative :

P

L

?

- Fix(J)

�
�
�

�
�
�	

f

J

f|Fix(J)

Example 13.4. Quotients by principal filters and ideals give rise to frame
morphisms and so it is natural to ask who are the corresponding nuclei. If a is an
element of the complete lattice L, the reader can check that the nuclei associated
to the filter a→ and the ideal a← are, respectively,

µax = a → x and µax = a ∨ x. (x ∈ L)

If H is a frame and b ∈ Reg(H), then Db = {x ∈ H : ¬¬x ≥ b} is a
∨

-filter
(10.2). The nucleus associated to Db is B¬bx = (x→ ¬ b)→ ¬ b. When b = >, we
get the nucleus associated to the filter D of dense elements in H, B⊥x = ¬¬x.

In general, for any a ∈ H, the operator Ba = (x → a) → a yields a nucleus
on H, whose fixed points constitute a Boolean algebra. 2

Example 13.5. With notation as in Chapter 9, let R be a commutative ring
with identity. Let I(R) be the complete lattice of ideals in R. By Corollary 9.14.(a),
the map I 7→

√
I is a nucleus on I(R), whose set of fixed points is exactly Rad(R).

By Proposition 9.16, Rad(R) is a frame. To justify this special situation, we start
with

Fact. Let I, J1, . . . , Jn, {Kα : α ∈ A} be ideals in R. Then,

a) I(
∨n
k=1 Jk) =

∨n
k=1 IJk.

b) I
(∨

α∈A Kα

)
=
∨
α∈A IKα.

Proof. We shall employ the notions of sum and product of ideals in 9.2, keeping
in mind that

∨
and

∑
denote the same operation in I(R).

a) It is enough to check that I(J ∨ K) ⊆ IJ ∨ IK. The stated equality will then
follow for n = 2 and induction will finish the proof. If x ∈ I(J ∨ K), there are
a1, . . . , an in I, b1, . . . , bn in (I ∨ J), such that

x =
∑n
p=1 apbp.

For each p ≤ n, select cpq ∈ J and dpq ∈ K, 1 ≤ q ≤ m, such that

bp =
∑m
q=1 cpq + dpq.

Then,

x =
∑n
p=1 ap

∑m
q=1(cpq + dpq) +

∑n
p=1

∑m
q=1 apcpq + apdpq,
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verifying that x ∈ IJ ∨ IK. Item (b) is a straightforward consequence of (a),
since any element of the displayed joins must belong to the supremum of a finite
subcollection of ideals.

Write
∨∗

for the sup in Rad(R). Let I, {Jα : α ∈ A} be a radical ideals in R.
To verify that Rad(R) is a frame, we compute as follows, using the Fact above,
9.14.(c) and the preservation of joins by the operation

√
(it is a nucleus !) :

I ∩
∨∗

α∈A Jα = I ∩
√(∨

α∈A Jα
)

=
√
I
(∨

α∈A Jα
)

=
√(∨

α∈A IJα
)

=
∨∗

α∈A
√

(IJα) =
∨∗

α∈A (
√
I ∩
√
Jα)

=
∨∗

α∈A (I ∩ Jα),

as desired. The context of Quantales ([61]) provides a general framework for the
type of reasoning presented above. 2

If J is a nucleus on a complete lattice L, write LJ for complete lattice Fix(J),
calling it the quotient of L by J . Write J for the canonical [∧,

∨
]-morphism

from L onto LJ (abusing notation). One should keep in mind that LJ is contained
in L, with arbitrary meets coinciding with those in L. The proof of the next result
is left to the reader.

Proposition 13.6. Let L be a complete lattice. For µ ∈ J(L), the map

δ ∈ J(Lµ) 7−→ (δ ◦ µ) ∈ J(L)

L - Lµ - Lµ ⊆ L
µ δ

is a bijection between J(Lµ) and µ→ (in J(L)). The map γ = (δ ◦ µ)|Lδ◦µ , is a

lattice isomorphism, making the following diagram commutative :

Lµ

L

?

- Lδ◦µ

µ

δ ◦ µ

(Lµ)δ

γ

δ

?
-

The relation between frame congruences and nuclei is described in the following
Proposition, in reality a generalization of our treatment of

∨
-filters and of the

comments leading to the concept of Q-operator.

Proposition 13.7. Let H be a frame. For x, y ∈ H and J ∈ J(H), define

x RJ y iff Jx = Jy.

For R ∈ C(H) and x ∈ H, define

JRx =
∨
{y ∈ H : 〈x, y 〉 ∈ R}.

Then, RJ is a frame congruence on H, JR is a nucleus on H and the maps

J ∈ J(H) 7−→ RJ ∈ C(H) and R ∈ C(H) 7−→ JR ∈ J(H)
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are isomorphisms, inverse to one another. Moreover, these isomorphisms are uniquely
characterized by the relation

[cong] For all x, y ∈ H, y ≤ Jx iff 〈x ∧ y, y 〉 ∈ R.

Proof. If R ∈ C(H), then JRx = max x/R, is the largest element in the
class of x. In particular, JRx ≥ x and JR ◦ JR = JR. To verify [Q 2], suppose
z R (x ∧ y); then both (z ∨ x) R x and (z ∨ y) R y. Thus,

z ≤ (z ∨ x) ≤ JRx and z ≤ (z ∨ y) ≤ JRy,

that imply JR(x ∧ y) ≤ JRx ∧ JRy. In view of [Q 1], this is sufficient to assure
[Q 2] and that JR is a nucleus on H. Clearly, R 7→ JR is increasing and so a poset
morphism from C(H) to J(H).

Now let J be a nucleus on H. It is straightforward that RJ is a lattice con-
gruence on H; that it is a frame congruence, is a consequence of the fact that J is
a frame morphism from H onto HJ = Fix(J).

Let J , K ∈ J(H) with J ≤ K. If Jx = Jy then, x ≤ Jx = Jy yields

Kx ≤ K(Jx) = K(Jy) ≤ K(Ky) = Ky.

Similarly, Ky ≤ Kx, and so Ky = Kx and the map J 7→ RJ is increasing.

It is clear from the definitions that [cong] (in 13.7) holds and in fact, deter-
mines, the maps constructed above between C(H) and J(H). It follows easily from
[cong] that J = JRJ and R = RJR , showing that they are inverse isomorphisms. �

From Proposition 13.7 and Theorem 11.5 comes

Corollary 13.8. J(H) is a zero dimensional frame.

By duality, there is an analogous treatment of [∧,
∨

]-sublattices of a complete
lattice.

Definition 13.9. Let L be a complete lattice. A map L
j−→ L is a conucleus

if it satisfies, for all x, y ∈ L
[con 1] : jx ≤ x; [con 2] : j ◦ j = j; [con 3] : j(x ∧ y) = jx ∧ jy.

Exercises

13.10. Let H be a frame.

a) If F is a filter in H, show that the map JF : H −→ H, defined by JFx =
∨
x/F

is a Q-operator. Further, prove that if F is a
∨

-filter, then JF is an implicative
operator.

b) Show that if h : H −→ H is an I-operator on H, then there is a
∨

-filter F in
H such that h = JF .

c) Study the relation between ideals in H and Q-operators. 2

13.11. Let L be a complete lattice. If fi, i ∈ I, is a family of nuclei on L, then∧
fi, defined, for x ∈ L, by

(
∧
fi)x =

∧
i∈I fix,

is a nucleus on L. Conclude that J(L) is a complete lattice. 2
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13.12. Let H be a frame. Let a, b ∈ H and let J be a nucleus on H. Recall
that in J(H), ⊥ = IdH and that > is the constant function >. With the notation
of 13.4, prove the following relations in J(H) :

(1) µa ∨ µb = µa∧b and µa ∧ µb = µa∨b.

(2) µa ∨ µb = µa∨b and µa ∧ µb = µa∧b.

(3) µa ∨ J = µa ◦ J and µa ∨ J = J ◦ µa.

(4) µa ∧ µa = ⊥ and µa ∨ µa = >.

(5) µa ∨ Ba = Ba.

(6) µa ∨ Bb = Ba→b. 2

13.13. Using Definition 13.9 and the methods of this chapter, establish a
theory of [∧,

∨
]-sublattices of a complete lattice. Show that if we start with a

frame, then we obtain all its subframes as fixed points of a conucleus. 2
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CHAPTER 14

Regular Completions

We now turn to the discussion of how to obtain the completion of a Heyting
algebra. For distributive lattices in general, an example due to Crawley shows that
there are distributive lattices that cannot be regularly embedded in any complete
distributive lattice. The reader will find this example, together with other valuable
comments on this topic, in Chapter XII of [3], as well as in [21].

We shall focus mainly on Heyting and Boolean algebras. In the exercises at
the end of this chapter, we indicate an alternative route to our results, a construc-
tion which is a generalization of the Dedekind cuts used to obtain the reals from
the rationals. For general posets, this last construction, called the MacNeille
completion, regularly embeds any poset in a complete lattice. For Heyting and
Boolean algebras the outcomes of “completion by cuts” and that obtained as de-
tailed below are isomorphic.

Our first step is to identify certain types of ideals and filters in a distributive
lattice.

Definition 14.1. Let L be a distributive lattice.

a) An ideal I ⊆ L is complete iff for all S ⊆ L,

S ⊆ I and
∨
S exists in L ⇒

∨
S ∈ I.

Write cI(L) for the poset of complete ideals in L, partially ordered by inclusion.

b) A filter F ⊆ L is complete iff for all S ⊆ L,

S ⊆ F and
∧
S exists in L ⇒

∧
S ∈ F .

Write cF(L) for the poset of complete filters in L, partially ordered by inclusion.

Clearly, principal ideals and filters are complete. Moreover, the intersection
of any family of complete filters or ideals is again a complete filter or ideal. This
means, on the one hand, that the posets cF(L) and cI(L) are complete lattices;
on the other, it allows us to define the complete filter or ideal generated by
A ⊆ L : 

A∗ =
⋂
{F ∈ F(L) : A ⊆ F and F is a complete filter}

and

A∗ =
⋂
{I ∈ I(L): A ⊆ I and I is a complete ideal}

When A = {a} the above definitions just give back the principal filter/ideal gen-
erated by a. To simplify exposition, we shall write a∗ for a→ and a∗ shall stand for
a←. We shall be mainly interested in complete ideals, although our constructions
could be also carried out with complete filters.
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To increase our chances of prevailing over confusion, we use ∧ and
∨

for the
operations in the lattice L and ∩,

⋂
and

∨∗
for the lattice operations in cI(L).

The symbol
⋃

will always be used as set theoretic union.

In general, if Ik, k ∈ K, is a family of complete ideals, the ideal generated
by
⋃
Ik is not complete, even if the family is directed. Simple examples can be

found in the chain [0, 1]. Note also that principal ideals may not be compact in
cI(L). The next Lemma gives a useful description of joins in cI(L), when L is a
[∧,
∨

]-lattice (8.6).

Lemma 14.2. Let L be a [∧,
∨

]-lattice.

a) If Iα, α ∈ A, is a family of complete ideals in , then∨∗
Iα = {

∨ ⋃
α∈A Sα : Sα ⊆ Iα and

∨ ⋃
α∈A Sα exists in L}.

b) cI(L) is a frame.

Proof. a) Let K be the right-hand side of the stated equality. Clearly, any
complete ideal containing all the Iα has to contain K. Thus, it suffices to check
that K is a complete ideal. Suppose b ∈ K and c ≤ b; since b =

∨ ⋃
Sα, Sα ⊆ Iα,

the [∧,
∨

]-law yields

c = c ∧ b =
∨ ⋃

α∈A {c ∧ s : s ∈ Sα}
and so c ∈ K. If T ⊆ K then, for each t ∈ T ,

t =
∨ ⋃

α∈A Stα, with Stα ⊆ Iα.

Let Tα =
⋃
t∈T Stα; if

∨
T exists in L then

∨
T =

∨ ⋃
α∈A Tα, and so belongs to

K, showing that K is a complete ideal.

b) Let I, Jα, α ∈ A, be ideals in cI(L). It must be shown that

I ∩ (
∨∗

Jα) ⊆
∨∗

α∈A I ∩ Jα.

Let a ∈ I ∩ (
∨∗

Jα); by (a), there are Sα ⊆ Jα such that a =
∨ ⋃

α∈A Sα. Define

a ∧ Sα = {a ∧ s : s ∈ Sα};
then a ∧ Sα ⊆ Jα and a =

∨ ⋃
(a ∧ Sα). Then, item (a) yields a ∈

∨∗
α∈A I∩ Jα,

ending the proof. �

By 14.2 and 8.7.(b), H∗ = cI(H) is a frame, when H is a HA.

Lemma 14.3. Let L be a lattice.

a) The map (·)∗ : H −→ H∗, a 7→ a∗ is a lattice embedding of L into cI(L), that
is, an injection such that for all a, b ∈ L
∗ ⊥∗ = {⊥} and >∗ = H.

∗ (a ∨ b)∗ = a∗ ∨∗ b∗ and (a ∧ b)∗ = a∗ ∩ b∗.
b) For I ∈ cI(L), I =

∨∗
a∈I a∗; hence, {a∗}a∈H is a basis for H∗.

c) If L is a Heyting algebra, then a 7→ a∗ is a HA-morphism.

Proof. Items (a), (b) and (c) are straightforward, while (c) follows immedi-
ately from Corollary 8.15. �
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Theorem 14.4. Let H be a HA. Notation as above, the diagram H
∗−→ H∗

has the following properties :

(1) The image of ∗ is a basis for H∗;

(2) ∗ is a regular embedding of H into H∗.

(3) If D is a frame and H
f−→ D is a [∧,

∨
]-morphism, there is a unique [∧,

∨
]-

morphism f∗, such that f∗ ◦ ∗ = f .

(Extension Property)

D

H

?

- H∗
�

�
�
�

�
�	

f

∗

f∗

Hence, if Ω is a frame and H
h−→ Ω satisfies conditions (1) and (2), then there is

a frame isomorphism h∗ from H∗ to Ω.

Proof. That ∗ is an embedding whose image is a basis for cI(H) follows
from 14.3. To show that ∗ is regular, let S ⊆ H and suppose

∧
S = b exists in H.

Clearly, b∗ ⊆
⋂
s∈S s∗. Now, assume that I ∈ H∗ is such that I ⊆ s∗, s ∈ S. Then,

a ≤ s, for all a ∈ I and so a ∈ b∗. Hence, b∗ =
⋂
s∈S s∗, and ∗ preserves all meets

in H. For joins, note that if b =
∨
S in H, then, since

∨∗
s∈S s∗ is complete, we

have b∗ ∈
∨∗

s∗ (14.2.(a)). Hence,
∨∗

s∈S s∗ = b∗ = (
∨
S)∗, as needed.

To verify the extension property in (3), fix a [∧,
∨

]-morphism, f : H −→ D,
with D a frame. The uniqueness of a [∧,

∨
]-morphism g such that g ◦ ∗ = f follows

immediately from the preservation of joins and the fact that the image of ∗ is a
basis for H∗. To prove existence, define, for x ∈ H∗,

f∗(x) = supD {fa : a∗ ≤ x}.
Clearly, f∗(a∗) = fa, for a ∈ H, i.e., f∗ ◦ ∗ = f . Since f∗ is increasing, to prove it
preserves ∧, it suffices to show that f∗(x ∧ y) ≥ f∗x ∧ f∗y. Corollary 8.4 yields

f∗(x) ∧ f∗(y) = (
∨
{fa : a∗ ⊆ x}) ∧ (

∨
{fb : b∗ ⊆ y}

=
∨
{f(a ∧ b) : a∗ ⊆ x and b∗ ⊆ y} ≤ f∗(x ∧ y).

To check that f∗ preserves
∨

, let {Jα}α∈A ⊆ H∗ and I =
∨∗

Jα in H∗. Again,
since f∗ is increasing, it suffices to verify f∗I ⊆ supD f∗(Iα). For a∗ ⊆ I, there is,
by 14.2.(a), Sα ⊆ Jα such that a =

∨ ⋃
α∈A Sα. Since f is a [∧,

∨
]-morphism, we

get

fa = supD {f(s) : s ∈
⋃
Sα} ≤ supD f∗(Jα). (I)

By definition, f∗I = supD {fa : a∗ ⊆ I}; since (I) holds for all a∗ ⊆ I, it follows
that f∗(I) ≤ supD f∗(Jα), as needed. It is straightforward to show that (1) and
(2) determine H∗, up to isomorphism. �
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The frame H∗ is called the completion of H. All we will ever need to know

about H∗ are the properties of the diagram H
∗−→ H∗ in Theorem 14.4.

Example 14.5. The statement of 14.4 is best possible : we cannot hope to
get a complete extension to H∗ of a complete morphism H −→ D. Indeed, let H
= [−1, 0) ∪ (0, 1] ⊆ R, with its natural order. It is easily established that

H∗ = [−1, 1] = H ∪ {0}.
Let D = [0, 1] ∪ [2, 3]; define H

f−→D as the gluing of two linear, strictly increasing
maps, one from [−1, 0) onto [0, 1), and the other from (0, 1] onto (2, 3]. Note that
f is a regular embedding of H into D; f has only two extensions to H∗ : one taking
0 to 1 and the other, mapping 0 to 2. The only one that is a [∧,

∨
]-morphism is

the former, but it does not preserve infinite meets. 2

For Boolean algebras, Theorem 14.4 yields

Corollary 14.6. If B is a Boolean algebra, then the frame B∗ is a cBa and
we have

(1) B
∗−→ B∗ is a regular embedding.

(2) The image of ∗ is a basis for B∗.

(3) If A is a cBa and B
f−→ A is a [∧,

∨
]-morphism, there is a unique complete

morphism, B∗
f∗−→ A, such that f∗ ◦ ∗ = f .

Moreover, if A is a cBa and B
h−→ A is a diagram satisfying (1) and (2), then

there is a unique isomorphism h∗, from B∗ onto A, such that h∗ ◦ ∗ = h.

Remark 14.7. One may ask if “BA-morphism” may be substituted for
“[∧,

∨
]-morphism” in item (3) of Corollary 14.6. The answer is no. To explain

what is involved, we succinctly comment on free objects in categories of algebras.
For more details, consult [34] (Chapter I.4) or [3], particularly Chapters I and V.

Let L be a first order language with equality, but possessing no relation symbols
other than equality; let τ be the type of L. A model for L is called an algebra
of type τ . The concept of morphism is clear : a map between two algebras of the
same type that preserve all the operations in L. Clearly, the identity mapping is
a morphism and composition of morphisms – defined as the usual composition of
maps –, is a morphism. We have a category, Algτ , of algebras of type τ . It is clear
that Algτ has products for any family of objects.

Definition 14.8. Let K be a class of algebras in Algτ and S a set. An algebra

F is the free algebra generated by S over K if there is a map S
f−→ F , such that

for all algebras B in K and all maps S
g−→ B, there is a unique morphism in

Algτ , F
h−→ B, such that h ◦ f = g.
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B

S

?

- F

�
�
�

�
�
�	

h

f

g

An algebra is free over K if it is the algebra freely generated by some set over K.

A class K inAlgτ is an an equational class iff K is closed under the following
operations :

(i) Taking isomorphic copies of homomorphic images of members of K;

(ii) Taking isomorphic copies of subalgebras of members of K;

(iii) Taking isomorphic copies of direct products of members of K.

K is trivial if it consists of the one element algebras of Algτ .

The classes of lattices, distributive lattices, Heyting and Boolean algebras,
groups, rings, etc., are all non-trivial equational classes (but not all of the same
type). There is an important result of G. Birkhoff guaranteeing that a class of
algebras in Algτ is equational iff it consists of all models of the universal closure
of a set of atomic formulas in L. For equational classes we can state

Theorem A. (Thm. I.12.4, [3]) Let K be a non-trivial equational class. Then, for
each set S, the free algebra generated by S over K exists and belongs to K.

Theorem A guarantees the existence of free objects in any of the categories
(lattices, HAs, BAs, etc.) mentioned above.

The free BA or the free HA on a set S is a familiar object : they are the algebras
of propositions, constructed by taking S as the set of atomic propositions, under
the equivalence relation “provably equivalent” from the axioms of the Classical or
the Heyting Propositional Calculus.

In contrast to Theorem A, we have (see [34] or [72])

Theorem B. (Gaifmann; Hales; Solovay) There is no free complete Boolean
algebra on a countable number of generators.

Consequently, there is no cBa BN and a map N g−→ BN, such that for all cBas

D and functions N f−→ D, there is a unique complete morphism BN
h−→ D,

satisfying h ◦ g = f .

We now see that “[∧,
∨

]-morphism” cannot be substituted by “BA-morphism”
in Corollary 14.6.(3). If it were possible, then the completion of the free BA gen-
erated by N would be the free cBa generated by N, contradicting Theorem B.

It is possible, however, to extend BA-morphisms with values in a complete
Boolean algebra. This result is important and its precise formulation will appear
in the next Chapter. 2
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For frames and their morphisms, the situation is quite distinct from that de-
scribed by Theorem B in 14.7, as shown by Theorem 14.9 below, due to Benabou.

If X is a set, the family of finite subsets of X, Fin(X), is a poset under
inclusion, in fact a lattice with ⊥ but without > (unless X is finite). Write ΩX for
the frame of opens of the U-topology of 8.3 on Fin(X). We have

Theorem 14.9. Notation as above, let X
ι−→ ΩX be given by ι(x) = {x}→.

Then, for all frames L and maps g : X −→ L, there is a unique frame morphism,
ĝ : ΩX −→ L, making the following diagram commutative :

X - ΩX

g ĝ

L

ι

A
A
A
A
A
AU

�
�
�
�
�
��

Hence, ΩX is the free frame generated by X.

Proof. Write
∧

, ∧,
∨

, ∨ for meets and joins in L. If α ∈ Fin(X), then

α→ =
⋂
x∈α {x}→ =

⋂
x∈α ι(x).

We define

(*) ĝ(α→) =
∧
x∈α gx.

Note that for x ∈ X, (*) yields ĝ(ι(x)) = gx, and the displayed diagram in the
statement is commutative. If α, β ∈ Fin(X), then

α→ ∩ β→ = (α ∪ β)→,

and so

(**)

ĝ(α→ ∩ β→) = ĝ((α ∪ β)→) =
∧
x∈(α∪β) ι(x)

=
∧
x∈α ι(x) ∧

∧
y∈β ι(y)

= ĝ(α→) ∧ ĝ(β→).
It follows immediately from (**) that

(***) α→ ⊆ β→ ⇒ ĝ(α→) ≤ ĝ(β→).

To extend ĝ to U ∈ ΩX , write U =
⋃
i∈I α

→
i and set

ĝ(U) =
∨
i∈I ĝ(α→i ).

To see that ĝ is well defined, first note that if β→ ⊆ U , then the supercom-
pactness of β→ (8.3.(ii)) entails the existence of i ∈ I such that β→ ⊆ α→i . Hence,
(***) yields

ĝ(β→) ≤ ĝ(α→i ) ≤ ĝ(U).

It now straightforward that if U =
⋃
j∈J β

→
j , then∨

i∈I ĝ(α→i ) =
∨
j∈J ĝ(β→j ),

and ĝ is indeed well defined. If U =
⋃
α∈S α

→ and V =
⋃
β∈T β

→, with S, T ⊆
Fin(X), then 8.4, applied in ΩX , yields
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U ∩ V =
⋃
〈α,β〉∈S×T α→ ∩ β→.

But then from (**) and 8.4 in L we get

ĝ(U ∩ V ) =
∨
〈α,β〉∈S×T ĝ(α→ ∩ β→) =

∨
〈α,β〉∈S×T ĝ(α→) ∧ ĝ(β→)

= ĝ(U) ∧ ĝ(V ),

showing that ĝ preserves finite meets. The preservation of arbitrary joins is straight-
forward. Uniqueness is clear from the construction. �

Exercises

14.10. Let H be a HA and D be the filter of dense elements in H. Notation
as in 14.4 and 10.5, let H∗ be the completion of H and write D∗ for the filter of
dense elements in H∗.

a) There is a unique injective BA-morphism, ∗ : H/D −→ H∗/D∗, making the
following diagram commutative :

H/D

H

?

- H∗

πD

∗

H∗/D∗

πD∗

∗
?

-

b) H∗/D∗ is the completion of H/D 1. 2

The exercises that follow describe the MacNeille completion and its relation
to the completions we have presented above. A slightly different account of this
same construction, using closure operators, can be found in section 2 of Chapter
XII of [3], under the name of normal completion.

14.11. Let (P,≤) be a poset. All notation is as in Definition 2.6 and the
comments right after it.

A cut in P is a pair of subsets of P , (A,B) such that A ⊆ B← and B ⊆ A→.
Every element x of P gives rise to a cut, c(x) = (x←, x→). Let cP be the set of all
cuts in P , partially ordered by

(A,B) ≤ (C,D) iff A ⊆ C (or equivalently, iff D ⊆ B).

We denote by c : P −→ cP the map x 7→ c(x).

a) A cut (A,B) is equal to c(x), for some x ∈ P , iff A ∩ B 6= ∅.
b) cP is a complete lattice and c is a regular embedding of P in cP . 2

14.12. Notation as in 14.11, assume that P is lattice.

a) If (A,B) is a cut in P , then A is an ideal and B a filter in P .

b) If P is a HA (BA), then cP is a frame (resp., cBa), isomorphic to the completion
P∗ of Theorem 14.4 (resp., Corollary 14.6). 2

1In the notation of 14.6, H∗/D∗ = (H/D)∗.
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Extension of Morphisms

We prove here that BA-morphisms with values in a complete Boolean algebra
can be extended to BAs containing its domain, an important result due to S.
Sikorski.

If B is a BA, it is readily verified that the intersection of any family of subal-
gebras of B is again a subalgebra of B. Thus, if S is a subset of B, we can define
the subalgebra generated by S in B, as

[S] =
⋂
{B′ : B′ is a subalgebra of B and S ⊆ B′}.

Recall that for a, b in B, a 4 b (the symmetric difference of a and b) is defined
in 5.5 as

a 4 b = (a ∧ ¬ b) ∨ (b ∧ ¬ a).

Lemma 15.1. Let B be a BA, B′ a subalgebra of B and m an element of B.
Then

a) The subalgebra H generated by B′ and m is given by

H = {(a ∧ m) ∨ (b ∧ ¬m): a, b ∈ B′}.
b) For all x, y, t, z in B′, the following are equivalent :

i) x ∧ m = t ∧ m and y ∧ ¬m = t ∧ ¬m.

ii) (x ∧ m) ∨ (y ∧ ¬m) = (t ∧ m) ∨ (z ∧ ¬m).

iii) x 4 t ≤ ¬m and y 4 z ≤ m.

Proof. a) It is straightforward to show that the left hand side of the equation
is a subalgebra of B, and so it must the least one containing B′ and m.

b) It is immediate that (i) implies (ii), while taking the intersection of the equalities
in (ii) with m and ¬m yields (ii).

(i) ⇒ (iii) : The first equation in (i) yields x ∧ m ∧ ¬ t = ⊥, and so x ∧ ¬ t ≤
¬m. Similarly, t ∧ ¬x ≤ ¬m, and x 4 t ≤ ¬m. The other inequality stated in
(iii) is proven similarly.

(iii) ⇒ (i) : From x 4 t ≤ ¬m we get

x ∧ ¬ t ∧ m = t ∧ ¬x ∧ m = ⊥.

Thus, x ∧ m ≤ t and t ∧ m ≤ x. But then, x ∧ m = t ∧ m. The remaining equality
in (i) is obtained analogously. �
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With these preliminaries we have

Theorem 15.2. Let B be a BA and let B′ a subalgebra of B. If B is a cBa,
any BA-morphism from B′ to B can be extended to a BA-morphism from B to B.

Proof. We may assume that B′ is a proper subalgebra of B. We also fix a
BA-morphism f from B′ to B. As a first step, we prove

Fact. For m ∈ B, let H the BA generated in B by B′ and m. Then f can be
extended to a BA morphism from H to B.

Proof. Let S = m← ∩ B′ and T = m→ ∩ B′; clearly every element of S is less
than or equal to any element of T . Since f is increasing and B is complete, we
conclude that ∨

f(S) ≤
∧
f(T ).

Let w be any element of B such that
∨
f(S) ≤ w ≤

∧
f(T ). Using Lemma 15.1(a),

define g : H −→ B, by

g([a ∧ m] ∨ [b ∧ ¬m]) = (fa ∧ w) ∨ (fb ∧ ¬w),

where a, b ∈ B′. It must be shown that g is well defined; if x, y, t, z are elements
of B′ such that

(x ∧ m) ∨ (y ∧ ¬m) = (t ∧ m) ∨ (z ∧ ¬m),

then by 15.1.(b) we have (x 4 t) ≤ ¬m and (y 4 z) ≤ m. Thus, (y 4 z) ∈ S and
¬ (x 4 t) ∈ T . Hence, since f is a BA morphism, we get

f(y 4 z) = fy 4 fz ≤ w and w ≤ f(¬ (x 4 t)) = ¬ f(x 4 t),

that is, fx 4 ft ≤ ¬w. But these are exactly the conditions needed to have

(fx ∧ w) ∨ (fy ∧ ¬w) = (ft ∧ w) ∨ (fz ∧ ¬w),

and g is well defined. Clearly, g is a BA morphism and the Fact is proven.

Consider

V = {H g−→ B :
H a subalgebra of B, B′ ⊆ H,

g is a BA-morphism and g|B′ = f ,

}
partially ordered by “extension”, i.e., g ≤ h iff dom g ⊆ dom h and h|domg = g. V

satisfies the conditions of Zorn’s Lemma (2.20), and has a maximal element g. To
end the proof, note that if dom g where a proper subalgebra of B, then the Fact
would provide a proper extension of g, contradicting its maximality. �

Theorem 15.2 is analogous to many other extension results, like the Hahn-
Banach Theorem in Functional Analysis. In fact, there are significant relations
between these results. We refer the interested reader to [8] and [18].

Corollary 15.3. A complete Boolean algebra B satisfies the following uni-
versal properties :

[BA− inj] Let B′
f−→ B be a BA monomorphism. Then, for any BA-morphism

B′
h−→ B, there is a BA-morphism B

g−→ B, such that g ◦ f = h.
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[HA− inj] Let H and H ′ be Heyting algebras and H ′
f−→ H be a HA-

monomorphism. Then, for any HA-morphism H ′
h−→ B, there is a

HA-morphism H
g−→ B, such that g ◦ f = h.

B

H ′

?

- H

�
�
�

�
�
�	

h

f

g

Proof. Property [BA − inj] follows immediately from Theorem 15.2. For
the Heyting algebra case, let D and D′ be the filter of dense elements in H and H ′,
respectively; by 6.21, f induces an injective BA-morphism from H ′/D′ to H/D,
while h induces a BA-morphism from H ′/D′ to B. By [BA−inj], the map induced
by h can be extended to H/D; the required HA-morphism g is the composition of
this extension with the quotient map H −→ H/D. �

With 15.3 we can generalize, in one direction, 14.6.(3) :

Corollary 15.4. Let B be a BA and B
∗−→ B∗ be the completion of B. If

B is a cBa and B
f−→ B is a BA morphism, then there exists a BA morphism,

f∗ : B∗ −→ B, such that f∗ ◦ ∗ = f . Moreover, if f is a monomorphism, the same
is true of f∗.

Proof. The only statement still to verify is that f∗ is monic if f is monic.
Let c 6= d ∈ B∗; the injectivity of f∗ equivalent to f∗(c 4 d) 6= ⊥. Since B is a
basis for B∗, there is a 6= ⊥ in B such that ⊥ < a∗ ≤ c 4 d. But then, from

f∗(c) 4 f∗(d) = f∗(c 4 d) ≥ f∗(a∗) = fa,

and the injectivity of f , it is clear that f∗(c 4 d) 6= ⊥, as needed. �

In the language of Category Theory (see 16.5), Corollary 15.3 tells us that
complete Boolean algebras are injective objects both in the category of Boolean
algebras and in the category of Heyting algebras. The converse of these statements
is also true (see Exercise 15.5). Corollary 15.4 guarantees that the completion of
a BA B is the injective hull of B, that is, a minimal injective object containing
B, as set down in item (d) of Definition 16.36.

Exercises

15.5. Prove that a BA (HA) is injective in the category of BAs (resp., HAs)
iff it is a complete Boolean algebra. The definition of injective is “satisfies the
universal properties [BA− inj] and [HA− inj]” in the statement of 15.3. 2
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CHAPTER 16

Categorical Constructions

In this chapter we collect most of the language of Category Theory used in
the text. It is not a substitute for the reading of [44] or [53], but is included as
a convenient reference for the reader. Many of the basic constructions are also
described in chapter I of [3].

1. Categories and Morphisms

Definition 16.1. A category A is a pair 〈Ob(A), M(A) 〉 where Ob(A) is
a class, whose elements are the objects of A and M(A) is a class, which is a
disjoint union (1.5)

M(A) =
∐

(A,B)∈Ob(A) [A,B]A,

where [A,B]A is a (possibly empty) set, called the set of morphisms from A to
B in A. Whenever A is clear from context, we write [A,B] in place of [A,B]A.
Moreover, for each triple of objects of A, 〈A,B,C 〉, we have a map

[A,B] × [B,C] −→ [A,C], 〈 f, g 〉 7→ g ◦ f ,

called composition, which satisfies the following conditions :

[◦ 1] : Composition, whenever defined, is associative.

[◦ 2] : For A ∈ Ob(A), there is IdA in [A,A], such that for B ∈ Ob(A), f ∈ [A,B]
and g ∈ [B,A],

f ◦ IdA = f and IdA ◦ g = g.

The morphism IdA is unique, being called the identity of the object A. If f ∈ [A,B],
we say that A is the domain of f (domf = A) and that B is the codomain of f
(codomf = B). We use standard functional notation for morphisms. Hence,

f : A −→ B, A
f−→ B,

are synonymous with f ∈ [A,B].

A category is small if the class of its objects is a set; it is said to be set based
if all its objects are sets and all its morphisms are set-theoretical maps.

Definition 16.2. Let A, B be categories. B is a subcategory of A iff{
Ob(B) ⊆ Ob(A) and

∀ A, B ∈ Ob(B), [A,B]B ⊆ [A,B]A.

B is a full subcategory of A if [A,B]B = [A,B]A, for all A, B in Ob(B).
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Remark 16.3. Here is a list of categories, some of which we have already
mentioned, that will be of standard use :

∗ Set, the category of sets and mappings;

∗ Po, the category of partially ordered sets and increasing maps;

∗ L, the category of lattices and lattice morphisms;

∗ D, the category of distributive lattices and lattice morphisms;

∗ HA, the category of Heyting algebras and HA-morphisms;

∗ BA, the category of Boolean algebras and BA-morphisms;

∗ Frame, the category of frames and frame morphisms;

∗ cBa, the category of cBas, with complete morphisms;

∗ Framep, the category of frames with enough points and frame morphisms;

∗ Top, the category of Topological spaces and continuous maps;

∗ Htop, the category of Hausdorff spaces and continuous maps;

∗ CTop, the category of compact Hausdorff spaces and continuous maps;

∗ Sob, the category of sober spaces and continuous maps.

∗ Algτ , the category of algebras of type τ (see 14.7). 2

Example 16.4. Let 〈P,≤〉 be a poset. We construct a category, also written
P , by setting Ob(P ) = P and for x, y ∈ P ,

[x, y] =

{
{〈x, y 〉} if x ≤ y

∅ otherwise

Composition is clear: if x ≤ y ≤ z, 〈 y, z 〉 ◦ 〈x, y 〉 = 〈x, z 〉. Clearly, 〈x, x 〉 = Idx,
for all x ∈ P . Hence, every poset has a natural structure of category. 2

Example 16.5. To every category A corresponds a dual category, written
Aop, defined as follows :

∗ Ob(Aop) = Ob(A); ∗ For A, B ∈ Ob(A), [A,B]Aop = [B,A]A.

Clearly, (Aop)op = A. Thus, all theorems about categories embodies two results: if
a statement S holds in A, then its dual holds in Aop. Moreover, if the hypothesis
used to prove S, also hold in Aop, then its dual is true in A = (Aop)op. 2

Example 16.6. Let A be a category and let A be an object in A. We define
two categories, AA and AA, as follows :

[AA 1] : The objects of AA are morphisms in A, f : A −→ B, with B ∈ Ob(A);

[AA 2] : If I = (A
f−→ B) and J = (A

g−→ C) are objects in AA, then a morphism

in AA, I
h−→ J , is a morphism h ∈ [B,C]A, such that h ◦ f = g.

A - B

g h

C

f

A
A
A
A
AU

�
�
�
�
��

B - C

β γ

A

η

A
A
A
A
AU

�
�
�
�
��
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[AA 1] : The objects of AA are morphisms in A, f : B −→ A, with B ∈ Ob(A);

[AA 2] : If I = (B
β−→ A) and J = (C

γ−→ A) are objects in AA, then a morphism

in AA, I
η−→ J , is a morphism η ∈ [B,C]A such that γ ◦ η = β.

We refer to AA as the category of A-algebras in A, while AA is the category of
A-bundles over A. 2

Definition 16.7. Let A and B be categories. The product of A and B,
written A × B, is the category defined as follows :

∗ Ob(A × B) = Ob(A) × Ob(B);

∗ If I = 〈A,B 〉, J = 〈C,D 〉 are objects in A × B, then

[I, J ]A×B = [A,C] × [B,D].

Clearly, this definition can be generalized to any number of components.

Definition 16.8. Let f ∈ [A,B] be a morphism in a category A.

a) f is a monomorphism (or a monic) in A if for all morphisms α, β in A,
satisfying codom α = codom β = A, we have

f ◦ α = f ◦ β implies α = β.

b) f is an epimorphism (or an epic) in A if for all morphisms α, β in A,
satisfying dom α = dom β = B, we have

α ◦ f = β ◦ f implies α = β.

Hence, f is a monic in A iff f is an epic in Aop.

c) f is a retraction if there is B
g−→ A, such that f ◦ g = IdB.

d) f is a coretraction if there is B
g−→ A such that g ◦ f = IdA. In this case,

we say that A is a retract of B.

e) f is an isomorphism if it is both a retraction and a coretraction.

It is frequent to refer to a monic A
f−→ B, as a subobject of B. A category

is locally small if for all objects A in A, there is a set S of subobjects of A, such
that, every subobject of A in A is isomorphic, in AA (see 16.6), to one in S.

Definition 16.9. Let A be a category. An object A in A is an initial (final)
object if for all B ∈ Ob(A), [A,B] (resp., [B,A]) is a singleton. Clearly, initial
and final objects are unique, up to isomorphism. Write > and ⊥, respectively, for
the final and initial objects in A, whenever they exist.

A is a category with zero, if it has an object, written 0, which is both initial
and final.

Example 16.10. In the category Set, ∅ is the initial object, while {∅} (or
any other singleton) is the final object. The category Gr of groups has a zero, the
group whose only element is the identity. 2

2. Functors and Natural Transformations

Definition 16.11. Let A, B be categories. A (covariant) functor, A F−→ B,
is a rule that associates

∗ To each object A in A, an object F (A) in B;
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∗ To each morphism f ∈ [A,B]A, a morphism F (f) ∈ [F (A), F (B)]B, such that

(1) F (IdA) = IdF (A); (2) F (f ◦ g) = F (f) ◦ F (g),

where A ∈ Ob(A) and f , g are morphisms with codom g = dom f . Notice that for
all A, B ∈ Ob(A), F induces a map

[A,B]A −→ [F (A), F (B)]B, f 7→ F (f).

F is faithful if this map is injective and full if it is onto.

A contravariant functor, G : A −→ B, is a functor from Aop to B.
If F : A −→ B and G : B −→ C are functors, their composition is a functor,
(G ◦ F ) : A −→ C, given by

∗ If A ∈ Ob(A), (G ◦ F )(A) = G(F (A));

∗ If A
f−→ B is a morphism in A, (G ◦ F )(f) = G(F (f)).

Example 16.12. If A is a category, IdA for the identity functor from A to
A, i.e., the functor that associates every object and morphism in A to itself. 2

Example 16.13. If A is a set based category, the forgetful functor from A
to Set is the functor that associates to every object in A its underlying set and
to each morphism in A its underlying map. In general, if A and B are categories,
and A has “richer” structure than B, there is a forgetful functor from A to B,
which forgets the richer structure in A. As examples, we mention:

(1) LetL be the category of lattices and Po be the category of posets. The forgetful
functor from L to Po associates to each lattice its underlying poset and to each
lattice morphism the same map considered just as an increasing function.

(2) The forgetful functor from the category D, of distributive lattices, to the
category L.

(3) The forgetful functor from the category of BAs, BA, to the category of HAs,
HA, associates to each BA its underlying HA structure (x → y = ¬x ∨ y) and
to each BA-morphism the corresponding map as a HA-morphism. 2

Example 16.14. Let A be a category. An object A in A determines two
functors from A to Set, hA and hA, defined as follows :

[hA 1] : For each B ∈ Ob(A), hA(B) = [A,B], the set of morphisms
from A to B in A.

[hA 2] : For a morphism B
g−→ C in A, hA(g) : [A, B] −→ [A, C] is given by

f 7−→ g ◦ f .

A - B

g ◦ f g

C

f

A
A
A
A
A
AU

�
�
�
�
�
��

B - C

f ◦ g f

A

g

A
A
A
A
A
AU

�
�
�
�
�
��

F. Miraglia. An Introduction to Partially Ordered Structures and Sheaves. Lógica no Avião.



Chapter 16. Categorical Constructions 147

[hA 1] : For each B ∈ Ob(A), hA(B) = [B,A], the set of morphisms from B to A
in A.

[hA 2] : For a morphism B
g−→ C in A, hA(g) : [C, A] −→ [B, A] is given by

f 7→ f ◦ g.

Note that hA is covariant, while hA is contravariant. These functors are called the
morphism functors with parameter A. 2

Remark 16.15. Let A, B and C be categories. A functor from A × B to C
is usually called a bifunctor; it can have distinct variances in each coordinate.
For example, it might be covariant in the first and contravariant in the second.
Actually, all possible combinations can occur.

Note that if F : A −→ B and G : C −→ D are functors, then we have a
bifunctor,

T ≡ F × G : A × B −→ C × D,

which on objects is given by T (A, B) = 〈F (A), G(B) 〉, and on morphisms is
defined by T (f , g) = 〈F (f), G(g) 〉. Clearly, these observations can be generalized
to any number of components. 2

Example 16.16. Let F : A −→ B and G : B −→ A be functors of the same
variance. We shall assume, without loss of generality, that they are both covariant.
These functors give rise to bifunctors

Fh, hG : Aop × B −→ Set,

defined as follows :

∗ For A ∈ Ob(A) and B ∈ Ob(B),{
Fh(A,B) = [F (A), B]B

hG(A,B) = [A, G(B)]A.

∗ For a morphism 〈 f, g 〉 : 〈A,B 〉 −→ 〈C,D 〉 in Aop × B,{
Fh(f, g) : [F (A), B] −→ [F (C), D], given by h 7→ g ◦ h ◦ F (f).

hG(f, g) : [A,G(B)] −→ [C,G(D)], given by h 7→ G(g) ◦ h ◦ f.

F (C)

F (A)

6

- B

F (f)

h

D

g

Fh(f, g)

?
- C

A

6

- G(B)

f

h

G(D)

G(g)

hG(f, g)

?
-

We shall return to this example when we discuss adjointness. 2

Morphisms of functors are called natural transformations :
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Definition 16.17. Let F , G : A −→ B be functors, of the same variance 1.
A natural transformation, η : F −→ G, is a family of morphisms in B,

η = {ηA ∈ [F (A), G(A)] : A ∈ Ob(A)},
such that if A

f−→ B is a morphism in A, the following diagram is commutative :

G(B)

F (A)

?

- G(A)

F (f)

ηA

F (B)

G(f)

ηB

?
- G(A)

F (B)

?

- G(B)

F (f)

ηB

F (A)

G(f)

ηA

?
-

where the diagram on the right is for the case in which F and G are contravariant.
When ηA is an isomorphism for each A ∈ Ob(A), η is said to be a natural

equivalence. Natural transformations can be composed, as follows : if F
η−→ G

and G
µ−→ T are natural transformations, then π : F −→ T , given by

π = {µA ◦ ηA : A ∈ Ob(A)},
is the composition µ ◦ η. Write [F,G] for the class of natural transformations from
F to G.

Definition 16.18. Let A be a category. A covariant functor F : A −→ Set
is representable if there is A ∈ Ob(A) such that F is naturally equivalent to hA.

A fundamental result concerning representable functors is :

Theorem 16.19. (The Yoneda Lemma) Let F : A −→ Set be a functor,
where A is a category. Then,

a) For any object A in A, there is a bijection

ηA,F : [hA, F ] −→ F (A), ηAF (η) = ηA(IdA),

which is natural in F and A.

b) If A and B are objects in A, the function

ηA,C : [hA, hC ] −→ [C,A], θA,C(η) = ηA(IdA),

is a bijection, which is natural in both A and C.

For a proof, see Lemma in pg. 61 of [44] or Lemma 2.1 and Corollary 2.2, pg.
97ff, in [53].

3. Adjoint functors and Equivalence of Categories

Definition 16.20. Notation as 16.16, two functors A F−→ B and B G−→ A are
an adjoint pair, (F,G), if there is a natural equivalence of set-valued bifunctors,
η : Fh −→ hG. Thus, for each object 〈A,B 〉 ∈ Ob(Aop × B), we have a natural
bijective correspondence

1I.e., both covariant or both contravariant.
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ηAB : [F (A), B] −→ [A, G(B)].

We say that F is left adjoint to G and G is right adjoint to F .

Example 16.21. Notation as in 14.7, let K be an equational class in Algτ ,
considered as a category whose morphisms are the maps preserving the operations
in τ . Let G : K −→ Set be the forgetful functor. For each set S, let F (S) be the
free algebra in K, generated by S (see Theorem A in 14.7) and let ιS : S −→ F (S)
be the canonical injection. We make F into a functor from Set to K, by stipulating

its value on set-theoretical maps, S
f−→ T , as follows :

F (f) is the unique morphism in K such that
ιT ◦ F = F (f) ◦ ιS .

T

S

?

- F (S)

f

ιS

F (T )

F (f)

ιT

?
-

The universal property of free objects guarantees the existence and uniqueness of
F (f). We now sketch a proof that F is left adjoint to G. If S is a set and A is an
algebra in K, define

ηSA : [F (S), A] −→ [S, G(A)] by h 7→ h ◦ ιS ,

where this last composition is a map in Set. The universal property of free objects
implies that ηSA is a bijection. Clearly, η = {ηSA} is a natural transformation,
and so the free algebra construction is left adjoint to the forgetful functor from K
to Set. 2

We shall later state the Adjoint Functor Theorem (16.35), giving a necessary
and sufficient condition for a functor to have a left adjoint. But 16.21 can be
profitably generalized :

Theorem 16.22. Let B G−→ A be a covariant functor. The following are
equivalent :

(1) G has a left adjoint.

(2) For all A ∈ Ob(A), there is F (A) in Ob(B) and a morphism ιA : A −→ G(F (A))
in A, satisfying the following property :

For all B ∈ Ob(B) and morphisms A
f−→ G(B) in A, there is a unique

morphism f∗ : F (A) −→ B in B, making the following diagram commutative :

A - G(F (A))

f G(f∗)

G(B)

ιA

A
A
A
A
AU

�
�
�
�
��
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Proof. Generalize the argument in Example 16.21. �

Definition 16.23. Let A be a subcategory of B. A is a reflective subcategory
of B if the natural embedding A −→ B has a left adjoint R, called the reflection
functor from B to A. A is a coreflective subcategory of B if the natural embed-
ding A −→ B has a right adjoint, called the coreflection of B in A.

Example 16.24. a) The following are full reflective categories of Top 2 :

∗ The category of Ti spaces, i = 1, 2, 3 (1.20);

∗ The category of completely regular spaces;

∗ the category of totally disconnected spaces;

b) The category of normal spaces (1.20) is a reflective subcategory of Htop.

c) The full subcategory of torsion-free groups is reflective in Ab, the category of
Abelian groups.

d) The full subcategory Ab of Abelian groups is reflective in the category of
groups, Gr.

e) The full subcategory of torsion groups in Ab is an example of a coreflective
subcategory. 2

Definition 16.25. Two categories, A and B, are equivalent if there are
functors, F : A −→ B and G : B −→ A, together with natural equivalences

η : (G ◦ F ) −→ IdA and µ : (F ◦ G) −→ IdB.

The pair (F,G) is called an equivalence between A and B. A contravariant equiv-
alence is called a duality.

An example of duality is presented in 12.17 : that between Sob and Framep.
We shall see other important examples in the chapters ahead.

4. Diagrams and Limits

Definition 16.26. Let A be a category and let D be a small category. A
D-diagram in A is a functor D : D −→ A.

If B is a subcategory of D, we write D|B for the B-diagram obtained by applying

D just to the objects and arrows in B.

The notion of diagram is functorial, that is, if F : A −→ B is a functor and D
is a D-diagram in A, then F ◦ D is a D-diagram in B.

Example 16.27. Let A be a category.

(1) Let D be the category consisting of two objects (1) and (2), such that [(1), (2)]
has two distinct elements. A D-diagram in A consists of parallel arrows in A,

A -
-

f

g

B ,

with A, B ∈ Ob(A) and f , g ∈ [A, B].

2The category of topological spaces and continuous maps.
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(2) Let D be the category whose objects are a set I, and whose class of morphisms
contains only the identity morphism of each object. A D-diagram in A, is simply
a family of objects in A, indexed by I.

(3) Let 〈 I,≤〉 be a poset, considered as a category as in Example 16.4. An I-
diagram in A is a family of objects in A, {Ai : i ∈ I}, together with morphisms,
fij ∈ [Ai, Aj ], whenever i ≤ j, such that for all i, j, k ∈ I
∗ fii = IdAi ; ∗ If i ≤ j ≤ k, the following diagram is commutative :

Ak

Ai

?

- Aj
�
�

�
�
��	

fik

fij

fjk

If I is up-directed (2.26(ii)), an I-diagram is called an inductive system in A,
while a Iop-diagram in A is a projective system in A. As special cases of (3) :

a) Suppose I = {i, j, k}, with i ≤ j, k, while j and k are unrelated. The following
diagrams exhibit an I-diagram and an Iop-diagram in A, respectively :

C

A

?

- B

g

f

C

B

A

f

g

?
-

b) Suppose I is the BA with four elements, {⊥, a, ¬ a, >}, considered as a category.
A I-diagram in A is a commutative covariant square in A, that is, a diagram of
the form

C

A

?

- B

h

f

D

k

g

?
-

with k ◦ f = g ◦ h. 2

Definition 16.28. Let D : D −→ A be a diagram in A. A cone C over D

is a family {M fd−→ D(d) : d ∈ Ob(D)}, where M is an object in A and fd are

morphisms in A, such that if d
α−→ d′ is a morphism in D, then the diagram on

the left is commutative :
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D(d′)

M

?

- D(d)

�
�

�
�

��	

fd′

fd

D(α)

M - N

gd fd

D(d)

h

A
A
A
A
AU

�
�
�
�
��

If C = 〈M, {fd}d∈Ob(D) 〉 and K = 〈N, {gd}d∈Ob(D) 〉 are cones over D, a cone

morphism, C
h−→ K, is a morphism M

h−→ N in A, such that for all d ∈ Ob(D),
the diagram above right is commutative.

It is straightforward that the identity and composition of cone morphisms are
cone morphisms and so we have a category, Co(D), of cones over the diagram D.
Note that if C is a cone over D and B is a subcategory of D, we obtain a cone
over D|B, by taking the values of D only on the objects and morphism in B.

A dual cone over a diagram D in A, is an object M in A, together with a

family of morphisms in A, {D(d)
fd−→M : d ∈ Ob(D)}, such that for all morphisms

d
α−→ d′ in D, the diagram below commutes :

M

D(d)

?

- D(d′)

�
�

�
�

�
�	

fd

D(α)

fd′

The reader will have no difficulty in defining morphisms of dual cones and verifying
that dual cones over D form a category, written dCo(D). The comment about
restrictions to subcategories in the end of the preceding paragraph also holds for
dual cones.

The notions of cone and dual cone over a D-diagram D are functorial, that is,
if C is a cone or dual cone over D and F : A −→ B is a functor, then applying
F to the objects and morphisms in C yields a cone or dual cone over the diagram
(F ◦ D) in B.

Definition 16.29. Let D be a D-diagram in a category A. A limit for D in
A is a final object in the category Co(D). Write lim← D for the limit of D in A.

A colimit for D in A is an initial object in the category dCo(D). Write
lim→ D for the colimit of D in A.

Clearly, limits and colimits are unique, up to isomorphism. If D has a limit in
A, it is common usage to write
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lim← D = (A; {fd : d ∈ Ob(D)}) or A = lim← D,

where A ∈ Ob(A) is the vertex of the cone corresponding to lim← D. Similar usage

applies to colimits.

A functor F : A −→ B preserves limits if for all D-diagrams D in A, if
lim← D exists in A, then lim← (F ◦ D) exists in B and we have

F (lim← D) = lim← (F ◦ D).

Similarly, one defines the preservation of colimits by a functor.

A category is complete if it has limits for all D-diagrams in A; it is cocom-
plete if it has colimits for all D-diagrams in A. The finite analogue of completeness
is finitely complete, that is, has limits for all D-diagrams, where D is a finite
category. Similarly, one defines finite cocompleteness.

Example 16.30. a) If D is the category in item (1) of 16.27, a limit for a
D-diagram in a category A is the 3 equalizer of the pair

A -
-

f

g

B

A colimit for this diagram is the coequalizer of the pair (f , g) in A.

b) If D is the category associated to a discretely ordered set as in item (2) of 16.27,
a limit for a D-diagram in A is called the product of the family {Ai : i ∈ I} in
A, while a colimit for this diagram is called a coproduct of that family in A.

c) If I is an up-directed poset, a colimit for a I-diagram in A is called an inductive
limit of the inductive system of objects and morphism determined by that I-
diagram.

A limit for a Iop-diagram in A is called a projective limit for the projective
system of objects and morphism determined by the Iop-diagram.

d) If I is the poset of item 4.(b) in 16.27, a limit for an I-diagram in A is the
pushout of its morphisms. A colimit for a Iop-diagram in A is the pullback or
fiber product of its morphisms. 2

The following result, due to P. Freyd, is useful in establishing completeness
and cocompleteness of a category :

Theorem 16.31. A category is complete iff it has final object, equalizers
and products. A category is cocomplete iff it has initial object, coequalizers and
coproducts. Similar statements hold for finite completeness and cocompleteness.

One of the most important properties of adjoints is their preservation of limits
or colimits :

Theorem 16.32. If F is a left adjoint, then F preserves all colimits that exist
in its domain. Dually, a right adjoint preserves all limits that exist in its domain.

Proof. See Theorem V.5.1, p. 114 in [44]. �

3The definite article is justified by uniqueness of limits, up to isomorphism.
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For complete categories we have characterizations of adjoint and representable
functors. To register these important applications of preservation of limits, we need

Definition 16.33. Let F : A −→ B be a functor and B ∈ Ob(B). A set SB
of objects in A is a solution set of B with respect to F , if for each A ∈ A and

each morphism B
f−→ F (A), there is C ∈ SB, together with morphisms C

g−→ A

and B
h−→ F (C), such that the following diagram is commutative :

F (A)

B

?

- F (C)

�
�
�

�
��	

f

h

F (g)

F has solution sets, if every B ∈ Ob(B) has solution sets with respect to F .

Theorem 16.34. (Representable Functor Theorem) Let A be a complete non-
empty category. A functor F : A −→ Set is representable iff F preserves limits
and {∅} has a solution set with respect to F .

Theorem 16.35. (Adjoint Functor Theorem) Let B be a complete, non-empty
category. Let G : B −→ A be a covariant functor. Then, G has a left adjoint iff
G preserves limits and has solution sets.

5. Injective and Projective Objects

Definition 16.36. Let C be a category and A, C ∈ Ob(C).

a) C is projective in C iff for all A, B in Ob(C), all epic A
f−→ B and all

morphisms C
g−→ B, there is C

h−→ A, such that f ◦ h = g.

A

C

h

�
�
�

�
�	

B

g

f

?
-

A

C

?

- B

�
�
�

�
��	

π

g

f (cover)

b) C is a projective cover for A if C is a projective object and there is an

epimorphism C
π−→ A, such that for all projective B in C and all epimorphisms

B
f−→ A, there is an epimorphism C

g−→ B such that f ◦ g = π.

C has enough projectives iff for every object A in C, there is a projective C and

an epimorphism C
f−→ A.
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c) C is injective in C iff for all A,B in Ob(C), all monic A
f−→ B in Cand all

morphisms A
g−→ C, there is a morphism B

h−→ C, such that h ◦ f = g.

C

A

?

- B

�
�
�

�
�	

g

f

h

B

A

?

- C

�
�

�
�
�	

f

i

g (hull)

d) C is an injective hull of A if C is an injective object and there is a monomor-

phism A
i−→ C such that for all injective B in C and monomorphisms A

f−→ B,

there is a monomorphism C
g−→ B, such that g ◦ i = f .

The definition of having enough injectives is dual to that of having enough
projectives.

We have seen that in the category of HAs (or even distributive lattices)
monomorphisms are simply injective morphisms and so the above definition of
injective corresponds to the conditions [BA - inj] and [HA - inj] in Corollary
15.3. As mentioned earlier, the content of Theorem 15.2 is that complete Boolean
algebras are injective objects in the category of BAs. Further, by Corollary 15.4,
the completion of a BA is its injective hull.

Exercises

16.37. In a category A
(1) Every retraction is epic and every coretraction is monic.

(2) If f ◦ g is monic, so is g. (3) If f ◦ g is epic, so is f . 2

16.38. a) Let A
f−→ B be a map in Set. Then,

(1) f is monic iff it is injective. (2) f is epic iff it is surjective.

(3) The statement “f is a retraction iff it is surjective” is equivalent to the Axiom
of Choice.

b) In a set-based category (16.1), any injective morphism is monic and any sur-
jective morphism is epic. 2

16.39. Let X be a topological space and write ∆ for the diagonal of the
product X × X. A binary relation E on X is closed, if E is a closed subset of
X × X, with the product topology.

a) Show that X is Hausdorff iff ∆ is closed in X × X.

b) Let f , g : X −→ Y be continuous maps, with Y Hausdorff. Then, f = g iff
they coincide in some dense set in X.

c) If X is Hausdorff and E is a closed equivalence relation on X, then X/E, with
the quotient topology, is a Hausdorff space. Recall that the quotient topology by

a surjective map, X
h−→ Y , is defined by :
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U ⊆ Y is open iff h−1(U) is open in X.

Hence, it is clear that the canonical projection πE : Y −→ Y /E is continuous.

d) Suppose X is Hausdorff and let F be a closed set in X. Let

Y = X × {0} ∪ X × {1}
be a disjoint union (1.5) of two copies X, with direct sum topology, that is, U ⊆
Y is open iff its intersection with each copy of X is open. Define a binary relation
E on Y , by the rule :

〈x, i 〉 E 〈 z, j 〉 iff


x = z and i = j

or

x = z ∈ F and i 6= j

Show that E is a closed equivalence relation on Y and that Y /E is a Hausdorff
space. 2

16.40. Let HTop be the category of Hausdorff spaces and continuous maps.

a) A morphism in HTop is monic iff it is injective.

b) A morphism in HTop is epic iff its image is dense in its codomain. (Hint :
16.39).

c) The embedding of the rationals into the reals is a monic and an epic in HTop,
which is not an isomorphism. 2

16.41. Let A be a category and let A be an object in A. Notation is as in
Example 16.6. For monics (β : B −→ A) and (γ : C −→ A), define

f ≤ g iff ∃ η ∈ [B,C]A, such that β = γ ◦ η.

Show that, up to isomorphism in AA, ≤ is a partial order in the class of subobjects
of A in A. 2

16.42. State and prove an analogue of Theorem 16.22 for the existence of
right adjoints. 2

The next two exercises describe more applications of Theorem 16.22.

16.43. Let G be a group with identity e, written multiplicatively. Let

Z[G] = {f : G −→ Z : {g ∈ G : f(g) 6= 0} is finite}.
Define an operation of addition and multiplication for f , h ∈ Z[G] by the following
rules, where g ∈ G :{

[f + h](g) = f(g) + h(g);

[f · h](g) =
∑
g=g′g′′ f(g′)h(g′′),

where the sum in the last equation is taken over all pairs 〈 g′, g′′ 〉 with g′g′′ = g;
note that because f and h are zero almost everywhere, the sum over these pairs
has at most a finite number of non-zero terms. We write 0 ∈ Zh[G] for the constant
function with value 0 (∈ Z). For g ∈ G, define ǧ : G −→ Z by

ǧ(g′) =

{
1 if g′ = g

0 otherwise.

Clearly, ǧ ∈ Z[G], for all g ∈ G.

a) Z[G] is a ring, with additive neutral 0 and multiplicative identity ě.
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b) The map g ∈ G 7→ ǧ ∈ Z[G] is a group homomorphism.

c) The construction outlined above − called the group ring construction −, is
the left adjoint to the forgetful functor from the category of rings to the category
of groups. 2

16.44. Let X be a completely regular space (1.20). Let

γ(X) = {X f−→ [0, 1] : f is continuous},
where [0, 1] is the real unit interval. Define

β : X −→ [0, 1]γ(X), by β(x) = 〈 f(x) 〉f∈γ(X).

a) Prove that β is a continuous injective map.

Let βX = Image β in [0, 1]γ(X); clearly, βX is a compact Hausdorff space and

we have a continuous injection X
β−→ βX.

b) Let A be a set. Any continuous map h : X −→ [0, 1]A has a unique extension
h∗ to βX along β, that is, the following diagram is commutative :

X - βX

h h∗

[0, 1]A

β

A
A
A
A
AU

�
�
�
�
��

c) If K is a compact Hausdorff space, then any continuous map X
h−→ K has a

unique extension to βX along β.

d) The construction outlined above − called the Stone-Čech compactification
of X −, is the left adjoint to the forgetful functor from the category of compact
Hausdorff spaces to the category of completely regular spaces. 2

In the exercises that follow, we ask the reader to explore the category of par-
tially ordered sets, Po, determining some of the constructions that exist therein.

16.45. a) When is a morphism in Po a monomorphism? An epimorphism?
An isomorphism? Is isomorphism the same as monomorphism and epimorphism?

b) Are there free posets? 2

16.46. a) Let {Xi} be a family of posets and
∏

Xi be their product. The
natural projections πi :

∏
Xi −→Xi are increasing maps. Verify that (

∏
Xi, {πi})

is the product of the Xi in Po. Notice that if I = ∅, one obtains a final object for
Po, namely {∅}.
b) What about coproducts and initial objects?

c) What about equalizers and coequalizers ?

d) What about general limits and colimits? 2
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CHAPTER 17

Limits and Colimits of First-Order Structures

Since most of our applications of limits and colimits are for diagrams of first-
order structures over a poset, we include some basic results for this case. We
assume that the reader is familiar with the fundamental notions of Logic and
Model Theory, in particular of the concept of satisfaction. Classic references are
[38], [39], [68]; [71] has an interesting approach to first-order logic. It should be
said that Theorems 17.10, 17.15 and Corollary 17.18 are part of the folklore of
Model Theory.

1. First-Order Languages and Logic

We recall the construction of a first-order language L with equality.

17.1. Alphabet of L. ∗ A set {vn : n ∈ N} of variable symbols;

∗ The logical symbols ∧ (and), ∨ (or), → (implies) and ¬ (negation);

∗ The quantifiers ∃ (existential) and ∀ (universal);

∗ A binary relation symbol =, for equality;

∗ For each integer n ≥ 1,

(i) A set rel(n,L) of n-ary relation symbols;

(ii) A set op(n,L) of n-ary operation symbols;

(iii) A set Ct(L) of constants symbols. 2

17.2. Terms. Defined by induction on complexity, as follows :

∗ Variables and constant are terms;

∗ If n ≥ 1 is an integer, t1, . . . , tn are terms in L and ω ∈ op(n), then ω(t1, . . . , tn)
is a term. 2

17.3. Formulas. Defined by induction on complexity, where n ≥ 1 is an
integer :

∗ If R ∈ rel(n) and t1, . . . , tn are terms in L, R(t1, . . . , tn) is a formula, called an
atomic formula;

∗ If φ, ψ are formulas in L and 3 is one of the logical symbols ∧, ∨ or →, then
(φ 3 ψ) is a formula.

∗ If φ is a formula, then ¬φ (the negation of φ) is a formula;

∗ If φ is a formula and vn is a variable, then ∀ vn φ and ∃ vn φ are formulas. 2

17.4. Basic Notions. a) To every formula φ in L is associated a sequence
of formulas, of lesser complexity, that describe the process of constructing φ from
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the atomic formulas. The formulas in this sequence are called subformulas of φ.
The occurrences of a variable vn in φ are divided into two categories :

(1) bound, when vn occurs in a subformula of φ of the type Qvn ψ, where Q =
∃, ∀;
(2) free, when the occurrence is not bound.

b) (Substitution) If φ is a formula, vn is a variable and τ is a term, write φ( pτ | vnq )
for the formula obtained by substituting all free occurrences of vn in φ by τ .

c) If t is a term and φ is a formula in L, write t(v1, . . . , vn), φ(v1, . . . , vn) to mean
that the free variables in t and φ are among the ones being displayed. As usual,
write v for the sequence 〈 v1, . . . , vn 〉; we may also use, as is standard, x, x, y, y
and z, z to name variables.

d) A term t is free for vn in a formula φ iff in φ( pt | vnq ) (see (b) above) no
variable in t becomes bound.

e) A formula φ in L is

∗ A sentence if it has no free variables. Let Sent(L) be the set of sentences in L;

∗ quantifier-free if there is no quantifier occurs in φ;

∗ positive if implication and negation do not occur in φ;

∗ existential if it is of the form ∃xψ, where ψ is quantifier-free;

∗ universal if it is of the form ∀xψ, where ψ is quantifier-free;

∗ primitive if it is of the form ∃xφ, where φ is a conjunction of atomic formulas;

∗ ∀ ∃ if is of the form ∀x ∃ y ψ, where ψ is quantifier-free;

∗ Horn if it is of the form ∀x [(ψ1 ∧ . . . ∧ ψn) → ψ], where ψ, ψ1, . . . , ψn are
atomic formulas.

The reader should have no trouble in recognizing the content of expressions like
“positive-existential” or “positive ∀∃”. 2

17.5. The Intuitionistic Predicate Calculus,H. The following is a Hilbert
style 1 formalization of the Intuitionistic Predicate Calculus2, written H :

If φ, ψ and χ are formulas in L, v is a variable and τ is a term :

1. φ → (ψ → φ);

2. (φ → ψ) → ((φ → (ψ → χ)) → (φ → χ));

3. φ → (ψ → φ ∧ ψ);

4. φ ∧ ψ → φ;

5. φ ∧ ψ → ψ;

6. φ → (φ ∨ ψ);

7. ψ → (φ ∨ ψ);

8. (φ → χ) → ((ψ → χ) → (φ ∨ ψ → χ));

9. (φ → ψ) → ((φ → ¬ψ) → ¬φ);

10. ¬φ → (φ → ψ).

1For Gentzen style formalizations, see [58], [39], [38].
2Due to A. Heyting.
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11. If τ is a term free for v in φ 3,

{
11.a. ∀v φ → φ( pτ | vq );

11.b. φ( pτ | vq ) → ∃v φ,

where φ( pτ | vq ) denotes substitution of τ for v in φ, as in 17.4.(b).

12. Deduction rules :

Modus Ponens :
φ, φ → ψ

ψ


∀-rule :

φ → ψ(v)
φ → ∀v ψ(v)

∃-rule :
ψ(v)→ φ
∃v ψ(v) → φ,

where in the ∀-rule and the ∃-rule v must not occur free in φ.

The axioms for equality are the usual ones, including the Leibniz substitution rule

[L] : If τ is a term in L, free for a variable v in φ, then 4

φ(v) ∧ (v = τ) → φ( pτ | vq ).

The first ten schemata, together with Modus Ponens formalize the Intuitionistic
Propositional Calculus. To obtain the Classical Calculus, add (or replace axiom
10 by) the rule

10C . ¬¬φ → φ.

where φ is any formula in L. In [65] one will find a different and interesting proposal
for the formalization of the Intuitionistic Predicate Calculus.

If Γ ∪ {φ} is a set of formulas in L, a proof of φ from Γ consists of a sequence
of formulas ψ1, . . . , ψn in L, such that ψn is φ and satisfying, for 1 ≤ k ≤ n,

∗ ψk ∈ Γ or ∗ ψk is an axiom or

∗ ψk comes from earlier formulas in the sequence, through the use of one of the
deduction rules.

We write{
Γ `H φ If φ is a consequence of Γ in H;

Γ `C φ If φ is a consequence of Γ in the Classical Calculus.

It is clear that Γ `H φ ⇒ Γ `C φ.

A theorem of H is a formula φ such that ∅ `H φ, written `H φ.

A set of sentences Σ is a theory in H, if it is closed under deduction that is

Σ `H σ ⇒ σ ∈ Σ.

Similarly, one defines the notion of theory in the classical Calculus. 2

On the basic results about these systems is

Proposition 17.6. (Deduction Theorem) Let Γ ∪ {σ, φ} be a set of formulas
in L. If σ is a sentence in L, then

Γ, σ `H φ iff Γ `H (σ → φ).

A similar statement holds for the relation `C .

One of the basic discoveries of Lindenbaum and Tarski is that the syntax of
formal theories generates interesting algebraic structures. If φ, ψ are formulas in
L, define a relation

3As in 17.4.(d).
4It is enough to assume this just for function and relation symbols in L.
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φ ≡ ψ iff `H (φ → ψ) ∧ (ψ → φ).

This is an equivalence relation on L and the set of its equivalence classes is the
Lindenbaum algebra of L. For intuitionistic systems − propositional or first-
order −, the Lindenbaum algebra of L is Heyting algebra. For classical systems,
it is a Boolean algebra. The propositional case is important, in particular because
their Lindenbaum algebras furnish the free objects in the categories of Heyting
and Boolean algebras. For more information on this topic, see [59] and [60].

2. First-order Structures and their Morphisms

Since we shall be constantly using sequences, all the notational conventions in
1.4 will be of constant use.

Let L be a first-order language with equality as in the previous section. A
L-structure is a set M , together with

∗ For R ∈ rel(n,L) a subset RM ⊆ Mn, called the interpretation of R in M ;

∗ For ω ∈ op(n,L), a map ωM : Mn −→ M , the interpretation of ω in M ;

∗ For c ∈ Ct(L), an element cM ∈ M , the interpretation of c in M ;

∗ The equality symbol is interpreted as the diagonal of the M2.

By induction on complexity, a term t(v1, . . . , vn), in the free variables v1, . . . , vn,
induces a map, tM : Mn −→ M , called the interpretation of t in M .

We shall assume the reader familiar with the concept of interpretation of a
formula φ(v1, . . . , vn) in M (see [7]) and the symbol

M |= φ[a],

read φ holds in M at a ∈ Mn.

The main notions of morphism of L-structures are recalled in

Definition 17.7. Let L be a first-order language with equality and let M , N
be structures for L. Let f : M −→ N be a map.

a) f is a L-morphism if for all integers n ≥ 1

(i) If c ∈ Ct, then f(cM ) = cN .

(ii) If ω ∈ op(n) and x ∈ Mn, f(ωM (x)) = ωN (f(x));

(iii) If R ∈ rel(n) and x ∈ Mn, then M |= R[x] ⇒ N |= R[f(x)].

b) f is a L-embedding if it is a L-morphism such that for all n ≥ 1, R ∈ rel(n)
and x ∈ Mn M |= R[x] ⇔ N |= R[f(x)].

c) f is an elementary embedding if for all formulas φ(v1, . . . , vn) in L and
x ∈ Mn, M |= φ[x] iff N |= φ[f(x)].

When clear from context, L will be omitted from the notation. L-structures and
L-morphism are a category, written L-mod.

Remark 17.8. (1) Since equality is in rel(2), embeddings are injective.

(2) If f is a L-morphism and τ(v1, . . . , vn) is a term in L, then

For all x ∈ Mn, f(τM (x)) = τN (f(x)).

(3) Let φ ≡ R(τ1(v1, . . . , vn), . . . , τm(v1, . . . , vn)) be an atomic formula in L and
let f be a map satisfying (i) and (ii) in 17.7.(a). Then, f is a L-morphism iff

For all x ∈ Mn, M |= φ[x] ⇒ N |= φ[f(x)].
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Furthermore, f is an embedding iff

For all x ∈ Mn, M |= φ[x] ⇔ N |= φ[f(x)]. 2

17.9. Products in L-mod. Let Mi, i ∈ I, be a family of L-structures.
Let M =

∏
i∈I Mi be their set-theoretic product (1.4). M is endowed with a

L-structure, defined coordinatewise as follows, where n ≥ 1 is an integer :

∗ If c ∈ Ct, cM = 〈 cMi 〉i∈I ;
∗ If ω ∈ op(n), and 〈 s1, . . . , sn 〉 ∈ Mn, then

ωM (s1, . . . , sn) = 〈ωMi(s1(i), s2(i), . . . , sn(i)) 〉i∈I ;
∗ If R ∈ rel(n) and s ∈ Mn, then

M |= R[s] iff ∀ i ∈ I, Mi |= R[s1(i), s2(i), . . . , sn(i)].

Note that the canonical projections, πi : M −→ Mi, are L-morphisms. This con-
struction is the product of the Mi in the category L-mod.

Induction on complexity yields :

a) If τ(v1, . . . , vn) is a term in L and s ∈ Mn, then

τM (s) = 〈 τMi(s1(1), . . . , sn(i)) 〉i∈I .
b) If φ(v1, . . . , vn) is an atomic formula in L and x ∈ Mn, then

M |= φ[s] iff ∀ i ∈ I, Mi |= φ[s1(i), . . . , sn(i)]. 2

3. Limits in L-mod

Theorem 17.10. Let L be a first-order language with equality, containing at
least one constant symbol and let 〈 I,≤〉 be a poset.

a) The category L-mod is complete.

b) Let D be an I-diagram in L-mod and let lim← D be its limit. Then,

(1) If J ⊆ I is down-cofinal in I, lim← D|J is isomorphic to lim← D.

(2) Let σ ∈ Sent(L) be logically equivalent to a finite conjunction of sentences of
the form ∀x (∀yψ → φ), where ψ and φ are positive and quantifier free 5. Then,

{i ∈ I : D(i) |= σ} is down-cofinal in I ⇒ lim← D |= σ.

Proof. a) We make use of Theorem 16.31, verifying that L-mod has final
object, equalizers and products; by 17.9, it has products.

Equalizers : Let D = (A -
-

f

g

B) be L-morphisms. Set

E = {a ∈ A : f(a) = g(a)}.
For all constants c in L, cE =def cA ∈ E. Moreover, if ω ∈ op(n) is an n-ary
operation symbol in L and a = 〈 a1, . . . , an 〉 ∈ En, then

f(ωA(a)) = ωB(f(a)) = ωB(g(a)) = g(ωA(a)),

and E is closed under the restriction of the interpretations of all operation symbols
in A. For a n-ary relation symbol R in L, set RE = R ∩ En. Then, the canon-
ical injection, η : E −→ A is a L-embedding. Moreover, since f ◦ η = g ◦ η,

5Defined in 17.4.
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(E; {η, f ◦ η}) is a cone over D in L-mod. We now prove that this cone is the
equalizer of (f , g), that is, it is lim← D.

Let h : C −→ A be a L-morphism, such that g ◦ h = f ◦ h. Note that this
equation implies that for all x ∈ C, h(x) ∈ E. Define β : C−→ E by x 7→ h(x).
Clearly, β is the unique map such that h = η ◦ β. It is straightforward to check
that β is a L-morphism and so (E; {η, f ◦ η}) is the equalizer of (f , g) in L-mod.

A

C

?

- E

�
�

�
�

�
�	

h

β

η

-
-

f

g
B

Final object : Let 1 = {∅}, where all relations are interpreted as 1n, all func-
tions are interpreted as projections onto the first coordinate and all constants are
assigned value ∅. Then, 1 is the final object in L-mod.

b) (1) Let D = (D(i); {fij : i ≤ j}) be a I-diagram in L-mod. By (a), D and D|J
have limits in L-mod. Let

lim← D = (lim← D; {λi : i ∈ I}) and lim← D|J = (lim← D|J ; {βj : j ∈ J}),
be presentations of these limits. Since (lim← D; {λj : j ∈ J}) is a cone over D|J , there

is a unique cone morphism f : lim← D −→ lim← D|J . Now, if J ⊆ I is down-cofinal

in I, define, for i ∈ I, βi : lim← D|J −→ D(i), by the following rule :

Choose k ∈ J such that k ≤ i and set
βi = βk ◦ fki.

lim← D|J
- D(k)

βi fki

D(i)

βk

A
A
A
A
A
AU

�
�
�
�
�
��

It is straightforward to verify that the choice of k ≤ i is immaterial in the definition
βi and that, for j ∈ J , we get the same L-morphism originally attached to lim← D|J .

Hence, (lim← D|J ; {βi : i ∈ I}) is a cone over D and there is a unique cone morphism,

g : lim→ D|J −→ lim→ D. We omit the straightforward verification that f and g are

inverse L-isomorphisms.

(2) Because of the isomorphism between lim← D and lim← D|J , when J is down-cofinal

in I, to prove the preservation of the sentences described in (2), it is enough to
verify that,
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If σ is true in all D(i), then it is true in Λ =def lim← D.

Let Σ and Π be the sets of formulas φ(v1, . . . , vn) in L defined by the following
rules :

φ ∈ Σ iff ∀s ∈ Λn, (Λ |= φ[s] iff D(i) |= φ[λi(s)]);

φ ∈ Π iff ∀s ∈ Λn, (D(i) |= φ[λi(s)] ⇒ Λ |= φ[s]).

One then verifies that

∗ All atomic formulas are in Σ; ∗ ψ, φ ∈ Σ ⇒ ψ ∧ φ ∈ Σ;

∗ ψ ∈ Π, φ ∈ Σ ⇒ ∀x ψ ∈ Π and ψ → φ ∈ Π.

Details are left to the reader. Clearly, the desired result follows from the above
statements. �

Remark 17.11. Since L-structures satisfy the laws of Classical Logic, the
sentence ∃x(x = x) forces them to be non-empty. If the language L has no con-
stants, there are examples where the set of points where two morphisms, with
same domain and codomain, are equal is empty. For these languages, L-mod does
not have equalizers. Hence, the statement of Theorem 17.10 is sharp. 2

The following characterization of limits of I-diagrams is useful :

Corollary 17.12. Let D = (D(i), {fij : i ≤ j}) be an I-diagram in L-
mod, where I is a poset. Suppose Ct(L) 6= ∅. Let Λ = 〈Λ; {λi}i∈I 〉 be a cone in
L-mod over D and let λ =

∏
λi be the unique map from Λ to

∏
D(i), such that

πi ◦ λ = λi, i ∈ I. Then, Λ is (isomorphic to) lim← D iff

[lim 1] : The image of λ in
∏
D(i) is the set

{m ∈
∏
D(i) : ∀ i, j ∈ I (i ≤ j ⇒ fij(πi(m)) = πj(m)}.

[lim 2] : For all atomic formulas φ(v1, . . . , vn) in L and s ∈ Λn,

Λ |= φ[s] iff for all i ∈ I, D(i) |= φ[λi(s)].

We now discuss limits for morphisms of I-diagrams in L-mod.

Definition 17.13. Let 〈 I,≤〉 be a poset and

D = (D(i); {fij : i ≤ j}) and E = (E(i); {gij : i ≤ j})
be I-diagrams in L-mod. A morphism h : D −→ E consists of a family of L-
morphisms, hi : D(i) −→ E(i), i ∈ I, such that for i ≤ j in I, the following
diagram is commutative :

E(i)

D(i)

?

- D(j)

hi

fij

E(j)

hj

gij

?
-

Clearly, IdD = (IdD(i))i∈I is a morphism; if D
h−→ E

k−→ G are morphisms of
I-diagrams, then
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k ◦ h = (ki ◦ hi)i∈I
is a morphism of I-diagrams. Hence, I-diagrams in L-mod constitute a category,
written D(I, L-mod).

Proposition 17.14. Let h : D −→ E be a morphism of I-diagrams in L-
mod and assume that lim← D and lim← E exist in L-mod. Then, there is a unique

L-morphism, lim← h : lim← D −→ lim← E, such that for all i ∈ I, the following

diagram is commutative :

lim← E

lim← D

?

- D(i)

lim← h

di

E(i)

hi

ei

?
-

where di and ei are the L-morphisms that come with the limit construction.

Proof. Clearly, 〈 lim← D; {hi ◦ di : i ∈ I} 〉 is a cone over E; now the universal

property of limits guarantee the existence and uniqueness of lim← h. �

4. Colimits in L-mod

Theorem 17.15. Let 〈 I,≤〉 be up-directed poset and let L be a first-order
language with equality.

a) Every I-diagram, D, in L-mod has a colimit. If J ⊆ I is up-cofinal in I then,
lim→ D is naturally isomorphic to lim→ D|J .

b) Let σ be a sentence logically equivalent to a finite disjunction of sentences of
the form ∀x (ψ → ∃yφ), where ψ and φ are positive and quantifier free 6. Then,

{i ∈ I : D(i) |= σ} is up-cofinal in I ⇒ lim→ D |= σ.

Proof. a) Let A =
∐
i∈I D(i) be the disjoint union of the D(i). We have

canonical maps wi : D(i) −→ A, x 7→ 〈x, i 〉. Since I is up-directed, the prescription

〈x, i 〉 ≡ 〈 y, j 〉 iff ∃ k ≥ i, j such that fik(x) = fjk(y),

defines an equivalence relation ≡ on A. Let

G = {〈x, i 〉/≡ : 〈x, i 〉 ∈ A}
be the set of equivalence classes of A by ≡. Note that for a constant c in L we have
〈 cD(i), i 〉 ≡ 〈 cD(j), j 〉. We interpret L in G as follows : for n ≥ 1 and x ∈ Gn,

x = 〈 〈x1, i1 〉, . . . , 〈xn, in 〉 〉,
i) If R ∈ rel(n), then G |= R[x] iff

∃ i ≥ i1, . . . , in, such that D(i) |= R[fi1k(x1), . . . , fink(xn)].

6As in 17.4.
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ii) If ω ∈ op(n,L), take k ≥ i1, . . . , in and define ωG(x) as the equivalence class
of the pair 〈ωD(k)(fi1k(x1), . . . , fink(xn)), k 〉.
iii) If c is a constant in L, cG = 〈 cD(i), i 〉/≡.

Since I is up-directed, all of the above definitions are independent of representa-
tives and of the choice of indices appearing therein. Further, the composition of
the quotient map A −→ G with the mappings wi, defines L-morphisms αi from
D(i) to G, making (G, {αi : i ∈ I}) a dual cone over D. If (N ; {gi : i ∈ I}) is
a dual cone over D, define h : G −→ N by h(〈x, i 〉/≡) = gi(x); the reader can
check that h is unique and so, (G; {αi : i ∈ I})) is lim→ D. The proof of (b) can be

obtained by the same method used for limits in 17.10. �

Remark 17.16. Theorems 17.10 and 17.15 imply that limits for posets, and
colimits over up-directed sets, preserve the properties of being a group, ring with
identity, Boolean algebra, etc. 2

Proposition 17.17. Let D = 〈D(i); {fij : i ≤ j} 〉 be a I-diagram in L-
mod, with 〈 I,≤〉 an up-directed poset. Let 〈M ; {fi : i ∈ I} 〉 be a presentation
of lim→ D. Then,

a) If fij is an embedding for all i ≤ j in I, then fi is an embedding, for all i ∈ I.

b) (Tarski) If fij is an elementary embedding for all i ≤ j in I, then fi is an
elementary embedding, for all i ∈ I.

Proof. Item (a) is straightforward diagram chasing. For (b), use induction
on the complexity of formulas. �

The results corresponding to 17.12 and 17.14 for colimits follow; their proofs
are left to the reader.

Corollary 17.18. Let D = (D(i), {fij : i ≤ j}) be an I-diagram in L-
mod, where I is an up-directed poset. A dual cone in L-mod over D, 〈G; {αi}i∈I 〉,
is (isomorphic to) lim→ D iff it satisfies the following conditions 7:

[colim 1] : G =
⋃
{αi(D(i)) : i ∈ I}.

[colim 2] : If φ(v1, . . . , vn) is an atomic formula in L, 〈 k1, . . . , kn 〉 is an n-tuple
in I and skp ∈ D(kp), 1 ≤ p ≤ n, then

G |= φ[αk1(sk1), . . . , αkn(skn)]

iff{
∃ k ∈ I such that k ≥ k1, . . . , kn and

D(k) |= φ[αk1k(sk1), . . . , αknk(skn)].
2

Proposition 17.19. Let h : D −→ E be a morphism of I-diagrams in L-
mod and assume that lim→ D and lim→ E exist in L-mod. Then, there is a unique

L-morphism, lim→ h : lim→ D −→ lim→ E, such that for all i ∈ I, the following diagram

is commutative :

7See also Exercise 17.24.
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E(i)

D(i)

?

- lim→ D

hi

di

lim→ E

lim→ h

ei

?
-

where di and ei are the L-morphisms that come with the colimit construction.
Moreover, if each hi is a L-monic, the same is true of lim→ h.

5. Quotients in L-mod

Definition 17.20. Let A be a L-structure. An equivalence relation on A is a
congruence if it is a congruence with respect to all L-operations 8.

Proposition 17.21. Let A be a L-structure and θ a congruence on A. Then,
the set A/θ of equivalence classes by θ can be made into a L-structure, as follows :

(1) For all R ∈ rel(n,L) and x ∈ An,

A/θ |= R[x/θ] iff

{
∃ y ∈ An such that yk θ xk, 1 ≤ k ≤ n

and A |= R[y],

where x/θ = 〈x1/θ, . . . , xn/θ 〉.
(2) For ω ∈ op(n,L) and x ∈ An, ωA/θ(x) = ωA(x)/θ.

(3) For c ∈ Ct(L), cA/θ = cA/θ.

With this L-structure, the canonical quotient map πθ : A −→ A/θ is a L-morphism.
Moreover, if f : A −→ M is a L-morphism and θ ⊆ θf (17.23), then there is a

unique L-morphism f̂ : A/θ −→ M , making the following diagram commutative :

A - A/θ

f f̂

M

πθ

A
A
A
A
AU

�
�
�
�
��

Proof. The maps in (2) are well defined because θ is a congruence with
respect to all L-operations on A. Moreover, (2) implies that πθ preserves all L-
operations on A, while (3) entails that the interpretation of constants is also pre-
served. Condition (1) is phrased so as to guarantee that the interpretation of
L-relations are preserved. Hence, πθ is a L-morphism.

If M is a L-structure and f : A −→ M is a L-morphism, define, for x ∈ A,

8As in Example 2.49.
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f̂(x/θ) = fx.

Since θ ⊆ θf (17.23), f̂ is well defined. If R ∈ rel(n), assume that A/θ |= R[x/θ].
Then, there is y ∈ An such that A |= R[y] and xk θ yk, 1 ≤ k ≤ n. Because f is
a L-morphism, we conclude that

M |= R[f(y)].

Now xk θ yk and θ ⊆ θf imply that fxk = fyk, 1 ≤ k ≤ n, and so

M |= R[f̂(x/θ)]

as needed. It is clear that for all constants c in L, f̂(cA/θ) = cM . For operations

symbols, the argument is analogous. The uniqueness of f̂ is immediate. �

The L-structure A/θ in 17.21 is the quotient of A by the congruence θ.

Exercises

17.22. This exercise is related to 22.15 and 22.37. Let H be a HA and F be a
(proper) filter in H. For a ∈ H, let Ha = H/a→ be the quotient HA by the filter
a→. Write πa : H −→ Ha for the quotient morphism (instead of πa→).

a) F is an up-directed subset of Hop 9.

b) For a ≤ b in H there is a HA-morphism, hba : Hb −→ Ha, making the following
diagram commutative :

H - Hb

πa hba

Ha

πb

A
A
A
A
AU

�
�
�
�
��

Moreover, whenever a ≤ b ≤ c, haa = IdHa and hca = hba ◦ hcb. Conclude that
F = 〈Ha; {hba : a ≤ b in F} 〉 is an inductive system of HAs and HA-morphisms.

c) H/F = lim→ F . 2

17.23. If M
f−→ N is a L-morphism, θf = {〈x, y 〉 ∈ M2 : f(x) = f(y)}

is a L-congruence on M . 2

17.24. Let D = (D(i), {fij : i ≤ j}) be an I-diagram in L-mod, where I is an
up-directed poset. A dual cone in L-mod over D, 〈G; {αi}i∈I 〉, is (isomorphic to)
lim→ D iff it satisfies the following conditions :

[colim 1′] : For all i, j ∈ I, x ∈ D(i) and y ∈ D(j)

αi(x) = αj(y) iff ∃ k ≥ i, j such that fik(x) = fjk(y).

[colim 2′] : For all n-ary relations R in L and ξ ∈ Gn,

M |= R[ξ] ⇔ ∃ k ∈ I and x ∈ D(k)n such that ξ = αk(x) and D(k) |= R[x]. 2

9Recall (2.5) that Hop is H with the opposite order it originally had.
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CHAPTER 18

Boolean Spaces

In this Chapter the results in section 1.2 may be used without explicit refer-
ence.

Recall that Ω(X), B(X) and Reg(X) (3.6) denote the frame of opens, the BA
of clopens and the cBa of regular opens, respectively, of the topological space X.

Definition 18.1. A T0 topological space X is totally disconnected if B(X)
is a basis of opens in X, or equivalently, Ω(X) is a zero-dimensional frame (8.19).
A Boolean space is a compact totally disconnected space.

A totally disconnected space X is Hausdorff. For if x 6= y in X, the T0 property
(1.20) furnishes an open set U in X, such that x ∈ U and y 6∈ U (or the other way
around). Since B(X) is a basis of opens in X, we might as well assume that U is
clopen, and so x and y have disjoint clopen neighborhoods in X.

A subspace of a totally disconnected space, with the induced topology, is also
totally disconnected, i.e., the property of being totally disconnected is hereditary.
A closed subspace of a Boolean space is a Boolean space in its own right.

The following Example describes an important way of obtaining totally dis-
connected spaces.

Example 18.2. Let Si, i ∈ I, be a family of sets, considered as topolog-
ical spaces with the discrete topology (all points are open). Then, the product
S =

∏
Si, with the product topology, is totally disconnected. Although a basis

for S appears in 1.25, we introduce new notation that is convenient for dealing
with products of discrete spaces. Recall that ⊆f stands for “finite subset of”.

Let Sω =
⋃
{
∏
j∈J Sj : J ⊆f I}. For s ∈ Sω, define

Vs = {f ∈ S : f|doms = s},
that is, Vs is the set of extensions of s in S. Then,

V = {Vs : s ∈ Sω},
is a basis of clopens for the product topology on S.

When each Si is finite, the product topology is compact, by Tychonoff’s The-
orem 1.28. In particular, for all A, 2A is a Boolean space, where 2 = {0, 1}; the
space 2N is called the Cantor space, being homeomorphic to the Cantor “extract
the middle third” space, a classical construction on the real closed unit interval.

For separable metric spaces, i.e., those possessing a countable dense set,
two spaces of this type are fundamental. A result due to Kuratowski asserts that

170
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(1) Every complete separable metric space is the continuous image of NN (the
Baire space), by a map whose inverse image of each point is at most countable;

(2) The same holds for compact metric spaces, with 2N in place of NN. 2

Lemma 18.3. Let X be a totally disconnected space. Then, X is homeomorphic
to a subspace of 2γ , where γ is the weight of X (1.16.(b)). If X is Boolean, then
X is homeomorphic to a closed subspace of 2γ .

Proof. Since the set of cardinals α such that X has a basis of cardinal α
has a least element, fix a basis B = {Uβ : β ∈ γ} of cardinal γ, which we may
assume to be contained in B(X). Define, for x ∈ X and β ∈ γ,

f : X −→ 2γ , by f(x)(β) =

{
1 if x ∈ Uβ
0 otherwise.

If x 6= y in X, there is β ∈ γ, such that x ∈ Uβ and y 6∈ Uβ . Thus, f(x) 6= f(y)
and f is injective; for continuity, let J ⊆f γ and s ∈ 2J ; with notation as in 18.2,
Vs is a basic clopen in 2γ , and

f−1(Vs) =
⋂
β∈J Uβ ,

that is clopen in X. To check that f is open (1.18), let β ∈ γ and set

Vβ = {t = 〈 tβ 〉 ∈ 2γ : tβ = 1},
a clopen in 2γ . It is immediate from the definition of f that

For all β ∈ γ, f(Uβ) = Vβ ∩ Imf . (I)

For an open set U in X, let K ⊆ γ be such that U =
⋃
β∈K Uβ . Then, since f is

a bijection between X and its image, (I) yields

f(U) =
⋃
β∈K Vβ ∩ Imf ,

and f : X −→ Imf is a homeomorphism. If X is compact, the results in Lemma
1.24 imply that Imf is a closed subset of 2γ . �

Definition 18.4. A Hausdorff space X is dyadic if it is the continuous
image of 2I , for some set I.

Clearly, all dyadic spaces are compact. By the observations (1) and (2) at
the end of 18.2, every compact metric space is dyadic. The class of dyadic spaces
is important in the study of functional analytic questions in Banach spaces of
continuous functions and in general measure theory.

Lemma 18.3 justifies a closer look at spaces of the type 2A. To deal with topo-
logical and combinatorial questions in these spaces, we set down some notation,
expanding that already described in 18.2. The posets pFω(A, 2), introduced in
Example 2.13 will be of constant use.

Let A be a set; for each s ∈ pFω(A, 2), as in 18.2,

Vs = {f ∈ 2A : f|doms = s}.
When s = {〈 a, 1 〉} or s = {〈 a, 0 〉}, a ∈ A, we may write Vs as V(a,1) or V(a,0),
respectively. Clearly,

Vs =
⋂
{V(a,s(a)) : a ∈ dom s},

a finite intersection, since doms is finite. The collection
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B = {Vs : s ∈ pFω(A, 2)}
is a clopen basis for the product topology on 2A. Note that V∅ = 2A. For f ∈ 2A,
a fundamental system of neighborhoods of f is given by :

νf = {Vs : s = f |B , B ⊆f A}.

Recall (2.33, 2.36) that s, t ∈ pFω(A, 2) are up-compatible iff

s|doms∩ domt = t|doms∩ domt;
otherwise, s and t are up-incompatible (s ⊥∗ t). Up-compatibility is equivalent to
the existence of x ∈ pFω(A, 2) such that s, t ≤ x. That is, s and t are compatible iff
they have a common extension in pFω(A, 2). We also have that s ⊥∗ t iff t ⊥∗ s.

For s ∈ pFω(A, 2), define

ŝ : doms −→ 2, by ŝ(b) = 1 iff s(b) = 0.

Clearly, ̂̂s = s. If s, t ∈ pFω(A, 2), then

[⊥∗] s ⊥∗ t iff ∃ ∅ 6= B ⊆ doms ∩ dom t, such that ŝ|B ≤ t.

This condition is symmetric, since ̂̂s = s.

For up-compatible s, t ∈ pFω(A, 2), it follows from 1.2 that their join, (s ∨ t),
exists in pFω(A, 2), being given by{

dom (s ∨ t) = doms ∪ dom t;

(s ∨ t)|doms = s and (s ∨ t)|domt = t.

Since sequences with disjoint domains are compatible, their join exist in pFω(A, 2).
In particular, if a 6∈ doms, s ∨ 〈 a, 1 〉 and s ∨ 〈 a, 0 〉 are in pFω(A, 2).

If s ∈ pFω(A, 2), define the length of s, l(s), by

[length] l(s) = card(dom s).

The basic properties of the collection B = {Vs : s ∈ pFω(A, 2)} are in

Lemma 18.5. Let A be a set and s, t ∈ pFω(A, 2). Then,

a) V∅ = 2A. Moreover, Vt ⊆ Vs iff s ≤ t.

b) Vs ∩ Vt 6= ∅ iff s and t are up-compatible and Vs ∩ Vt = V(s∨t).

c) 2A − Vs =
⋃
{Vŝ|B : B ⊆ dom s, B 6= ∅}

=
⋃
{V(a,1−s(a)) : a ∈ dom s}.

d) For all a 6∈ dom s,

Vs = V(s∨(a,1)) ∪ V(s∨(a,0)) and V(s∨(a,1)) ∩ V(s∨(a,0)) = ∅.
In particular, for all a ∈ A, V(a,1) ∩ V(a,0) = ∅ and V(a,1) ∪ V(a,0) = 2A.

e) A subset C ⊆ 2A is clopen iff it is a finite union of elements of B.

Proof. Straightforward. Only (e) needs compactness. �

It follows from 18.5.(e) that the cardinality of B(2A) is equal to that of A.
Moreover, 18.5.(d) implies that, whenever A is infinite, B(2A) is atomless, that is,
every non-empty clopen has a proper non-empty clopen subset.

Deeper topological properties of 2A come from combinatorial results in Set
Theory, like the Erdös-Rado Theorem 2.39, sometimes referred to as the ∆-system
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Lemma. Recall (2.35), that a topological space is ccc if every family of non-empty
pairwise disjoint opens is at most countable. From 2.42 we get

Corollary 18.6. All dyadic spaces are ccc.

Proof. Clearly, the continuous image of a ccc space is ccc. Thus, it suffices
to verify that 2A is ccc, for all sets A. Let {Ui : i ∈ I} be a family of non-empty
pairwise disjoint opens in 2A. For i ∈ I, choose a basic clopen Vsi ⊆ Ui; since
the Ui are pairwise disjoint, Lemma 18.5.(b) implies that si ⊥∗ sj , if i 6= j. By
Corollary 2.42, the cardinal of I must be countable. �

Remark 18.7. Note that Theorem 1.29 implies that 2S is separable whenever
card(S) ≤ 2N. 2

The space 2A is also a topological group, because pointwise multiplication of
its elements is a continuous map. This compact topological group carries a measure
λ, called Haar measure, the unique regular Borel measure whose value in each
basic clopen Vs is given by

λ(Vs) = 2−l(s),

where l(s) is the length of s (defined in [length], page 172). λ is translation invari-
ant, that is, for all Borel sets B in 2A and f ∈ 2A,

λ(B) = λ(f · B),

where f · B = {fg : g ∈ B}. Furthermore, 2A is an example of a profinite group
that is, a compact totally disconnected topological group. One can find information
about such groups in [46] and [41], as well as in the references therein.

If K ⊆ I, there is a map, πK : 2I −→ 2K , given by f 7→ f|K . Clearly, πK is

surjective; it also has the following properties :

Lemma 18.8. Let K ⊆ I be sets, s ∈ pFω(I, 2) and t ∈ pFω(K, 2).

a) πK is continuous.

b) πK(Vs) = Vs|K and π−1
K (Vt) = Vt.

c) If U ⊆ 2K , U is clopen in 2K iff π−1
K (U) is clopen in 2I .

d) If U ∈ Reg(2K), then π−1
K (U) = int π−1

K (U) ∈ Reg(2I).

e) There is a homeomorphism

hK : 2I −→ 2K × 2(I−K), defined by h(x) = 〈πK(x), π(I−K)(x) 〉,
such that for all w ∈ pFω((I −K), 2),

hK(Vs) = Vs|K × Vs|(I−K)
and h−1

K (Vt × Vw) = Vt∨w.

Proof. Item (a) is clear and (e) is straightforward; (c) and (d) are immediate
consequences of 18.5.(e) and the fact that for A ⊆ 2K and C,D ⊆ 2I we have

πK(π−1
K (A)) = A and πK(C ∪ D) = πK(C) ∪ πK(D),

The second assertion in (b), as well as that πK(Vs) ⊆ Vs|K , are clear from the
definition of πK . If g ∈ Vs|K , then g and s are compatible; hence, any extension
to I of (g ∨ s) will be in Vs and its restriction to K is equal to g. �

F. Miraglia. An Introduction to Partially Ordered Structures and Sheaves. Lógica no Avião.



Chapter 18. Boolean Spaces 174

Remark 18.9. Let X be a topological space. A bijective function h : I −→ J ,
induces a homeomorphism, H : XJ −→ XI , by composition : f 7→ h ◦ f . Note
that for s ∈ pFω(J, 2), H(Vs) = Vh◦s. In particular, if I is infinite, then XI×I is
homeomorphic to XI . 2

The next result gives a topological characterization of completeness of B(X),
X a Boolean space.

Lemma 18.10. For a Boolean space X, the following are equivalent:

(1) B(X) is a cBa; (2) B(X) = Reg(X);

(3) The closure of every open set in X is clopen.

Proof. Since the interior of the closure of any open set is regular, it is clear
that (2) and (3) are equivalent. Moreover, Reg(X) is always a cBa (10.5) and so
(2) implies (1). It remains to check that (1) implies (2). Let U be a regular open
in X and write

U =
⋃
i∈I Vi,

with {Vi : i ∈ I} ⊆ B(X). Let C =
∨
i∈I Vi, this sup being taken in B(X).

Note that for all i ∈ I, Vi ⊆ C, since the partial order in B(X) is set inclusion.
Consequently, U ⊆ C. Now, if the open set (C − U) is not empty, then there is
V ∈ B(X) such that V ⊆ (C − U). But then, (C − V ) is a clopen set containing
all the Vi, but properly contained in C, which is impossible. Hence, U ⊆ C ⊆ U ;
since C is clopen and U is regular, we conclude that C = U , ending the proof. �

Condition (3) in 18.10 is the definition of extremally disconnected space.
Well, no infinite dyadic space is extremally disconnected. Since we have not yet
presented Stone duality, we shall prove this just for 2A, in a way that has some
geometric content. The first step is

Corollary 18.11. B(2N) is not a complete Boolean algebra.

Proof. Let N f−→ 2 be the constant function with value 1. For an integer
n ≥ 0, define

sn = f|[0,n]
and Vn = Vsn ;

{Vn : n ≥ 0} is a strictly decreasing sequence of clopens in 2N. For n ≥ 0, set

U0 = V0 and Un+1 = Vn+1 − Vn.

The sequence {Un} consists of non-empty pairwise disjoint clopens in 2N. It is
straightforward to verify that the map

S ⊆ N 7−→ int
⋃
n∈SUn ∈ Reg(2N)

is injective. Hence, Reg(2N) has cardinality equal to 2N, and so must be distinct
from B(2N), which is countable by 18.5.(e). �

The method of proof of 18.11 is useful in many contexts. It is based in finding
a properly decreasing sequence, which in turn produces a sequence of non-empty,
pairwise disjoint elements.
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By Stone duality, Exercise 18.20 entails that if X is extremally disconnected,
there is a continuous surjection, X −→ βN, where βN is the Stone-Čech compact-
ification of the discrete space N. But a result due to Engelking and Pelczyński
([13]), implies that βN is not a continuous image of a dyadic compact; hence,
Corollary 18.6 applies to show that no dyadic space is extremally disconnected.
We shall return to this question later in the text. For the moment, we prove

Proposition 18.12. If A is an infinite set, B(2A) is not a complete Boolean
algebra.

Proof. Select an infinite countable subset K ⊆ A. Since 2N is homeomorphic
to 2K (18.9), there is a regular open U in 2K , which is not clopen. With notation
as in 18.8, if V = π−1

K (U), then 18.8.(c) and (d) guarantee that V is a regular open
in 2A, which is not clopen. By 18.10, B(2A) is not a cBa. �

From Corollary 14.6 we obtain

Proposition 18.13. Reg(2A) is the completion of B(2A).

Proof. Write
∨∗

for the sup operation in Reg(2A) and B for B(2A). By
10.5, Reg(2A) is a complete Boolean algebra. It must be shown that the canonical

injection, B
∗−→ Reg(2A), satisfies conditions (1) and (2) of Corollary 14.6. Since

set intersection is the meet operation in both BAs in consideration, we conclude
that ∗ preserves meets. Let Ui, i ∈ I, be a family of clopens and let V = supB Ui.
Since B is a basis for the topology on 2A, we have∨∗

Ui = int
⋃
Ui = V .

Hence, ∗ is a regular embedding; its image is dense in Reg(2A) because if
V ∈ Reg(2A), then∨∗ {U ∈ B : U ⊆ V } = int

⋃
{U ∈ B : U ⊆ V } = int V = V ,

completing the proof. �

Remark 18.14. In Theorem 14.4, if the map f : H −→ D is simply a HA-
morphism, then f∗ might not even be a lattice morphism. For instance, consider

the HA-embedding B(X)
ι−→ Ω(X), with X = 2A. The only extension of ι to

Reg(X) that preserves finite meets, is the canonical map into Ω(X). To see this,
let f be a ∧-preserving extension of ι to Reg(X). To show that f(U) = U , it
suffices to check that U ⊆ f(U) ⊆ U . Since each V ∈ B(X) is kept fixed by f , it is
clear that U ⊆ f(U). Suppose, to get a contradiction, that f(U) is not contained
in U . Then, there is V ∈ B(X) such that V ∩ f(U) 6= ∅, while V ∩ U = ∅. But
then,

∅ = f(V ∩ U) = f(V ) ∩ f(U) = V ∩ f(U),

the desired contradiction. Now, observe that the canonical injection from Reg(X)
into Ω(X) is not a lattice morphism, since it does not preserve finite joins. 2

Definition 18.15. Let {Ai : i ∈ I} be a family of non-empty sets and let
A =

∏
i∈I Ai.

a) For a = 〈 ai 〉 and b = 〈 bi 〉 in A, set [a = b] = {i ∈ I : ai = bi}.
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b) Let A
f−→ T be map and let J be a subset of I. We say that f depends only

on J if for all a = 〈 ai 〉 and b = 〈 bi 〉 in A

J ⊆ [a = b] implies f(a) = f(b).

c) Let S be a subset of A and let J be a subset of I. S depends only on J if its
characteristic map 1, χS : A −→ {0, 1}, depends only on J .

Remark 18.16. Note that if f : A −→ T ,

(*) f depends only on ∅ iff f is constant on A.

Moreover, for S ⊆ A, S depends only on J iff for all a, b ∈ A
a ∈ S and J ⊆ [a = b] implies b ∈ S. 2

The following result yields another characterization of dependence. Its proof
is left to the reader.

Lemma 18.17. For non-empty sets {Ai : i ∈ I}, set

A =
∏
i∈I Ai and A|J =

∏
j∈J Aj.

Let πJ : A −→ A|J be the projection that forgets the coordinates outside J . Then,

for all sets T , the map

f ∈ [A|J , T ] 7−→ f ◦ πJ ∈ [A, T ],

is a natural bijective correspondence between the set of maps from A|J to T , and

the set of maps from A to T that depend only on J . 2

Recall (1.17) that C(X) is the algebra of continuous real valued maps on the
topological space X.

Proposition 18.18. Let {Xi : i ∈ I} be compact Hausdorff spaces and let
X =

∏
i∈I Xi. Then, any map in C(X) depends only on a countable subset of I.

Proof. Let

A = {h ∈ C(X) : h depends only on a finite subset of I}.
Then, A is closed under addition, multiplication and, because of (*) in Remark
18.16, contains the constant functions. Since X is compact and Hausdorff, the
following celebrated result applies :

Theorem (Stone-Weierstrass) If X is a compact Hausdorff space, any subalgebra
of C(X), containing the constant functions, is dense in C(X) with the sup norm.

Hence, A is dense in C(X), i.e., if f ∈ C(X), there is a sequence hn ∈ A, such
that hn converges uniformly to f :

limn→∞ ||hn − f ||∞ = 0,

where ||g||∞ = supx∈X |g(x)|. For n ≥ 1, let Jn ⊆f I be the subset on which hn
depends. Since the convergence is uniform, it is clear that f depends only on the
countable subset of coordinates

⋃
n≥1 Jn. �

1χS(a) = 1 iff a ∈ S.
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Exercises

18.19. A BA B is a σ-algebra if it has all countable joins and meets. Prove
that an infinite σ-algebra is uncountable. Conclude that any infinite cBa must be
uncountable, giving another proof of Corollary 18.11. 2

18.20. If X be an infinite extremally disconnected space, then there is an
injective BA-morphism f : 2N −→ B(X). 2

18.21. Let X be a topological space that contains at least two distinct points.
Let I be a set. Write S(I) for the group of permutations of I, that is, bijections
from I onto I. For each ω ∈ S(I), define

ω∗ : XI −→ XI , given by 〈xi 〉 7→ 〈xω(i) 〉.
Then

a) ω∗ is a homeomorphism.

b) ω ∈ S(I) 7→ ω∗ ∈ Homeo(X), the group of homeomorphisms of X, is an
injective group homomorphism.

c) When is the homomorphism in (b) is an isomorphism ?

d) For x, y ∈ XI , define

x E y iff there is ω ∈ S(I), such that ω∗x = y.

Then, E is an equivalence relation on XI . The class x/E is called the orbit of x
by S(I). What can be said about the space of orbits of this action, XI/S(I)? 2
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CHAPTER 19

Spectra of Rings and Lattices

In this Chapter we study the duality that between lattices and commutative
rings and topological spaces. Both instances of the duality, Stone spaces and the
spectrum of a ring, will be presented at the same time in order to underline simi-
larities and differences. In the next Chapter, we shall describe a general setting of
which both cases are particulars. References for parts of this Chapter are [2], [3],
[29], [33], [67], [25] and [34].

In this chapter, all lattices are distributive with ⊥ and >, and all
rings are commutative with 1.

We restate Theorems 4.24 and 9.5 in a way that underlines the fundamental
analogy between them.

Theorem 19.1. a) Let L be a lattice. Let F be a filter in L and S be a non-
empty ud subset of L, such that F ∩ S = ∅. Then, there is a prime filter P in L,
such that F ⊆ P and P ∩ S = ∅.
b) Let R be a ring. Let I be an ideal in R and S be a multiplicative subset of R,
such that I ∩ S = ∅. Then, there is a prime ideal P in R, such that I ⊆ P and
P ∩ S = ∅.

Definition 19.2. Let L be a lattice and R be a ring. We define
S(L) = {P : P is a proper prime filter in L}

and

Spec(R) = {P : P is a proper prime ideal in R}
called the Stone space of L and the (Zariski) prime spectrum of R, respectively.

For a ∈ L and r ∈ R, set

Sa = {P ∈ S(L) : a ∈ P} and Zr = {P ∈ Spec(R) : r 6∈ P}.
If I is an ideal in R, set

FI = {P ∈ Spec(R) : I ⊆ P}.
Let Sca = S(L) − Sa and Zcr = Spec(R) − Zr.

Notice that S⊥ = ∅ = Z0, S> = S(L) and Z1 = Spec(R).

Remark 19.3. a) By 9.12.(d), if I is a proper ideal in a ring R, then

(?)
√
I =

⋂
{P ∈ Spec(R) : I ⊆ P} =

⋂
r∈I Z

c
r .

178
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Recall that η =
√

0, the intersection of all prime ideals in R, is the ideal of nilpotent
elements in R (Corollary 9.13). For r ∈ R, (r) is the (principal) ideal generated
by r, (r) = {αr : α ∈ R}.
b) To deal with quotients by ideals, we set down some basic terminology. If I is an
ideal in the ring R, R/I denotes the quotient ring, whose elements are equivalence
classes r/I, r ∈ R. Recall that

r/I = s/I iff (r − s) ∈ I.

Let πI : R −→ R/I be the quotient homomorphism, πI(r) = r/I. If r, s ∈ R, we
may write r ≡ s mod I 1 is synonymous with r/I = s/I. It is well known that all
ring congruences on R are of the form ∗/I, for some ideal I ⊆ R.

If S ⊆ R is a subset of R, set

S/I = {s/I ∈ R/I : s ∈ S} = πI(S).

If (S) is the ideal generated by S in R, then (S)/I is an ideal, exactly the ideal
generated by S/I in R/I, that is :

(S)/I = (S/I).

In particular, (r)/I = (r/I), for all r ∈ R. 2

Lemma 19.4. For ideals I and J in a ring R,

a)
√
I ⊆

√
J iff FJ ⊆ FI

2.

b) I/η ⊆ J/η ⇒
√
I ⊆

√
J .

Proof. Item (a) is clear from (?) in 19.3; for (b), let P ∈ Spec(R) be such
that J ⊆ P ; the hypothesis in (b) means that for every r ∈ I, there is s ∈ J such
that (r − s) ∈ η. Since every prime contains η, we get I ⊆ P and the conclusion
follows from (a). �

Proposition 19.5. Let L, L′, L′′ be lattices, and let R, R′, R′′ be rings. Let
a, b be elements of L and r, s be elements of R.

a) Sa ∩ Sb = Sa∧b, Sa ∪ Sb = Sa∨b and Zr ∩ Zs = Zrs.

b) a ≤ b iff Sa ⊆ Sb; a = b iff Sa = Sb.

c) Zr ⊆ Zs iff
√
r ⊆
√
s;
√
r =
√
s iff Zr = Zs.

d) (r/η) = (s/η) ⇒ Zr = Zs.

e) A lattice morphism, L
f−→ L′, induces a map

fS : S(L′) −→ S(L), given by P 7→ f−1(P ),

such that for all a ∈ L, fS
−1(Sa) = Sf(a). Further, if L′

g−→ L′′ is a lattice
morphism, then (f ◦ g)S = fS ◦ gS.

f) A ring homomorphism, R
f−→ R′, induces a map

fZ : Spec(R′) −→ Spec(R), given by P 7→ f−1(P ),

such that for all r ∈ R, fZ
−1(Zr) = Zf(r). Further, if R′

g−→ R′′ is a ring homo-
morphism, then (f ◦ g)Z = fZ ◦ gZ .

1Read r is congruent to s modulo I.
2Notation as in 19.2.
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Proof. a) is immediate from the definitions of prime filter and prime ideal.
In the lattice case, primeness is needed only to prove that S(∗) preserves joins.

b) By (a)

a ≤ b iff a = a ∧ b ⇒ Sa = Sa∧b = Sa ∩ Sb ⇒ Sa ⊆ Sb.

For the converse, if a ≤ b is false, then the filter a→ and the ideal b← are disjoint;
by 19.1.(a), P ∈ Spec(R), such that a ∈ P and b 6∈ P , that is, P ∈ (Sa − Sb). (c)
and (d) follow from 19.4.

e) By Lemma 4.22.(c) fS is indeed a map from S(L′) to S(L). The assertion about
composition is immediate. For a ∈ L, we have

Q ∈ fS−1(Sa) iff fS(Q) ∈ Sa iff f−1(Q) ∈ Sa iff fa ∈ Q iff Q ∈ Sfa.

f) It is clear that the inverse image of a proper prime ideal by a ring homomorphism
is a proper prime ideal, and that composition behaves as asserted. The argument
to prove that fZ

−1(Zr) = Zf(r) is exactly as in (e), with 6∈ substituted for ∈ in
the appropriate places. �

By Proposition 19.5.(a),

{Sa}a∈L and {Zr}r∈R
are basis for topologies on S(L) and Spec(R), respectively, called the Stone topol-
ogy on S(L) and the Zariski topology on Spec(R).

By items (e) and (f) in Proposition 19.5, the rules 3

(Stone)


S : D −→ Top

L 7−→ S(L)

f ∈ [L, L′] 7→ fS ∈ [S(L′), S(L)]

(Spec)


Spec : CR −→ Top

R 7−→ Spec(R)

f ∈ [R, R′] 7→ fZ ∈ [Spec(R′), Spec(R)]

are contravariant functors, where Top is the category of topological spaces and
CR is the category of commutative rings with identity; S is the Stone space functor
and Spec is the Zariski spectrum functor. As will be seen later, these functors take
their values in a subcategory of Top, that of spectral spaces and spectral maps.

Since η is the intersection of all prime ideals in a ring R, we get

Corollary 19.6. Let η be the ideal of nilpotent elements in a ring R and
let πη : R −→ R/η be the quotient homomorphism. Then, (πη)Z =def η∗ is a
homeomorphism of Spec(R/η) onto Spec(R).

Proof. Since η∗ is continuous, it suffices to check that it is open and bijective
(1.18).

η∗ is a bijection : By the fundamental theorem of homomorphisms for rings (see

[2], Chapter 1), there is a bijective correspondence between ideals in R/η and
ideals in R containing η, given by

3[A, B] is the set of morphisms from A to B; see 16.1.
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J ⊆ R/η 7→ πη
−1(J) ⊆ R, with inverse K ⊆ R 7→ K/η.

Hence, it is sufficient to verify that the above correspondence preserves primeness.
Given P ∈ Spec(R), P/η is a proper ideal in R/η. Suppose r/η · s/η ∈ P/η; hence,
there is t ∈ P , such that (rs − t) ∈ η ⊆ P and so rs ∈ P . Since P is prime, r ∈ P
or s ∈ P , and P/η is a prime ideal. Since inverse image preserves primeness, η∗ is
indeed a bijection.

η∗ is open : It is enough to show that for r ∈ R, η∗(Zr/η) is open in Spec(R). We

prove, in fact, that it is equal to Zr. For (r/η) ∈ R/η, we have,

η∗(Zr/η) = {η∗(Q) : Q ∈ Spec(R/η) and (r/η) 6∈ Q}
= {P ∈ Spec(R) : (r/η) 6∈ P/η}
= {P ∈ Spec(R) : r 6∈ P} = Zr,

ending the proof. �

Whenever a lattice has additional structure, this is reflected in its Stone space.
Recall that A is the closure of the subset A in a topological space.

Proposition 19.7. Let L be a distributive lattice, a, b ∈ L and A ⊆ L.

a) If a → b = max {x ∈ L : x ∧ a ≤ b} exists in L, then

Sa→b = Sa → Sb,

where the last → is that in Ω(S(L)). If L is a Heyting algebra, the map a 7−→ Sa
embeds L as a sub-HA of Ω(S(L)).

b) If a ∈ B(L), then Sa is clopen in S(L) and Sca = S¬a.

c) If L is a BA, S(L) is a totally disconnected Hausdorff space.

d) If
∨
A exists in L, then

⋃
a∈A Sa ⊆ S∨

A. Moreover,

(1) If L is a [∧,
∨

]-lattice, then S∨
A ⊆

⋃
a∈A Sa.

(2) If L is a Boolean algebra, then S∨
A =

⋃
a∈A Sa.

e) If
∧
A exists in L, then S∧

A = int (
⋂
a∈A Sa).

Proof. a) Since a ∧ (a → b) ≤ b, 19.5.(a) entails

Sa ∩ Sa→ b ⊆ Sb.

Hence, Sa→b ⊆ Sca ∪ Sb, and so Sa→b ⊆ int (Sca ∪ Sb) = Sa → Sb in S(L). To
prove the reverse containment, suppose Sc ⊆ Sca ∪ Sb; then

Sa ∩ Sc = Sa∧c ⊆ Sb,

and 19.5.(b) yields a ∧ c ≤ b. Then, c ≤ (a → b), and so Sc ⊆ Sa→b. Since the set
of Sc, c ∈ L, is a basis of opens in S(L), it follows that int (Sca ∪ Sb) = Sa→b, as
needed. By item (a) and (b) in 19.5, the map a ∈ L 7→ Sa ∈ Ω(S(L)) is a lattice
embedding. By what has just been proven, if L is a HA, it will be a HA-embedding.

b) An immediate consequence of 19.5.(a).

c) If L is a BA, given distinct prime filters, F , G in L, 5.12 furnishes a ∈ L, such
that a ∈ F and ¬ a ∈ G. Thus, F ∈ Sa, G ∈ S¬a with Sa ∩ S¬a = ∅, and S(L) is
Hausdorff. It follows immediately from (b) that {Sa : a ∈ L} is a basis of clopens
for the Stone topology in S(L), showing that it is totally disconnected (Definition
18.1).
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d) The first assertion follows from 19.5.(b). If L is a [∧,
∨

]-lattice, to show

that S∨
A ⊆

⋃
a∈A Sa, it suffices to prove that, for P ∈ S∨

A and b ∈ P ,
Sb ∩

⋃
a∈ A Sa 6= ∅. Since P is a proper filter and both b and

∨
A are in P , we

get b ∧
∨
A =

∨
a∈ A (b ∧ a) 6= ⊥. Thus, there is a ∈ A, such that b ∧ a 6=

⊥. Hence, Sb ∩ Sa 6= ∅, as needed to verify (1). For (2), recall that a BA is a

[∧,
∨

]-lattice and every prime filter is maximal (8.7, 5.14). If P ∈
⋃
a∈ A Sa, then

the [∧,
∨

]-law and the fact that P is proper, imply that P ∪ {
∨
A} has the fip.

Since P is maximal, this forces
∨
A ∈ P . Therefore,

⋃
a∈ A Sa ⊆ S∨

A.

e) Is an immediate consequence of the fact the collection Sa, a ∈ L, is a basis for
S(L) and Proposition 19.5.(b). �

As observed in the proof of 19.7.(a), 19.5 entails that any distributive lattice is
isomorphic to a sublattice of parts of a set : the map a 7→ Sa is a lattice isomorphism
from L into 2S(L); by 19.7.(e), this mapping is in fact an injective [∨,

∧
]-morphism

from L into Ω(S(L)). Moreover, when L is a HA, this [∨,
∧

]-morphism is also a
HA-morphism. Another consequence of these results is a famous Theorem of M.
Stone : every Boolean algebra is isomorphic to a subalgebra of parts of a set. We
shall return to this theme, registering the full statement Stone’s Theorem with
due pomp and circumstance (Theorem 20.5).

Proposition 19.8. Let L be a lattice and let R be a ring. The Stone space
of L and the Zariski spectrum of R are T0 compact spaces and for all a ∈ L and
r ∈ R, Sa and Zr are compact opens. Moreover, in both cases, the set of compact
opens is a sublattice of the frames Ω(S(L)) and Ω(Spec(R)), respectively.

Proof. If P 6= Q are prime filters in S(L), then P 4 Q 6= ∅; hence, there is
a ∈ L, such that either P ∈ Sa and Q 6∈ Sa, or Q ∈ Sa and P 6∈ Sa. Thus, S(L)
is T0. The argument for Spec(R) is analogous.

Since S(L) = S> and Spec(R) = Z1, we shall show that each Sa and each Zr,
a ∈ L and r ∈ R, is compact. In both cases it is enough to prove that coverings
by basic opens have finite subcoverings.

For a ∈ L, suppose that bi, i ∈ I, are such that Sa ⊆
⋃
i∈I Sbi . Let K be the

ideal generated by the bi, i ∈ I, that is (Lemma 3.13.(b))

K = {c ∈ L : c ≤
∨
j∈ J bj , J ⊆f I}.

If the filter a→ had empty intersection with I, Theorem 19.1.(a) would yield a
prime filter P , such that a ∈ P and bi 6∈ P , i ∈ I, an impossibility since the union
of the Sbi covers Sa. Therefore, a ∈ K, and there is a finite J ⊆ I, such that
a ≤

∨
j∈J bj . But then, Sa ⊆

⋃
j∈ J Sbj , verifying that Sa is compact.

For the ring case, suppose {r} ∪ {si : i ∈ I} ⊆ R are such that Zr ⊆
⋃
i∈I Zsi .

Let K be the ideal generated by the si, that is,

K = {t ∈ R : t =
∑
j∈J αjsj , with J ⊆f I and αj ∈ R}.

If {rn : n ∈ N} had empty intersection with K, 19.1.(b) yields a prime ideal P ,
such that si ∈ P , while r 6∈ P , which is impossible because the Zsi cover Zr. Thus,
for some n ∈ N and some J ⊆f I, we have

rn =
∑
j∈J αjsj ,
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with αj ∈ R. Now, if P is a prime ideal such that r 6∈ P , then for some j ∈ J ,
sj cannot be in P . Otherwise, rn ∈ P , forcing r ∈ P . Hence, Zr ⊆

⋃
j∈J Zsj ,

as needed. To finish the proof, note that the finite union of compacts is always
compact. The crucial point is that, both in the lattice and in the ring case, what
has just been proven and 19.5.(a) assure that the finite intersection of compact
opens is compact. �

The proof of 19.8 in the ring case yields

Corollary 19.9. Let R be a ring and {b} ∪ {cj : j ∈ J} ⊆ R. The following
are equivalent :

(1) Zb ⊆
⋃
j∈J Zcj ;

(2) b is in the radical of the ideal generated by {cj : j ∈ J}. 2

A natural question is if Sa and Zr are a Stone space and a Zariski spectrum,
respectively. Although an affirmative answer follows from general results 4, we shall
give explicit descriptions in each case.

Proposition 19.10. If L is lattice, Sa is homeomorphic to S(a←), ∀ a ∈ L.

Proof. Note that the principal ideal a← is a distributive lattice with the
same bottom as L and > = a. We may of course assume that a 6= >L, otherwise
there is nothing to prove. Hence, a← is not a sublattice of L. Nevertheless, the
maps {

P ∈ Sa 7−→ α(P ) = P ∩ a←;

f : L −→ a←, f(x) = x ∧ a,

are respectively, a function from Sa into S(a←) and a lattice morphism from L
onto a←. If fS : S(a←) −→ (L) is the continuous Stone dual of f , note that

ImfS ⊆ Sa
because any prime filter in a← contains a (it is > in a←). Consequently, fS is a
continuous map from S(a←) into Sa ⊆ S(L). We shall show that

α ◦ fS = IdS(a←) and fS ◦ α = IdSa . (*)

If R ∈ S(a←), then

fS(R) = f−1(R) = {x ∈ L : x ∧ a ∈ R} (**)

and so, it is easily established that

α(fS(R)) = fS(R) ∩ a← = R,

verifying the first equation in (*). For the second, let P be a prime filter in Sa.
Then, since a ∈ P , (**) yields

fS(P ∩ a←) = {x ∈ L : x ∧ a ∈ (P ∩ a←)} = {x ∈ L : x ∧ a ∈ P}
= {x ∈ L : x ∈ P} = P ,

completing the proof of (*). Hence, α is a bijection, with a continuous inverse fS .
To end the proof it is now enough to check that α is continuous. If b ≤ a, to make
matters clearer, write (momentarily)

4Every spectral space is the Stone space of a distributive lattice and Zariski spectrum of a
commutative ring with identity; see 20.5 for the lattice case.
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Tb = {R ∈ S(a←) : b ∈ R}
for the basic compact open determined by b in S(a←). Then,

α−1(Tb) = Sb.

Indeed, by 19.5.(e), we have f−1
S (Sb) = Tfb = Tb, and so the equations in (*) entail

α−1(Tb) = α−1(f−1
S (Sb)) = (fS ◦ α)−1(Sb) = Sb, as desired. �

For the ring case, Proposition 9.39 and Corollary 9.13 yield

Corollary 19.11. Let R be a ring.

a) If S is a multiplicative subset of R and ιS : R −→ RS−1 is the canonical ring
homomorphism of 9.36.(b), then

ιSZ : Spec(RS−1) −→ ZS =
⋂
s∈S Zs

is a homeomorphism.

b) If Zr 6= ∅ in Spec(R) and S = {rn : n ≥ 0}, then Zr is homeomorphic to
Spec(RS−1).

Proof. Item (a) is immediate from 9.39.(b). For (b), note that if Zr 6= ∅, then
r cannot be nilpotent (9.13). Hence, S = {rn : n ≥ 0} is a proper multiplicative
set and item (a) guarantees that Spec(RS−1) is homeomorphic to

ZS =
⋂
s∈S Zs = Zr,

as claimed. �

Definition 19.12. If X is a topological space, write Λ(X) ⊆ Ω(X), for the
join semilattice of compact opens in X.

Notice that if X is Hausdorff and compact, Λ(X) is precisely the BA of clopens
in X, B(X). The following result will be useful in the next Chapter.

Corollary 19.13. If L is a distributive lattice, then the map

σL : L −→ Λ(S(L)), given by a 7→ Sa,

is a lattice isomorphism.

Proof. By items (a) and (b) in 19.5, σL is an injective lattice morphism. If
U ∈ Λ(S(L)), then, since {Sb : b ∈ L} is a basis for the Stone topology, there is
B ⊆f L such that U =

⋃
b∈B Sb = S∨

B , showing that σL is a surjection. �

In general, Λ(X) is not a sublattice of Ω(X). The following example might be
useful in understanding what might go wrong.

Example 19.14. Let C = 2N be the Cantor space, as in Chapter 18. C is a
Boolean space and so Λ(C) = B(C) is a BA and a basis for its topology. Let ∗
be a point distinct from all those in C and write O for the sequence in C whose
coordinates are all equal to zero. We define a topology on X = C ∪ {∗} by the
following rule :

U ⊆ X is open iff


(i) U ∩ C is open in C

and

(ii) If ∗ ∈ U , then ∃ V ∈ νO ∩ B(C),

such that (V − {O}) ⊆ U .
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It is readily checked that this defines a topology on X. The filter of neighborhoods
of ∗, ν∗, is generated by sets of the form V∗ = (V − {O}) ∪ {∗}, where V is a
clopen neighborhood of O in C. On the other hand, the filter of neighborhoods of
all points in C remains unchanged. Hence, O and ∗ are inseparable in X, that
is, if V ∈ ν∗ and U ∈ νO, then V ∩ U 6= ∅. However, X is T1, because all points
are closed.

If V is any clopen neighborhood of O in C, then both V and V∗ are compact
in X. For V this is clear, since the topology induced in C by X is the original
topology. For V∗, let Ui, i ∈ I, be an open covering of V∗ in X and select k ∈ I,
such that ∗ ∈ Uk. Note that the complement of Uk is a compact set in C; thus,
its intersection with V∗ is a compact set in C and so can be covered by a finite
subfamily, F , of the Ui, such that U ck ∩ V∗ ⊆

⋃
F . But then, Uk ∪ F is a finite

subcovering of V∗. In particular, X is a compact T1 space and C is a compact open
set in X. In fact, the above reasoning shows that X is a compact T1 space, with
a basis of compact opens. But the set of compact opens in X is not a sublattice
of 2X : X∗ is compact open in X, C is compact open in X, but their intersection,
(C − {O}), is not compact : the family {(C − V ) : V ∈ νO} is a collection of
closed sets with the finite intersection property, whose intersection is empty.

Hence, C cannot be the spectrum of a ring, nor the Stone space of a lattice. 2

Definition 19.15. A continuous map, X
f−→ Y , of topological spaces is

spectral iff the inverse image of every compact open set in Y is compact in X.

Note that if X is compact and Y is Hausdorff, every continuous map from X
to Y is spectral (1.24). Propositions 19.5 and 19.8 yield

Corollary 19.16. If g : R −→ T is a ring homomorphism and f : L −→ P
is a lattice morphism, then gZ and fS are spectral maps. 2

Recalling Definition 2.43, Proposition 19.8 also yields

Corollary 19.17. If L is a lattice and R is a ring, then Ω(S(L)) and
Ω(Spec(R)) are compact algebraic frames. 2

We may ask when Ω(S(L)) and Ω(Spec(R)) are zero-dimensional frames. The
answers appear as Corollary 19.18 and Proposition 19.22.

Corollary 19.18. Let L be a lattice and S(L) its Stone space.

a) For a ∈ L, the following are equivalent :

(1) a is complemented in L. (2) Sa is clopen in S(L).

b) The following are equivalent :

(1) L is a Boolean algebra. (2) S(L) is Hausdorff.

Proof. a) We already know that (1) ⇒ (2) (Proposition 19.7.(c)). To prove
(2) ⇒ (1), suppose Sa is clopen in S(L). Then, the same is true of its complement
Sca; closed sets are quasi compact in any compact space and so Sca is a compact
open in S(L). Hence, there is B ⊆f L such that Sca =

⋃
b∈B Sb. But then, 19.5.(a)

yields Sca = S∨
B . From this relation we obtain
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Sa ∪ S∨
B = S> and Sa ∩ S∨

B = S⊥.

Another application of 19.5.(a) shows that
∨
B is the complement of a in L.

b) By Proposition 19.7.(c), we have (1) ⇒ (2). For (2) ⇒ (1), first observe that if
S(L) is Hausdorff, then compact sets are closed and so Sa is clopen in S(L), for
all a ∈ L. By (a), B(L) = L and L is a BA. �

To answer the question of when Ω(Spec(R)) is zero-dimensional, we intro-
duce the BA of idempotents in a ring and prove a result concerning the lifting of
idempotents.

Definition 19.19. Let R be a ring. An element e in R is idempotent if
e2 = e. Write B(R) for the set of idempotents in R.

A commutative unitary ring R is regular 5 iff for all r ∈ R, there is e ∈ B(R)
such that (r) = (e).

Remark 19.20. Notation as in 19.19, define operations ∧ and ∨ on B(R) as
follows :

e ∧ f = ef and e ∨ f = e + f − ef .

Then, B(R) is a Boolean algebra, wherein ¬ e = (1− e).
A ring homomorphism, f : R −→ R′, gives rise to a BA-morphism, B(f) :

B(R) −→ B(R′), given by e 7→ f(e). In fact, the associations

R 7→ B(R) and f 7→ B(f),

define a functor from the category CR, of commutative rings with identity, to the
category BA of Boolean algebras. 2

Proposition 19.21. Let R be a ring and I an ideal contained in η, that is
every element of I is nilpotent. Let πI be the quotient map from R to R/I. Then,
B(πI) is a BA-isomorphism from B(R) onto B(R/I).

Proof. To simplify notation, write q forB(πI). Recall that for each e ∈ B(R),
q(e) = πIe. We must show that q : B(R) −→ B(R/I) is a bijection.

If e, f ∈ B(R), then for odd integers n ≥ 1, (e − f)n = e − f . If (e − f) is
nilpotent, then e = f , and q is injective. Now let x/I be an idempotent in R/I.
We must show that there is e ∈ B(R), such that e/I = x/I. Note that if z, t ∈ R,
satisfy (z + t) = 1 and zt = 0, then both are idempotents, with t the complement
of z in B(R). We shall use this simple observation below.

Since x/I · x/I = x2/I = x/I and I ⊆ η, we conclude that

x2 − x = x(1 − x) ∈ I;

hence, this element is nilpotent, say xn(1 − x)n = 0. Then,

1 = 12n−1 = (x+ (1− x))2n−1 =
∑2n−1
j=0 cjx

2n−j−1(1− x)j ,

where the cj are the usual binomial coefficients. Set

e =
∑n−1
j=0 cjx

2n−j−1(1− x)j and f =
∑2n−1
j=n cjx

2n−j−1(1− x)j .

We have e + f = 1, while ef = 0, since all monomials of ef contain xn(1− x)n

as a factor. It remains to show that e ≡ x mod I. Observe that e ≡ x2n−1 mod

5Sometimes called von Neumann regular.
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I, since e − x2n−1 is a multiple of x(1 − x). From x ≡ x2 mod I, we get, by
successively multiplying by x on both sides of this congruence, x ≡ x2n−1 mod I,
which implies e ≡ x mod I, as desired. �

Proposition 19.22. Let R be a ring.

a) For U ⊆ Spec(R), the following are equivalent :

(1) U is clopen in Spec(R);

(2) There is e ∈ B(R), such that U = Ze.

In particular, for r ∈ R, Zr is clopen in Spec(R) iff there is e ∈ B(R) such that
(r/η) = (e/η) 6. Moreover, the map e ∈ B(R) 7→ Ze is an isomorphism from
B(R) onto the BA of clopens in Spec(R).

b) The following are equivalent :

(1) Spec(R) is a T1 space; (2) Spec(R) is Hausdorff;

(3) R/η is a regular ring.

Proof. a) If e ∈ R satisfies e(1 − e) ∈ η, then Ze is clopen in Spec(R) :
from e(1 − e) ∈ η and e + (1 − e) = 1, we get

Ze ∩ Z(1−e) = ∅ and Ze ∪ Z(1−e) = Spec(R),

and so Z(1−e) is precisely Zce . Since (r/η) = (e/η) implies
√
r =

√
e (19.4.(b)),

Proposition 19.5 assures that (2) ⇒ (1).

(1) ⇒ (2) : Note that both U and U c are open and compact. Thus, there are
S, T ⊆f R such that

U =
⋃
s∈S Zs and U c =

⋃
t∈T Zt,

and so

(*)


⋃
s∈S Zs ∪

⋃
t∈T Zt = Spec(R)

and⋃
s∈S Zs ∩

⋃
t∈T Zt = ∅.

Let I and J be the ideals generated by S and T in R, respectively, i.e.,

I = {
∑
s∈S αss : αs ∈ R} and J = {

∑
t∈T βtT : βt ∈ R}.

Fact. I ∩ J ⊆ η and I + J = R.

Proof. For the first relation, let x ∈ I ∩ J ; then,

x =
∑
t∈T βtt =

∑
s∈S αss,

for some βt, αs ∈ R. If P ∈ Spec(R), there are two alternatives : if T ⊆ P , it
is clear that x ∈ P ; if T is not contained in P then, for some t ∈ T , P ∈ Zt.
The second equality in (*) entails P 6∈

⋃
s∈S Zs, and so S ⊆ P . Consequently,

x =
∑
s∈S αss ∈ P , that is, x is in all prime ideals in R and so must be nilpotent.

To verify the equality in the statement, assume that I + J is a proper ideal in
R. Then, by 9.4.(b), there is a maximal ideal P in R such that I + J ⊆ P . Since
every maximal ideal is prime (9.4.(c)), this contradicts the first equation in (*),
ending the proof of the Fact.

By the Fact, there are u ∈ I and v ∈ J such that

(**) u + v = 1.

6Because by Proposition 19.5.(d), this condition is equivalent to Zr = Ze.
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Therefore, u2 + uv = u, with uv ∈ I ∩ J ⊆ η. Hence, u is congruent to u2 modulo
η, that is, u/η is an idempotent in R/η. Similarly, v/η is an idempotent in R/η,
in fact, v/η = (1 − u)/η, the complement of u/η in B(R/η). By 19.21, there is
e ∈ B(R) such that e/η = u/η; note that (**) implies that (1 − e)/η = v/η. By
Proposition 19.5.(d) we know that

Ze = Zu and Z1−e = Zv,

and so, to complete the proof it suffices to show that U = Zu. Since u ∈ I, say
u =

∑
s∈S αss, it follows that if P ∈ Spec(R), then

P ∈ Zu ⇔ u 6∈ P ⇒ ∃ s ∈ S such that s 6∈ P
⇒ P ∈

⋃
s∈S Zs = U ,

showing that Zu ⊆ U . Analogously, Zv ⊆ U c. Now observe that{
uv ∈ η ⇒ Zu ∩ Zv = ∅;
u + v = 1 ⇒ Zu ∪ Zv = Spec(R).

Since Zu ⊆ U and Zv ⊆ U c, it is immediate that Zu = U and Zv = U c, as desired.

We omit the straightforward verification that the map e 7→ Ze is a BA-
isomorphism.

b) It is enough to verify that (2) ⇔ (3) and that (1) ⇒ (2). By Corollary 19.6,
Spec(R) is homeomorphic to Spec(R/η). Since R/η has no nilpotent elements, we
may assume, without loss of generality, that R is nilpotent free that is, η = (0).

(2) ⇒ (3) : If Spec(R) is Hausdorff, then Zr is clopen for all r ∈ R. Therefore, by

(a), for each r ∈ R, there is an idempotent e ∈ R such that (r) = (e). But this is
exactly the definition of R being regular.

(3) ⇒ (2) : Suppose R is a regular ring. Given P 6= Q in Spec(R), assume, without

loss of generality, that Q − P 6= ∅. Choose r ∈ Q − P and e ∈ B(R) such that (r)
= (e). Then, e ∈ Q − P ; since e(1− e) = 0 and both primes in consideration are
proper, it must be true that e 6∈ P and (1 − e) 6∈ Q. Thus, P ∈ Ze, Q ∈ Z(1−e),
and Spec(R) is Hausdorff.

(1) ⇒ (2) : Write Λ for the lattice of compact opens in Spec(R). It follows from

what we have just proven that Spec(R) is Hausdorff iff Λ is a Boolean algebra,
in fact a BA isomorphic to B(R). Our tactic will be to show that Λ is a BA, by
proving that all prime filters in Λ are maximal (Proposition 5.14). For a prime
filter F ⊆ Λ, define

MF = {r ∈ R : Zr ∈ F}.
Fact. Let F and G be prime filters in Λ.

i) F ⊆ G iff MF ⊆ MG.

ii) MF is a multiplicative set in R, in fact the complement of a prime ideal in
Spec(R).

Proof. Clearly F ⊆ G implies MF ⊆ MG. For the converse, let U be a compact
open in F ; then U =

⋃n
i=1 Zai ∈ F , and so, Zai ∈ F , for some i ≤ n. Thus,

ai ∈ MF ⊆ MG and since U contains Zai , we conclude that U ∈ G.

ii) First observe that for all r, s ∈ R, we have Zr+s ⊆ Zr ∪ Zs; for if (r + s) does
not belong to a prime ideal, then either r or s are not in it. Hence, M c

F is closed
under addition. Let r ∈ M c

F and α ∈ R; since Zαr = Zα ∩ Zr and Zr 6∈ F , it
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follows that Zαr 6∈ F , and so αr ∈ M c
F . We have shown that M c

F is an ideal in
R. It follows immediately from the definition of filter and 19.5.(a), that MF is a
multiplicative set containing 1. But then, M c

F must be a proper prime ideal in R,
ending the proof of the Fact.

To finish the proof, note that by 19.26.(d), Spec(R) is T1 iff every prime ideal
in R is maximal. If F ⊆ Λ is not maximal, let G be a proper prime extension of
F . Then, M c

G is properly contained in M c
F , contradicting the maximality of the

latter. Hence, all prime filters in Λ are maximal and Λ is a BA, as desired. �

For future reference, we register

Corollary 19.23. The Stone space of a Boolean algebra, and the prime
spectrum of regular rings, are Boolean spaces. 2

We shall later see that a space is Boolean iff it is the Stone space of a BA.

Recall that a space is connected if it cannot be written as a disjoint union of
non-empty opens. Hence,

Corollary 19.24. Spec(R) is connected iff B(R) = {0, 1}; S(L) is con-
nected iff B(L) = {⊥, >}.

Exercises

19.25. Let R be a ring, I, J ideals in R and r ∈ R. Notation is as in 19.2.

a) F(r) = Zcr .

b) FI is a closed set in Spec(R) with the Zariski topology.

c) I ⊆ J iff FJ ⊆ FI .

d) FI = FJ iff
√
I =
√
J .

e) There is natural and order reversing bijective correspondence between the closed
sets in Spec(R) and radical ideals in R.

f) Describe the relations between closed sets, open sets and ideals in S(L). 2

19.26. Let L be a lattice and R a ring.

a) If P , Q ∈ S(L), then P ∈ {Q} iff P ⊆ Q.

b) If P , Q ∈ Spec(R), then P ∈ {Q} iff Q ⊆ P .

c) The following are equivalent for a distributive lattice L :

(1) S(L) is a T1 space. (2) L is a Boolean algebra.

(3) Every prime ideal in L is maximal. (4) S(L) is a Hausdorff space.

d) Let MSpec(R) be the set of maximal ideals in Spec(R) and mS(L) be the set
of minimal prime filters in S(L).

(1) A point in Spec(R) (S(L)) is closed iff it is in MSpec(R) (resp., mS(L)).

(2) MSpec(R) and mS(L) are dense compact sets in Spec(R) and S(L), re-
spectively, which are T1 in the induced topology.

(3) What can be said about maximal filters in S(L) and minimal prime ideals
in Spec(R) ? 2

F. Miraglia. An Introduction to Partially Ordered Structures and Sheaves. Lógica no Avião.



CHAPTER 20

Spectral Spaces and Stone Duality

In order to unify the topological properties that were disclosed in the preceding
chapter we introduce

Definition 20.1. A topological space T is spectral iff

[spec 1] : T is T0 and quasi-compact.

[spec 2] : The set of quasi-compact opens in T , Λ(T ), is a sublattice and a basis
of Ω(T ).

[spec 3] : Every non-empty irreducible closed set has a generic point.

Definition 12.8 describes the concepts of irreducibility and generic point. In
fact, many of the results of Chapter 12 will be used here.

Recall (19.15) that a continuous map is spectral if the inverse image of a quasi-
compact open is quasi-compact. Spectral spaces and spectral maps constitute a
category, written Spec. Since any continuous function between Boolean spaces is
spectral, BTop, the category of Boolean spaces is a full subcategory of Spec.

By 12.12, every spectral space is sober. In fact, spectral is the same as sober
and the set of quasi-compact opens is both a sublattice and a basis of its topology.

Theorem 20.2. The Stone space of a distributive lattice and the Zariski
spectrum of a commutative ring are spectral spaces. If L is a distributive lattice
and R is a commutative ring

a) S(L) is Hausdorff iff S(L) is T1 iff L is a BA.

iff S(L) is a Boolean space.

b) Spec(R) is Hausdorff iff Spec(R) is T1 iff R is a regular ring

iff every prime ideal in R is maximal

iff Spec(R) is a Boolean space.

Proof. By 19.8, 19.18 and 19.22, the only condition still to verify is that
irreducible closed sets have generic points. For the lattice case, the method of proof
is the same as that of Proposition 12.11. Therefore, we leave the details of this
case to the reader and turn to the ring case.

Let K be a non-empty irreducible closed set in Spec(R) and define P =
⋂
K.

Suppose rs ∈ P ; then for all Q ∈ K, Q ∈ Zcr ∪ Zcs . The irreducibility of K requires
that K ⊆ Zcr or K ⊆ Zcs . Hence, either r or s belongs to all primes in K, i.e., is in

P . This proves that P is prime, as well as that K ⊆ {P} (19.26.(b)). Now, note

190
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that a basic open Zr is disjoint from K iff r ∈ P =
⋂
K. Thus, every basic open

containing P has non-empty intersection with K. Hence, P ∈ K = K. �

The reader will find in [67] many interesting examples of spectra of rings.

Remark 20.3. In Chapter 19 we defined the Stone space functor,

S : D −→ Spec.

By Corollary 19.13, if L is a distributive lattice, we have a natural isomorphism
σL : L −→ Λ(S(L)), given by a 7→ Sa. We now construct a contravariant functor

Λ : Spec −→ D,

as follows : if X is a spectral space and X
f−→ Y is a morphism of spectral spaces,

define

∗ Λ(X) is the distributive lattice of quasi-compact opens in X;

∗ Λ(f) : Λ(Y ) −→ Λ(X) is given by U 7→ f−1(U).

The fact that f is spectral guarantees that this is well defined, while the preserva-
tion of all set theoretic operations by inverse image assures that Λ(f) is a lattice
morphism. Clearly,

Λ(IdX) = IdΛ(X) and Λ(f ◦ g) = Λ(g) ◦ Λ(f). 2

Proposition 20.4. For a spectral space X, define

λX : X −→ S(Λ(X)), by λX(x) = νx ∩ Λ(X),

that is, λX(x) is the prime filter of quasi-compact open neighborhoods of x in X.
Then, λX is a homeomorphism of X onto S(Λ(X)), such that for all compact open
U in X, λX(U) = SU .

Proof. Since X is T0 and Λ(X) is a basis for the topology on X, it is clear
that λX is injective; it remains to show that it is surjective, continuous and open.
For surjectivity, let F be a prime filter in Λ(X). Let G be the filter generated by
F in Ω(X), that is,

G = {U ∈ Ω(X) : ∃ V ∈ F such that V ⊆ U}.
Fact. G is a point in Ω(X) (12.1).

Proof. Suppose S ⊆ Ω(X), satisfies
⋃
S ∈ G. Fix a compact V ∈ F , such that

V ⊆
⋃
S. For each U ∈ S, we may write U =

⋃
k∈IU Wk, with Wk ∈ Λ(X), for

all k ∈ IU . Therefore, ⋃
S =

⋃
k∈I Wk,

with I =
⋃
U∈S IU . By compactness, there are k1, . . . , kn ∈ I with V ⊆

⋃n
i=1 Wki .

Thus,
⋃
i≤n Wki ∈ F ; since F is prime, there is i ≤ n such that Wki ∈ F . If we

select U ∈ S, such that Wki ⊆ U , then U ∈ G, as needed.

SinceX is sober (12.6), there is x ∈X, such that νx =G; then, νx ∩ Λ(X) = F ,
showing that λX is onto S(Λ(X)).

For U ∈ Λ(X), we have SU = {F ∈ S(Λ(X)) : U ∈ F}. If x ∈ U , then it is
clear that U ∈ νx ∩ Λ(X), that is λX(x) ∈ SU . Hence, λX(U) ⊆ SU . The reverse
containment follows from the fact that λX is surjective. For if F ∈ SU , there is
x ∈ X such that λX(x) = F = νx ∩ Λ(X), and so x ∈ U . Since λX is bijective,
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the equality λX(U) = SU , U compact open in X, implies that it is continuous and
open, ending the proof. �

Our discussion has led to the fundamental

Theorem 20.5. (M. Stone) The functors S and Λ establish a duality 1 between
the categories D and Spec, which restricts to a duality between the categories BA
and BTop. There are natural equivalences

σ : IdDDD −→ Λ ◦ S and λ : IdSpecSpecSpec −→ S ◦ Λ,

that is

[lat] : For all L ∈ Ob(D), σL : L −→ Λ(S(L)) is an isomorphism. For all lattice

morphisms L
f−→ P the diagram below left is commutative.

P

L

?

- Λ(S(L))

f

σL

Λ(S(P ))

Λ(fS)

σP

?
- Y

X

?

- S(Λ(X))

f

λX

S(Λ(Y ))

(Λ(f))S

λY

?
-

[spec] : For all X ∈ Ob(Spec), λX : X −→ S(Λ(X)) is a homeomorphism. For
all spectral maps, f : X −→ Y , the diagram above right is commutative.

Proof. The only statements that remain to be verified are the commuta-
tivity of the diagrams in [lat] and [Spec], which follow straightforwardly from the
definitions of the concepts involved. �

By Theorem 20.5, every BA is isomorphic to the BA of clopens of its Stone
space and every Boolean space X is homeomorphic to the Stone space of a BA,
namely S(B(X)).

We shall now develop some applications of Stone duality for Boolean algebras.
We start with the construction of the Booleanization of a topological space.
Since we are also interested in how closed sets behave in this process, we introduce

Definition 20.6. Let F ⊆ K be non-empty closed sets in a topological space
X. K is an essential extension of F , if there is a clopen U in X, such that
U ∩ F = ∅ and U ∩ K 6= ∅.

If X has a basis consisting of clopen sets, every extension is essential. On the
other hand, in the real unit interval, every extension is inessential.

Theorem 20.7. Let X a topological space. Then, there is a Boolean space
γX, together with a continuous function, γ : X −→ γX, such that

a) For all u ∈ B(X), γ−1(Su) = u.

b) The image of γ is dense in γX.

1As in 16.25. The functor Λ is defined in 20.3; the functor S by condition (Stone) in page 180.

F. Miraglia. An Introduction to Partially Ordered Structures and Sheaves. Lógica no Avião.



Chapter 20. Spectral Spaces and Stone Duality 193

c) For all Boolean spaces Y and continuous maps X
f−→ Y , there is a unique

continuous map, γf : γX −→ Y , such that the diagram below is commutative :

X - γX

f γf

Y

γ

A
A
A
A
AU

�
�
�
�
��

d) For F closed in X, define

γF =
⋂
{u : u is clopen in γX and F ⊆ γ−1(u)}.

Then, F 7→ γF is an increasing map from closed sets in X to closed sets in γX.
Moreover, for closed sets F ⊆ K in X, K is an essential extension of F iff
γF 6= γK.

e) For all u ∈ B(X), γu is (naturally homeomorphic to) Su ⊆ γX 2.

Proof. Let B(X) be the BA of clopens in X and let γX be the Stone space
of B(X). For x ∈ X, consider the set γ(x) = {u ∈ B(X) : x ∈ u}; clearly, γ(x) is
closed under finite intersections and contains all supersets of any of its elements.
It is also clear that for all v ∈ B(X), either v or its complement is in γ(x). Thus,
γ(x) is an ultrafilter on B(X), that is, a point of γX. Define γ : X −→ γX by
x 7−→ γ(x). Recalling that the basic clopens of γX are given by

Su = {F ∈ γX : u ∈ F}, u ∈ B(X),

then γ−1(Su) = {x ∈ X : u ∈ γ(x)} = u. Hence, γ is continuous and its image is
dense in γX. Now let f : X −→ Y be a continuous map from X to the Boolean
space Y . Inverse image by f induces a BA-morphism from B(Y ) to B(X); by
Stone duality, this BA-morphism induces a continuous map, γf : γX −→ Y , such
that

1. For all F ∈ γX, γf(F) =
⋂
{w ∈ B(Y ) : f−1(w) ∈ F}.

2. For all w ∈ B(Y ), (γf)−1(w) = f−1(w).

Because Y is compact and has a basis of clopens, the intersection of clopens in the
right-hand side of (1) has exactly one point. If x ∈ X, note that f(x) belongs to all
clopen w such that x ∈ f−1(w), or equivalently, f−1(w) ∈ γ(x). Thus, γf(γ(x))
= f(x). The fact that continuous functions with dense image in a Hausdorff space
are epimorphisms in HTop (16.38.(c)) guarantees the uniqueness of γf , proving
of items (a), (b) and (c). Item (d) is straightforward and left to the reader. For (e),
if u ∈ B(X), (a) and items (a) and (b) in 19.5 guarantee that γ−1 establishes an
isomorphism between B(u) and B(Su). Since Su is a Boolean space, Stone duality
(20.5) yields γu = S(B(u)) = S(B(Su)) = Su, completing the proof. �

Definition 20.8. The space γX constructed in Theorem 20.7 is called the
Booleanization of X.

2Here u is considered as a topological space, with the induced topology.
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Booleanization is a functor from Top to Btop. If f : X −→ Y is a continuous
function, then f∗|B(Y )

is a BA morphism from B(Y ) to B(X). Hence, the Stone

dual of f∗|B(X)
yields a continuous map

γf : γX −→ γY

that describes the operation of the functor γ on morphisms in Top.

Recall (1.17) that C(X,Y ) is the set of continuous maps from X to Y . Let

[Cb] Cb(X,Y ) = {f ∈ C(X,Y ) : Imf is compact in Y }.
For u ∈ Ω(X), recall that f|u : u −→ Y is the restriction of f to u. Since Imf|u
⊆ Imf and closed subsets of a compact set are compact, ·|u is also map from

Cb(X,Y ) to Cb(u, Y ). The results in 1.24 entail that Cb(X,Y ) is C(X,Y ) whenever

∗ Y is compact or ∗ X is compact and Y is Hausdorff.

As an application of the Booleanization functor, we prove

Proposition 20.9. Let X be a topological space and Y a totally disconnected
space (18.1). For each v ∈ Ω(γX), the map

αv : Cb(v, Y ) −→ Cb(γ−1(v), Y ), given by αv(f) = f ◦ γ,

is an isomorphism, such that if v′ ⊆ v are opens in γX, the following diagram is
commutative :

Cb(v′, Y )

Cb(v, Y )

?

- Cb(γ−1(v), Y )

·|v′

αv

Cb(γ−1(v′), Y )

·|v′

αv′

?
-

In particular, for all u ∈ B(X), C(Su, Y ) is isomorphic to Cb(u, Y ).

Proof. Since Y is Hausdorff and the image of X by γ is dense in γX, it
follows from 16.38.(c) that αv is injective, for all v ∈ Ω(γX).

γ−1(v)
γ−→ v

f−→ Y .

It is also clear that the displayed diagram is commutative. Note that the arguments
up to now work for any Hausdorff topological space in place of Y . It is to prove
that αv is onto that we use the remaining hypotheses.

Let v ∈ Ω(γX); since γX is Boolean with a basis indexed by B(X), there is
A ⊆ B(X) such that

v =
⋃
u∈A Su.

Hence, by 20.7.(a), γ−1(v) =
⋃
u∈A u. Now let f ∈ Cb(γ−1(v), Y ); since a compact

subset of a totally disconnected space is a Boolean space, f is a continuous map
from γ−1(v) to the Boolean space K = Imf . By items (c) and (e) in 20.7, for
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each u ∈ A, there is a unique continuous γ(f|u) : Su −→ K such that the following

diagram is commutative

u - Su

f|u γ(f|u)

K

γ

A
A
A
A
AAU

�
�
�
�
���

Consider the family

F = {γ(f|u) : u ∈ A}.
Since Su ∩ Su′ = Su∩u′ (19.5.(a)) and both γ(f|u) and γ(f|u′) are extensions of

f|u∩u′ to Su∩u′ , uniqueness entails γ(f|u)|u∩ u′
= γ(f|u′)|u∩u′ , that is, the family

F is a collection of compatible partial continuous maps, defined on opens, from v
to K. Since continuity is a local property and v is the union of the Su, it follows
from 1.2 that there is a unique continuous function γf : v −→ K, such that γf |u =

γ(f|u), for all u ∈ A. Since over each u ∈ A the diagram above is commutative, the

same property must hold in γ−1(v), and so γ ◦ γf = f , completing the verification
that αv is a bijection. The final assertion is a consequence of 20.7.(a) and the fact
that Cb(Su, Y ) = C(X,Y ) because Su is compact and Y is Hausdorff. �

Proposition 20.9 applies, in particular, to the collection of all continuous maps
from a space X to a set A with the discrete topology, whose image is finite in A.

Next, we prove a beautiful result, due to M. Hochster ([28]), that ties spectral
spaces to Boolean spaces. This construction corresponds to the constructible
topology on the spectra of commutative rings.

Theorem 20.10. (Hochster) For a spectral space X, define

B = {U ∩ V c : U , V ∈ Λ(X)},
where V c is the complement of V in X. Then,

a) B is a basis for a compact Hausdorff topology on X, with which X becomes
a Boolean space, written Xc.

b) The identity map ι : Xc −→ X is spectral; ι is a homeomorphism iff X is
Boolean.

c) If Y
f−→ X is a spectral map and Y is Boolean, then f : Y −→ Xc is continuous.

Proof. (a) Since Λ(X) is a sublattice of and a basis for Ω(X), B is closed un-
der finite intersection and hence, a basis topology on X. Note that for W ∈ Λ(X),
{W , W c} ⊆ B, since X ∈ Λ(X). Thus, the topology generated on X by B is Haus-
dorff and has a basis of clopen sets. Hence, the substantive part of (a) is showing
that X is compact in newly defined topology.
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In any topological space, compact sets are closed under finite unions. Further-
more, the intersection of a compact set and a closed set is compact (1.24.(b)).
Hence, all elements of B as well as their complements, are compact in the original
topology on X. Further, since finite intersections of complements of elements in
B can be expressed as finite unions of members of B, we get the following simple,
but crucial

Fact 1. All finite intersections of sets of the form U ∪ V c, U, V in Λ(X), are
compact in (the original topology of) X.

The reader should remark the importance in all this of Λ(X) being closed
under finite intersections. Now, since B is a basis for the topology on Xc, every
closed set in Xc is the intersection of a collection of closed sets (in Xc) of the
form U ∪ V c, with U, V ∈ Λ(X). Thus, to show that Xc is compact, it enough to
verify that if A is a collection of sets of the form U ∪ V c, with U and V compact
opens in X, possessing the finite intersection property, then

⋂
A 6= ∅. Such a set

A will remain fixed throughout the remaining part of the argument. By Fact 1,
the intersection of all finite subsets of A is compact in the original topology of X.

Define

T = {F ⊆ X : F is closed in X and F ∩
⋂
B 6= ∅, for all B ⊆f A},

partially ordered by inclusion. Clearly, T is not empty since X ∈ T . Let C be a
chain in T . We show that the closed set

⋂
C is in T . To see this, fix W =

⋂
B,

B ⊆f A. For F ∈ C, F ∩ W is a non-empty closed set in W , and so, since C is a
chain, the family

{F ∩ W : F ∈ C}
has the fip. The compactness of W implies that

⋂
C ∩ W 6= ∅. By Zorn’s Lemma

(2.20), there is K minimal in T ; K is closed in X and K ∩ W 6= ∅, for all W ∈ A.

Fact 2. K is irreducible in X.

Proof. Suppose K = F ∪ G, with F and G closed in X. If for some B ⊆f A, we
had G ∩

⋂
B = ∅, then, it follows that for all finite subsets B′ ⊆ A, we must have

F ∩
⋂
B′ 6= ∅. Since K is minimal with this property, it follows that K = F . The

argument just presented is symmetric in F and G, proving that K is irreducible.

Since X is spectral, K has a generic point p, K = {p}. The proof of (a) will
be finished as soon as we show that p ∈ W , for all W ∈ A. Observe that for open
U in X,

K ∩ U 6= ∅ iff p ∈ U .

Let U ∪ V c ∈ A; if p 6∈ U , then K ∩ U = ∅, because U is open. Consider
F = K ∩ V c; F is closed and non-empty, because K ∈ T . If B is a finite subset
of A, set W =

⋂
B; then W ∩ (U ∪ V c) is the intersection of a finite subset of A

and so, since K is in T and K ∩ U = ∅, we must have

K ∩ W ∩ V c = F ∩ W 6= ∅.
Since B is an arbitrary finite subset of A, we conclude that F ∈ T . From F ⊆ K
and the minimality of K in T , it follows that F = K, and p ∈ V c, verifying (a).

Part (b) is immediate from the construction. As for (c), if the map f from
Y to X is spectral, then for all U ∈ Λ(X), f−1(U) is compact open in Y , i.e.,
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clopen. But this is just what is required for f to be continuous, when X is given
the topology in (a). �

The topology of Theorem 20.10 on Xc is called the constructible topology
associated to the spectral space X. A consequence of the above is

Corollary 20.11. If L is a distributive lattice, there is a BA B and lattice
embedding, β : L −→ B, such that for all lattice morphisms, f : L −→ B′, with B′

a BA, there is a unique lattice morphism, g : B −→ B′, such that g ◦ β = f .

B′

L

?

- B

�
�

�
�

��	

g

β

f

Proof. Let B be the BA of clopens of S(L)c; there is a natural lattice
morphism, β : L −→ B, given by a ∈ L 7→ Sa. Now Stone duality and Theorem
20.10 will complete the proof. �

Recall that a topological space is a Baire space iff the intersection of any
countable collection of dense open sets is dense. It is well known that locally
compact Hausdorff spaces and complete metric spaces are Baire spaces. In general,
T0 compact spaces are not Baire spaces. However, for spectral spaces we have

Corollary 20.12. Every spectral space is a Baire space.

Proof. By Theorem 20.10.(a), in a spectral space, any collection of compact
opens with the finite intersection property has non-empty intersection. Let {On},
n ∈ N, be a countable collection of dense opens in the spectral space X. We must
show that O =

⋂
On is dense in X. Let U be a non-empty open set in X. Since

O1 is open and dense, we can choose W1 ∈ Λ(X), such that W1 ⊆ O1 ∩ U . Now,
O2 is a dense open set, and so has non-empty open intersection with W1; select
W2 ∈ Λ(X) such that W2 ⊆ W1 ∩ O2. By induction, we construct a decreasing
sequence of non-empty compact opens in X, Wn, such that Wn ⊆

⋂n
i=1 U ∩ Oi.

But then, ∅ 6=
⋂
Wn ⊆ U ∩ O, as needed. �

The interplay between the original topology on a spectral space and the con-
structible topology has interesting consequences. To explore some of these we in-
troduce the following

Definition 20.13. A subset E of a spectral X is pro-constructible if E is
closed in the constructible topology of X.

Recall from 20.10.(a) that for a spectral space X, Xc denotes X endowed with
the constructible topology. As always, Ω(X) indicates the frame of opens in X.
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Remark 20.14. Let X be a spectral space.

a) Since the constructible topology in X is finer than its spectral topology, every
closed set in the original spectral topology is pro-constructible.

b) Because Xc is a Boolean space, with a basis of clopens given by the set B in
20.10.(a), if E ⊆ X, the following are equivalent :

(1) E is pro-constructible;

(2) E is an intersection of clopens in Xc;

(3) E is a compact subset of Xc
3;

(3) There are compact opens in X, {Ui : i ∈ I}, {Vi : i ∈ I}, such
that E =

⋂
i∈I Ui ∪ V ci .

c) It is clear that the finite intersection of pro-constructible subsets of X is
pro-constructible. Moreover, if E is pro-constructible and F ⊆ E is closed in
Xc, then F is pro-constructible. In particular, it follows from (a) that subsets
of pro-constructible sets, that are closed in the spectral topology, are also pro-
constructible. 2

Proposition 20.15. Let X be a spectral space.

a) If E 6= ∅ is a pro-constructible subset of X, which is irreducible in the spectral
topology 4, then E has a (unique) generic point.

b) If K is a pro-constructible subset of X, then, with the topology induced by X, K
is a spectral space. Moreover, the constructible topology associated to the spectral
space K is that induced by Xc on K.

Proof. Let Λ(X) be a basis of compact opens in X, that is a sublattice of
Ω(X).

a) Let E be the closure of E in the spectral topology of X. By Lemma 12.10.(b), E
is irreducible in X and so there is p ∈ E such that p is generic for E. We contend
that p ∈ E, which will complete the proof of (a). Assume otherwise; since E is
closed in Xc and

B = {U ∩ V c : U , V ∈ Λ(X)}
is a basis of clopens for the topology in Xc, there are U , V ∈ Λ(X) such that

p ∈ U ∩ V c and U ∩ V c ∩ E = ∅. (I)

Because p ∈ V c, a closed set in X, we get that E ⊆ {p} = E ⊆ V c. Hence, the
equality in (I) yields

∅ = U ∩ V c ∩ E = U ∩ E,

that is impossible because U is an open neighborhood of p ∈ E. The uniqueness
of p follows immediately from Lemma 12.10.(c).

b) It is clear that, with the topology induced by X, K is a T0 space, as well as
that

Λ(X)|K =def {U ∩ K : U ∈ Λ(X)}

3And consequently also in X.
4This is a subtle, but important point; since Xc is Boolean, its only non-empty irreducible subsets
are its points.
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is a basis and a sublattice of Ω(K) = {W ∩ K : W ∈ Ω(X)}. We must show that
for all U ∈ Λ(X), U ∩ K is compact in K. Since K is closed in Xc, U is clopen in
Xc and this last space is compact, it follows that U ∩K is compact in Xc. Now, the
fact that the constructible topology is finer than the spectral topology guarantees
that U ∩ K, with the topology induced by X, is also compact. In particular, K
itself is a compact space.

It remains to check that if E is a non-empty irreducible closed set in K, then
E has a generic point. By Remark 20.14.(c), we know that E is pro-constructible
and so the desired conclusion follows immediately from (a). It is straightforward
that the constructible topology associated to the topology induced by X on K is
that induced by Xc on K, ending the proof. �

As an application, we prove that certain limits of spectral spaces − in par-
ticular, products and projective limits − are spectral, and also determine the
constructible topology on these limits. We start with

Theorem 20.16. If Xi, i ∈ I, is a family of spectral spaces, then X =
∏
i∈I Xi,

with the product topology, is a spectral space. Moreover,

Xc =
∏
i∈I Xic,

that is, the constructible topology on X is the product of the constructible topologies
on each coordinate.

Proof. Since each Xi is a compact space, it follows from Tychonoff’s The-
orem 1.28 that X =

∏
i∈I Xi, with the product topology, is a compact space; it

is straightforward that X is T0; if Λ(Xi) is the family of compact opens in Xi,
i ∈ I, Exercise 1.32 guarantees that, with L(α) =

∏
i∈α Λ(Xi),

L = {p(U) : U ∈ L(α) and α ∈ Fin(I)}, (*)

is a basis of compact opens for the product topology on X and a sublattice of
Ω(X).

Let X =
∏
i∈I Xic be the product of the Boolean spaces that arise when the

Xi are endowed with the constructible topology. Again by Tychonoff’s Theorem,
X is compact and, in fact, a Boolean space, because by Exercise 1.32, the set

B = {p(V ) : v ∈ B(α) and α ∈ Fin(I)}, (**)

where B(α) =
∏
i∈α Bi

5, is a basis for the product topology on X, consisting of

clopen sets 6. Set

γ : X −→ X, given by γ(ξ) = ξ; (***)

since the topology on X is finer than that in X (because this is true for each
coordinate), γ is a continuous map.

For i ∈ I, we shall write πi both for the projection of X onto Xi and for the
projection of X onto Xic.

5Bi = {U ∩ V c : U , V ∈ Λ(Xi)}, as in Theorem 20.10.
6As sets, we have X = X; but it seemed advisable to give distinct names to distinct topological
spaces.
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Since X is compact, T0 and has a basis of compact opens that is a sublattice of
Ω(X), to show that it is spectral we must prove that every non-empty irreducible
closed set in X has a generic point. This is a consequence of the following:

Fact 20.17. Let E be a non-empty irreducible subset of X and let u ∈ X.
For each i ∈ I, let ui = πi(u) and Ei = πi(E)

a) u ∈ E ⇔ ∀ i ∈ I, ui ∈ Ei.
b) If E is closed in X, then ∀ i ∈ I, Ei is an irreducible pro-constructible subset
of Xi.

Proof. a) The implication (⇒) is immediate from the continuity of each πi.
For the converse, assume, to obtain a contradiction, that u 6∈ E; then, there is a
finite subset α of I and for each j ∈ α an open set Uj ⊆ XJ , so that the open
U =

∏
j∈α Uj ×

∏
i∈I\α Xi is a neighborhood of u, disjoint from E. For j ∈ α, let

Vj = Uj ×
∏
i 6=j Xi; then, U =

⋂
j∈α Vj and so E ⊆

⋃
j∈α V

c
j , a union of closed

sets in X. Since E is irreducible, for some k ∈ α we have E ⊆ V ck , i.e., E ∩ Vk = ∅;
since u ∈ Vk, this contradicts the assumption u ∈ E, establishing (a).

b) Since the topology on X is finer than that of X, E is closed, and so compact
in X. The continuity of πi : X −→ Xic entails that πi(E) is compact in Xic. Since
Xic is Hausdorff, πi(E) is closed in Xic and thus pro-constructible in Xi. With
respect to irreducibility, suppose that F1, F2 are closed sets in Xi such that

πi(E) ⊆ F1 ∪ F2.

Then, E ⊆ π−1
i (F1) ∪ π−1

i (F2); since E is irreducible in X, we conclude that

E ⊆ π−1
i (F1) or E ⊆ π−1

i (F2). (****)

Hence, (****) and the surjectivity of πi entails

πi(E) ⊆ πi(π
−1
i (F1)) = F1 or πi(E) ⊆ πi(π

−1
i (F2)) = F2,

and πi(E) is irreducible in X, completing the proof of the Fact.

Now let F be a non-empty irreducible closed in X. Fact 20.17.(b) and Propo-
sition 20.15.(a) yield, for each i ∈ I, a generic point, xi ∈ πi(F ). Let x ∈ X be the

point whose coordinates are the xi ∈ πi(F ), i ∈ I. Recalling that πi(F ) = {xi},
it follows readily from item (a) in Fact 20.17 that x belongs to F and is a generic
point for F , establishing the spectrality of X.

To finish the proof we need to verify that X is homeomorphic to Xc. In view
of item (c) of Theorem 20.10 and the fact that a continuous bijection between
compact Hausdorff spaces is a homeomorphism, it suffices to check that the con-
tinuous map γ in (***) above is spectral, which in turn reduces to verifying that
if p(U) ∈ L, then γ−1(p(U)) is compact in X. But this is clear, since γ−1(p(U)) =
p(U) ∈ B (as in (**)), in fact a clopen set in X, ending the proof. �

Theorem 20.16 and Proposition 20.15 yield

Theorem 20.18. Let 〈 I,≤〉 be a poset and let D : I −→ Spec be an I-
diagram of spectral spaces, that is, a family {Xi : i ∈ I} of spectral spaces and
spectral maps, fij : Xi −→ Xj (i ≤ j in I), satisfying for all i ≤ j ≤ k in I
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(1) fii = IdXi ;

(2) fik = fjk ◦ fij.

Xi
- Xj

fik fjk

Xk

fij

A
A
A
A
AU

�
�
�
�
��

Then, T = lim← D exists in Spec and the constructible topology on T is the limit

of the I-diagram whose vertices are the Xic and whose arrows are the fij (i ≤ j).

Proof. The proof will show that in fact the limit of D, in the category of
topological spaces, is spectral and hence the limit of D in Spec.

Let X =
∏
i∈I Xi; by 20.16, X is spectral and that Xc =

∏
i∈I Xic. Recalling

Corollary 17.12, let

T = {z ∈ X : ∀ i ≤ j in I, fij(πi(z)) = πj(z)}, (I)

endowed with the topology induced by X =
∏
i∈I Xi. We now prove

Fact 20.19. T is pro-constructible in X.

Proof. It must be verified that T is closed in Xc. Let x = (xi)i∈I be a point in
Xc, outside T . Hence, for some i ≤ j in I, we have that

xj = πj(xj) 6= fij(xi) = fij(πi(x)).

Since Xjc is a Hausdorff space, there are disjoint clopens in Xjc, Vj , V
′
j , such that

xj ∈ Vj and fij(xi) ∈ V ′j . The continuity of fij guarantees that Vi = f−1
ij (V ′j ) is

a clopen set in Xic. Let α = {i, j} and consider, with notation as in (**) in the
proof of 20.16, the clopen p(U) ∈ B, where U = 〈Vi, Vj 〉. Then, p(U) is a clopen
neighborhood of x in Xc, that is disjoint from T . Indeed, clearly x ∈ p(U); if y =
(yi)i∈I ∈ p(U), then yi ∈ Vi, while yj ∈ Vj . Hence, fij(yi) ∈ V ′j , which is disjoint
from Vj ; in particular, fij(yi) 6= yj , showing that y 6∈ T . The above reasoning has
shown that T c is open in Xc, as needed to establish Fact 20.19.

It follows immediately from Proposition 20.15 that T , with the topology in-
duced by X, is a spectral space. Moreover, the same result guarantees that Tc is
the space resulting from endowing T with the topology of Xc.

Consider the systems T = 〈T ; {πi|T : T −→ Xi}; 〉

T c = 〈Tc; {πi|Tc : Tc −→ Xic}. 〉

The proof will be completed as soon as it is verified that

T = lim← D and T c = lim← Dc, (II)

where Dc is the I-diagram having as vertices the Xic and as arrows the fij . We
shall prove the first equality in (II); the proof of the second is analogous and left
to the reader. The first step is to show that T is a cone over D, that is, for i ≤ j
in I, the diagram below left is commutative :
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T - Xi

πj |T fij

Xj

πi|T

A
A
A
A
AU

�
�
�
�
��

Y - Xi

gj
(Y) fij

Xj

gi

A
A
A
A
AU

�
�
�
�
��

For x = (xi)i∈I ∈ T , we have, by the definition of T in (I),

fij(πi(x)) = πj(x) = xj ,

and the diagram above left is indeed commutative. Next, let

Y = 〈Y ; {gi : Y −→ Xi} 〉
be a cone over D in Spec, i.e., Y is a spectral space, the gi are spectral maps
and for all i ≤ j in I, diagram (Y) above right is commutative. For y ∈ Y , define
f : Y −→ T by

f(y)(i) = gi(y),

that is, f(y) is the I-sequence whose ith-coordinate is gi(y). To check that f(y) is
indeed in T , assume that i ≤ j in I. Then, Y being a cone over D, the commuta-
tivity of diagram (Y) above yields

fij(f(y)(i)) = fij(gi(y)) = gj(y) = f(y)(j),

as needed. The uniqueness of f is straightforward. It remains to show that f is
spectral, which reduces to verifying that if p(U) ∈ L (as in (*) in the proof of
20.16), then f−1(p(U)) is a compact open in Y . Let α ∈ Fin(I) be such that U
= 〈Ui 〉i∈α; then, it is easily established that

f−1(p(U)) =
⋂
i∈α g

−1
i (Ui),

a compact open in Y because it is spectral and each gi is a spectral map. Hence,
the cone T is lim← D, ending the proof. �

Remark 20.20. a) If fact, Theorem 20.16 is a consequence of Theorem 20.18,
for the former corresponds to the case in which the poset I is discrete, i.e., i ≤ j
iff i = j. However, it seemed that the exposition would become clearer if 20.16,
that is interesting in its own right, was proven first.

For a rather comprehensive information on the category of spectral spaces, the
reader is referred to Theorem 7 and 8, as well as Propositions 9 and 10 in [28].

b) As a special case of Theorem 20.18, we obtain that a projective limit of spectral
spaces is spectral, as well as that the constructible topology on the projective limit
is the projective limit of the corresponding constructible topologies.

c) If I = ∅, then Theorems 20.16 and 20.18 correspond to the empty product,
yielding

lim← D = {∗},
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i.e., a singleton, endowed with the only possible topology it can have. Clearly, such
a space is spectral and its constructible and spectral topologies coincide since {∗}
is a Boolean space. 2

Exercises

20.21. Prove that a topological space T is Boolean iff it is spectral and
Hausdorff. 2

20.22. Show that the construction in Theorem 20.10 originates a functor from
Spec to BTop, and study its properties. 2

20.23. Let L = [0, 1] be the unit real interval considered as a complete chain.
Determine S(L) and the constructible topology on S(L).

Hint : S(L) is the disjoint union ((0, 1] × {0}) ∪ ([0, 1) × {1}) 2

20.24. Using Stone duality, show that the category Spec, of spectral spaces
and maps, is a complete and cocomplete category 7. 2

7Freyd’s Theorem 16.31 may be useful. A nice proof would generalize Theorem 20.18 and the
analogous result for colimits of I-diagrams in Spec.
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CHAPTER 21

Projective Compact Hausdorff Spaces

The first section of this Chapter discusses extremally disconnected spaces,
while in the second it will be shown that the category of compact Hausdorff spaces
has enough projectives.

1. Extremally Disconnected Spaces

We now turn to the discussion of the effect of completeness of a lattice or of a
BA on the topological properties of their Stone spaces.

Definition 21.1. A topological space X is

a) completely spectral (cs) iff it is spectral and the interior of the intersection
of any family of compact open sets is compact open.

b) extremally disconnected (ed) iff it is Hausdorff and the closure of every
open set is clopen.

From 19.7.(e) and Stone duality (20.5) we obtain

Proposition 21.2. Let L be a distributive lattice.

a) L is complete iff S(L) is a completely spectral space. Stone duality establishes
a natural bijective correspondence between complete distributive lattices and com-
pletely spectral spaces.

b) L is a complete Boolean algebra iff S(L) is a compact extremally disconnected
space. Stone duality establishes a natural and bijective correspondence between
complete Boolean algebras and compact extremally disconnected spaces. 2

If B is a Boolean algebra, there is a natural lattice morphism from B to the
cBa of regular opens in S(B) :

a ∈ B 7→ Sa ∈ B(S(B)) ⊆ Reg(S(B)).

Note that the operation of join in Reg(S(B)) involves taking the closure of a union,
but for a finite number of clopens this is just their set theoretic union. Thus, the
above map is in fact a lattice morphism. Further, it is injective and by Proposition
19.7.(d) it is a regular embedding. Since the family {Sa : a ∈ B} is a basis for
the topology on S(B), we can generalize 18.13, with the help of 14.6 :

Proposition 21.3. If B is a BA, then Reg(S(B)) is the completion of B.

If X is a set then 2X is a cBa and so its Stone space, S(2X), is a compact
extremally disconnected space, written βX.

204
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Remark 21.4. By Exercise 21.21, it is possible to map X into βX in a natural
way :

(β) x ∈ X 7−→ x→ = {A ⊆ X : x ∈ A} ∈ βX.

If X is given the discrete topology (all points are open), then the above map is
a homeomorphism of X onto its image, for all principal ultrafilters in βX are
isolated points. Further, if SA is a non-empty clopen set in βX, then A is a non-
empty subset of X and so, any of its points will determine a principal ultrafilter
in SA. This means that the image of map defined in (β) is a dense open set in
βX. Thus, the Stone space construction has given us a compactification of the
discrete space X. To develop the topological and functional analytic properties of
this construction, we need to recall the relation between filters and convergence in
a topological space. 2

Recall (§ after 2.26) that a subset S of a lattice L is a (proper) filter basis
if S 6= ∅, ⊥ 6∈ S and

∗ S is down directed, that is, for a, b ∈ S, ∃ c ∈ S such that c ≤ a ∧ b.

Definition 21.5. Let X, Y be topological spaces and let F ⊆ 2X be a filter

basis. Let x ∈ X, y ∈ Y and let X
f−→ Y be a map.

a) x is an accumulation point of F iff x ∈
⋂
A∈F A. 1

b) F converges to x (F −→ x or lim F = x) iff νx is contained in the filter
generated by F .

c) f converges to y along F (limF f = y) iff f(F ) = {f(A) : A ∈ F} is a
filter basis in Y , which converges to y.

Exercise 21.22 registers some of the fundamental properties of these concepts.
Now we prove

Proposition 21.6. Let X be a set, βX be the Stone space of 2X and let
β : X −→ βX be the map in 21.4.(β). If Y is a compact space and f : X −→ Y
is a continuous map, then f has a unique continuous extension to βX, that is,
there is g : βX −→ Y , such that g ◦ β = f .

Proof. We begin with

Fact. Let F be an ultrafilter on 2X . Then, f(F ) = {f(A) : A ∈ F} is a convergent
filter base, to a unique point in the closure of f(X). Further, if F = x→ is
principal, then f(F ) converges to fx.

Proof. Since F is a proper filter and f(A ∩ B) ⊆ f(A) ∩ f(B), f(F ) is a filter
base in Y . By compactness (21.22.(d)), this filter base has an accumulation point,

y ∈
⋂
A∈F f(A). Clearly, y ∈ f(X).

To prove that f(F ) −→ y, let V be an open neighborhood of y in Y ; since

V ∩
⋂
A∈F f(A) 6= ∅, it follows that for A ∈ F , f−1(V ) ∩ A is non-empty. Thus,

{f−1(V )} ∪ F has the fip, and the maximality of F yields f−1(V ) ∈ F . Since

1A is the closure of A.
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f(f−1(V )) ⊆ V , we conclude that V is in the filter generated by f(F ), as needed.
Because Y is Hausdorff, a filter base can have only one limit (21.22.(c)).

If F is principal, F = x→, then fx is an accumulation point of f(F ). The proof
given above shows that f(F ) converges to any its accumulation points. Hence,
f(x→) −→ fx, completing the proof of the Fact.

Define g : βX −→ Y by g(F ) = limF f ; by the Fact, g is a function and an
extension of f . It remains to prove that it is continuous. Let V be an open set
in Y ; to show that g−1(V ) is open in βX, let F be such that g(F ) ∈ V . Since
compact spaces are regular, choose W ∈ νg(F ), such that W ⊆ V and let A =

g−1(W ). Exactly as above, we can show that {A} ∪ F has the fip, and so A ∈ F ,
that is, F ∈ SA. If G ∈ SA then the construction of g yields

g(G) ∈ f(A) ⊆ W ⊆ V .

Thus, F ∈ SA ⊆ g−1(V ), as needed. Uniqueness is immediate, because X is dense
in βX and Y is Hausdorff. �

Proposition 21.6 shows that βX is the Stone-Čech compactification of the
discrete space X, since the defining properties of the Stone-Čech compactification
of X are : X is densely embedded in a compact space Y such that every continuous
function from X to any compact space can be extended to Y . Clearly, this property
determines the space Y , whenever it exists, up to homeomorphism. By Exercise
16.44, every completely regular space has a Stone-Čech compactification. However,
the method described here to obtain it is quite distinct from the one in 16.44.

Recall (1.16(a)) that the density, d(X), of a space X is the least cardinal such
that X it has a dense subset of that cardinality. Clearly, X always has a dense
subset of cardinality d(X). Note that if I is a set, then, d(βI) = card(I). Hence,
βN is separable, i.e., d(βN) = ω.

Corollary 21.7. Every compact topological space is the continuous image
of a compact extremally disconnected space of the same density. In particular, all
separable compact spaces are a continuous image of βN.

Proof. Let Y be a dense subset of cardinality d(X), of the compact space
X. By 21.6, the injection of Y into X has a continuous extension, f : βY −→ X.
Since Im f is dense and compact in a Hausdorff space, we conclude that f is onto
X. To finish the proof, just observe that d(βY ) = card(Y ) = d(X). �

By 21.7, extremally disconnected compacts are “projective generators” in the
category of compact spaces. We will discuss this theme in depth in the next section.

We now wish to show that dyadic spaces cannot be extremally disconnected,
generalizing Proposition 18.13. Our method will be distinct from that in [13]. To
this end, we prove (compare 18.20)

Lemma 21.8. Every infinite cBa contains a copy of 2N.

Proof. Let B be an infinite cBa. We start by constructing a strictly decreas-
ing sequence, an, n ≥ 0, of elements of B, such that a←n is infinite, for all n ≥ 0.
Set a0 = >; by induction, assume that we have constructed ak, with ak+1 < ak,
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0 ≤ k ≤ (n− 1). Since a←n is infinite, select b < an; because b ∨ (¬ b ∧ an) = an,
all c ∈ a←n can be written as a join of elements in b← and (¬ b ∧ an)←. It follows
that either b← or (¬ b ∧ an)← must be infinite. Set

an+1 =

{
b if b← is infinite

¬ b ∧ an otherwise

For n ≥ 0, let bn = (an ∧ ¬ an+1) = an 4 an+1. Note that the bn are all pairwise
disjoint and distinct from ⊥. Moreover,∨

n≥0 an =
∨
n≥0 bn = >.

Now define f : 2N −→ B, by

f(S) =
∨
n∈S bn.

Clearly, f(∅) = ⊥ (=
∨
∅) and f(N) = >. If S, T ∈ 2N and n ∈ (S − T ), then

bn ≤ f(S), but bn ∧ f(T ) = ⊥, showing that f is injective. Next, the distributive
law in 8.4 yields, for all S ∈ 2N,

f(S) ∧ f(N − S) =
∨
k∈S bk ∧

∨
j 6∈S bj =

∨
(k,j)∈(S×Sc) bk ∧ bj = ⊥,

because the bn are pairwise disjoint. Clearly, f(S) ∨ f(N − S) = >, and hence,
f(N − S) = ¬ f(S), that is, f preserves complements. To complete the proof, it
is enough to show that f preserves meets. Another application of 8.4 yields

f(S) ∧ f(T ) =
∨
k∈S bk ∧

∨
j∈T bj =

∨
(k,j)∈S×T bk ∧ bj

=
∨
n∈S∩T bn = f(S ∩ T ),

completing the proof. �

Remark 21.9. The proof of 21.8 applies to σ-algebras, that is BAs with all
countable joins and meets. Hence, any σ-algebra (or cBa) has cardinal larger than
or equal to that of the continuum (2N). 2

A categorical duality establishes a correspondence between dual concepts :
monic and epic, injectives and projectives, etc. In the case of Stone duality, an
embedding of BAs originates an epic in the category of Boolean spaces, which
by Exercise 16.40 and compactness, are onto continuous maps in BTop. Simi-
larly, an epic in BA, which is an onto BA-morphism by 5.17, will give rise to a
monic in BTop, that is an injective continuous map. We shall make use of these
correspondences in what follows, without further notice.

Corollary 21.10. βN is a continuous image of every extremally disconnected
space.

Proof. If X is extremally disconnected, then B(X) is a cBa (21.2.(b)). The
injective BA-morphism, f : 2N −→ B(X), of 21.8, yields, by Stone duality, a
continuous surjection, fS : X −→ βN, as desired. �

Proposition 21.11. βN is not a dyadic compact.

Proof. Assume, to get a contradiction, that there is a continuous surjection
π : 2A −→ βN. For each n ≥ 0, let Vn = π−1({n}) be the clopen inverse image of
the principal ultrafilters n ∈ βN. Clearly,
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(*)

{
(i) k 6= j ⇒ Vk ∩ Vj = ∅;
(ii)

⋃
n≥0 Vn is a dense open in 2A,

where the second property follows from the fact that N is dense in βN. By 18.5.(e),
for n ≥ 0, there is sn ∈ pFω(A, 2), such that Vn = Vsn . Let K =

⋃
n≥0 domsn.

Then K is countable. To keep notation straight, write σn for sn considered as an
element of pFω(K, 2); by Lemma 18.8, we have, for all n ≥ 0,

Vn = Vσn × 2(A−K).

Note that the collection {Vσn ; n ≥ 0} satisfies the properties in (*), with K in
place of A. For x ∈ 2K , write x̂ for the element of 2A given, for i ∈ A, by

x̂i =

{
xi if i ∈ K
1 if i 6∈ K.

Note that if x ∈ Vσn , then x̂ ∈ Vn, n ≥ 0.

Fact 1. Let (xn)n≥0 ⊆ 2K be a sequence such that xn ∈ Vσn , n ≥ 0. Then, there
is an infinite T ⊆ N, such that the sequence x̂t, t ∈ T , is convergent in 2A.

Proof. Since K is countable, 2K is metric compact. Thus, xn has a convergent
subsequence, xnk −→ x in 2K . Clearly, x̂nk converges to x̂. Now, just take T =
{nk : k ≥ 0}; since the xn are all distinct (the Vσn are disjoint), T is an infinite
subset of N.

But we also have

Fact 2. Let T be an infinite subset of N and let T = {xt : t ≥ T} be a sequence of
elements in 2A, such that xt ∈ Vt, for all t ∈ T . Let Y be a compact space. Then,
any map from T to Y can be extended to a continuous map from 2A into Y .

Proof. Let f : T −→ Y be a map; define g : N −→ Y by

g(n) =

{
f(xn) if n ∈ T
p if n 6∈ T ,

where p is any point in Y . By 21.6, g has a (unique) continuous extension,
ĝ : βN −→ Y . But then ĝ ◦ π is an extension of f to 2A.

Y

2A

?

- βN
�

�
�

�
��	

ĝ ◦ π

π

ĝ

Let T = {x̂t : t ∈ T} be the convergent sequence in Fact 1, with limit x̂. Since T
is infinite, write T = P ∪ Q, with P , Q infinite and disjoint. Let f : T −→ {0, 1}
given by

f(xt) =

{
1 if t ∈ P
0 if t ∈ Q.

By Fact 2, f has a continuous extension to 2A. But this is impossible, because the
subsequences of T indexed by P and Q both converge to x̂. �
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We can now prove a strong generalization of 18.13, namely

Theorem 21.12. If X is a dyadic space, then

a) No continuous image of X is extremally disconnected. In particular, X is not
extremally disconnected.

b) No infinite Boolean algebra of clopens in X is complete.

Proof. a) Since the class of dyadic spaces is closed under continuous images,
it follows from Proposition 21.11 and Corollary 21.10, that no continuous image
of a dyadic space can be extremally disconnected.

b) Let X be a dyadic compact and let B ⊆ B(X) be a complete subalgebra of

clopens in X. Assume, to get a contradiction, that B is infinite. Let X
γ−→ γX

be the Booleanization of X, as in 20.7. Since X is compact and the image of γ
is dense in γX, it follows that γ is surjective. Moreover, since γX is the Stone
space of B(X), the embedding B −→ B(X) yields, by Stone duality, a continuous
surjection, from γX to S(B). Hence, S(B) is a continuous image of X. But, by
21.2, S(B) is extremally disconnected, contradicting (a). �

2. Projective Compacts

In this section we discuss projectives in the category of compact Hausdorff
spaces and present the construction of the Gleason projective cover of these
spaces.

As already mentioned in section 1, a duality establishes a natural correspon-
dence between dual notions, such as epics and monics, injectives and projectives,
injective hulls and projective covers. Consequently, Stone duality provides a way
to transfer results about the category BA to the category BTop. For instance,
Theorem 20.5, Corollary 15.3, Exercise 15.5 and Corollaries 15.4 and 21.3 yield

Corollary 21.13. A Boolean space is projective in BTop iff it is extremally
disconnected. Every Boolean space X is the continuous image of S(Reg(X)), and
this compact extremally disconnected space is the projective cover of X in BTop.

We go a step further, investigating what happens in the category of compact
Hausdorff spaces. The properties in Lemma 1.10 will be of constant use.

Proposition 21.14. Let X be a compact (Hausdorff ) space.

a) The following are equivalent:

(1) X is extremally disconnected.

(2) For all open U , V in X, U ∩ V = U ∩ V .

(3) For all open U , V in X, U ∩ V = ∅ implies U ∩ V = ∅.
b) If X is a projective compact space, then X is extremally disconnected.

c) X is a projective compact space iff it satisfies :

[split] If Y is a compact space and Y
f−→ X is a onto continuous

map, there is a continuous X
g−→ Y , such that f ◦ g = IdX .
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Proof. a) (3) ⇒ (1) : If U ∈ Ω(X), since (U ∪ int U c) is dense in X, and

their intersection is empty, (3) yields

X = U ∪ int U c = U ∩ int U c, with U ∩ int U c = ∅,
proving that U is clopen in X.

(1) ⇒ (3) : Let U , V be opens in X. Note that U ∩ V = ∅, forces U ∩ V = ∅.
Since V is clopen, we get U ∩ V = ∅, verifying (3).

(3) ⇒ (2) : For U , V ∈ Ω(X), note that (U ∩ V ) and int (U − V ) are disjoint

opens, whose union is dense in U . Moreover, int (U − V ) is also disjoint from V .
Thus, taking closures we get

i) U = U ∩V ∪ int (U − V ) and ii) V ∩ int (U − V ) = ∅.
The intersection of the equation in (i) with V proves (2). Clearly, (2) implies (3).

b) Let βX be the Stone-Čech compactification of X with the discrete topology.

By 21.6, there is a continuous surjection, βX
f−→ X. Since X is projective, there

must be a continuous g from X to βX, such that f ◦ g = IdX .

βX

X

g

�
�
�

�
��	

X

IdX

f

?
-

Clearly, g is injective. Let U and V be disjoint opens in X; if it is shown that
their closures also disjoint, then (a) implies that X is extremally disconnected.
Consider A = f−1(U) and B = f−1(V); these are disjoint open sets in βX, and
so A and B are disjoint clopens in βX. Since f ◦ g = IdX , we have U ⊆ g−1(A)
and V ⊆ g−1(B), and the inverse images of A and B are disjoint and clopen in
X. It is now immediate that U must be disjoint from V .

c) If X is projective in CTop, the definition of projectiveness (16.36) implies
that X has [split]. For the converse, suppose X satisfies [split] and we are given

a continuous surjection, Y
f−→ Z and a continuous map X

g−→ Z, with Y , Z
compact spaces. Let

T = {〈x, y 〉 ∈ X × Y : gx = fy};
T is a subspace of X × Y , with the product topology. Since T is precisely the
inverse image of the diagonal of Z × Z by the continuous map

(g × f) : X × Y −→ Z × Z, 〈x, y 〉 7→ 〈 gx, fy 〉,
T is closed in X × Y and so a compact Hausdorff space. Furthermore, the restric-
tions of the projections onto the first and second coordinates to T , yield continuous
maps, α from T to X and β from T to Y , respectively. Clearly, g ◦ α = f ◦ β.
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Y

T

?

- X

β

α

Z

g

f

?
-

Since f is onto, the same is true of α. By [split], there is a continuous X
h−→ T ,

such that α ◦ h = IdX . It is straightforward to show that β ◦ h : X −→ Y satisfies
f ◦ β ◦ h = g, completing the proof that X is projective. �

Definition 21.15. A continuous surjection, X
f−→ Y , is essential iff for all

closed sets F ⊆ X, if f(F ) = Y , then F = X 2.

In the next result we use the adjoint pair associated to a continuous map
in Example 4.6, and discussed in full generality in Theorem 7.8, to give a char-
acterization of closed essential surjections. This will, of course, apply directly to
compact spaces, since all continuous maps from a compact space to a Hausdorff
space are closed. We also take the opportunity to register how this type of adjoint
pair behaves in relation to complemented elements.

Proposition 21.16. a) Let L and P be complete distributive lattices. Con-
sider the adjoint pair

L
f−→ P and P

g−→ L,

with g right adjoint to f . If f is a [∧,
∨

]-morphism and g(⊥) = ⊥, then, for all
complemented elements x in L, g(f(x)) = x.

b) Let X
f−→ Y be a continuous map and let (f∗, f∗) be the adjoint pair associated

to f as in 4.6. Then,

(1) If Im f is dense in Y , then for all V ∈ B(Y ), f∗(f
∗(V )) = V .

(2) If f is a closed continuous surjection, then

f is essential iff ker f∗ = {∅}.

Proof. a) The adjointness relation in Theorem 7.8 reads

[ad] For u ∈ L and v ∈ P , fu ≤ v iff u ≤ gv.

It follows that for all u ∈ L, g(f(u)) ≥ u. Now suppose x ∈ B(L); since f is a
lattice morphism and g a

∧
-morphism with g(⊥) = ⊥, we have

g(f(x)) ∧ g(f(¬x)) = g(fx ∧ f(¬x)) = g(f(x ∧ ¬x)) = ⊥.

Hence, u = g(fx) ≥ x, w = g(f(¬x)) ≥ ¬x and u ∧ w = 0. But this entails u = x
and w = ¬x.

b) If X
f−→ Y is a continuous map, recall that the right adjoint to the inverse

image morphism from Ω(Y ) to Ω(X) is (4.6)

f∗V =
⋃
{W ∈ Ω(Y ) : f∗W = f−1(W ) ⊆ V }.

2Some authors use the term minimal for essential surjections.

F. Miraglia. An Introduction to Partially Ordered Structures and Sheaves. Lógica no Avião.



Chapter 21. Projective Compact Hausdorff Spaces 212

Consequently, if the image of f is dense in Y , the only open set in Y whose inverse
image is empty is ∅. The conclusion in (1) now follows from (a). To verify (2),
let U be a non-empty open set in X. Because f is essential and closed, there is a
non-empty open V in Y , such that V ∩ f(X − U) = ∅. Then,

f∗V ∩ (X − U) ⊆ f∗V ∩ f−1(f(X − U)) = ∅,
showing that f∗V ⊆ U . By adjointness, V ⊆ f∗U , and so f∗U 6= ∅, proving that
the kernel of f∗ = {∅}. Conversely, if ker f∗ = {∅}, let F be a proper closed subset
of X and U = (X − F ). Since U 6= ∅, we have f∗U 6= ∅. From the adjointness
relation and f∗U = f∗U , we obtain f∗(f∗U) ⊆ U . But this means that f restricted
to F is not surjective, for there is a non-empty open in Y , whose inverse image is
disjoint from F . Hence, f is essential. �

Proposition 21.17. Let X
f−→ Y be a continuous surjection of compact

spaces.

a) There is a compact subspace T of X, such that f|T is an essential surjection

onto Y.

b) If f is essential and Y is extremally disconnected, then f is a homeomorphism.

Proof. a) Define

V = {F ⊆ X : F is closed in X and f(F ) = Y },
partially ordered by inclusion. If C is a chain in V, then, for each y ∈ Y , the
family {f−1(y) ∩ F : F ∈ C} has the fip. Since f−1(y) is compact, this implies
that

⋂
C ∩ f−1(y) 6= ∅, that is,

⋂
C ∈ V. By Zorn’s Lemma (2.20), V has a

minimal element, T . Clearly, f restricted to T is an essential surjection onto Y .

b) Since continuous maps between compact spaces are closed and f is onto Y , to
prove that f is a homeomorphism, it is enough to show that it is injective. Let z, t
be distinct points in X and assume, to get a contradiction, that fz = ft = y. Fix
disjoint opens, U ∈ νz and V ∈ νt and let f∗ : Ω(X) −→ Ω(Y ) be the right adjoint
to the inverse image morphism f∗, as in 21.16.(b). Since U ∩ V = ∅, we have
f∗U ∩ f∗V = ∅. Y being extremally disconnected, it follows that f∗U is disjoint
from f∗V . Let S and T be the clopen complements of f∗U and f∗V , respectively,
in Y . Clearly, S ∪ T = Y . Consequently, y = fz = ft must be in either S or T
and we can suppose, without loss of generality, that y ∈ T . Consider the open set
V ∩ f∗T ; it is non-empty, since it contains t. On the other hand, recalling that T
is complemented in Ω(Y ) and item (b) in 21.16, we get

f∗(V ∩ f∗T ) = f∗V ∩ f∗(f∗T ) = f∗V ∩ T = ∅,
that is impossible, because f is essential. �

If X is a compact Hausdorff space, let G(X) =def S(Reg(X)) be the Stone
space of the cBa Reg(X). G(X) is the Gleason cover of X; it is extremally
disconnected and its points are the ultrafilters in Reg(X).

If F ∈ G(X), {V : V ∈ F} is a collection of closed sets in X with the fip. By
compactness, A =

⋂
V ∈F V 6= ∅. Let x ∈ A; since X is regular, for each U ∈ νx,

we can select a regular open W ∈ νx, such that W ⊆ U . Notice that {W} ∪ F has
the fip in Reg(X); the maximality of F implies that W ∈ F . We have shown (21.5)
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that the filter generated by F in Ω(X) (or 2X) contains νx, that is, F −→ x. Since
X is Hausdorff, A must consist of a single point. Therefore, we have constructed
a map

g : G(X) −→ X,

whose basic properties are described in

Proposition 21.18. With g : G(X) −→ X as above,

a) g is onto X.

b) For all open U ∈ Ω(X),

g∗U = g−1(U) =
⋃
{SV : V ∈ Reg(X) and V ⊆ U}.

In particular, g is continuous and g∗U = SU , for all U ∈ Reg(X).

c) g is an essential continuous surjection from G(X) onto X.

d) If G(X)
f−→ G(X) is a continuous map such that g ◦ f = g, then f = IdG(X).

Proof. a) Let x be a point in X; the collection of regular open neighborhoods
of x is a proper filter in Reg(X) and so can be extended to an ultrafilter F on
Reg(X). Clearly, the filter generated by F in Ω(X) contains νx, that is gF = x.

b) Let U be open in X and let F be an ultrafilter in Reg(X), such that gF ∈ U .
Let V be a regular open neighborhood of gF , such that V ⊆ U . The definition of
g implies that for all G ∈ SV , gG ∈ V ⊆ U . Hence, SV ⊆ g∗U , proving that g∗U
is open and contained in the right side of the equality stated in (b). The reverse
containment is an immediate consequence of the construction of g. The continuity
of g is clear. Observe that U is the sup, in the cBa Reg(X), of the collection of
regular V ⊆ U , such that V ⊆ U . By Proposition 19.7.(d),

SU =
⋃
{SV : V ∈ Reg(X) and V ⊆ U} = g∗ U .

(c) For U ∈ Reg(X), we have g∗U ⊆ SU ; the adjointness relation [ad] (see proof of
21.16 or 7.8) implies that U ⊆ g∗(SU ). Recalling that SU is empty iff U is empty,
that the clopens in G(X) are of the form SU , U ∈ Reg(X), and that they form a
basis for G(X), we conclude that ker g∗ = {∅}. By Proposition 21.16.(b), g is an
essential surjection.

(d) Let f : G(X) −→ G(X) be a continuous map, such that g ◦ f = g. Since
g(Im f) = X and g is an essential surjection, it follows that f is onto G(X).
Moreover, f must be essential, for if for some proper closed subset, A ⊆ G(X), we
had f(A) = G(X), then g(f(A)) = g(A) = X, contradicting the essential nature
of g. But then, the fact that G(X) is extremally disconnected implies that f is a
homeomorphism. Now, for U in Reg(X), (a) entails that g∗U dense in SU . Since
f is a homeomorphism, f∗(g∗U) is dense in the clopen set f∗(SU ). On the other
hand, g ◦ f = g yields f∗(g∗U) = g∗U . Thus, f∗(SU ) = SU , for all U ∈ Reg(X).
But the only continuous map from G(X) to G(X) that can satisfy this property
is IdG(X), ending the proof. �

We summarize our discussion in

Theorem 21.19. a) A compact Hausdorff space is projective iff it is extremally
disconnected.
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b) For all compact spaces X, the Gleason cover of X, G(X)
g−→ X, is the projective

cover of X in the category of compact spaces.

Proof. (a) By items (b) and (c) in Proposition 21.14, it is enough to show

that if X is extremally disconnected, every continuous surjection Y
f−→ X has a

section that is, a continuous g : X −→ Y , such that f ◦ g is the identity on X.
By 21.17.(a), there is a closed subset F of Y , such that h = f|F : F −→ X is an

essential surjection. Since X is extremally disconnected, part (b) of 21.17 implies
that h is a homeomorphism. The inverse of h provides the desired continuous
section of f .

(b) Let Y
f−→ X be a continuous surjection, with Y compact and extremally

disconnected. Since Y is projective, there is a continuous map g : Y −→ G(X),
such that g ◦ g = f . It remains to show that g is onto. Since G(X) is also projective,
there is h : G(X) −→ Y , such that f ◦ h = g. From g ◦ g = f , we get g ◦ (g ◦ h)
= g, with g ◦ h a continuous map from G(X) to G(X). By Proposition 21.14.(d),
g ◦ h = IdG(X). Hence, g is onto G(X) and the proof is complete. �

It is quite clear that the construction of taking the Gleason cover of a compact
space is idempotent, that is, G(G(X) is naturally homeomorphic to G(X).

Exercises

21.20. A compact Hausdorff ed space is Boolean 3. 2

21.21. Recall that an atom in a lattice L is a minimal element 6=⊥ (2.6).

a) A principal filter is maximal iff it is generated by an atom.

b) Let Atm(L) be (possibly empty) set of atoms in L. The map a 7→ a→ defines
a bijective correspondence between the atoms of L and the open set of isolated
points 4 of S(L). 2

21.22. Let X
f−→ Y be a map, where X and Y are topological spaces. Let F

be a filter basis in X. Then,

a) If F −→ x, then x is an accumulation point of F . If F is a maximal filter in
Ω(X) and x is an accumulation point of F , then F −→ x. In particular, if an
ultrafilter in 2X has an accumulation point, then it converges to that point.

b) f is continuous iff for all x ∈ X and filters F ⊆ 2X , F −→ x ⇒ limF f =
f(x).

c) If X is a topological space and x, y ∈ X, the following are equivalent :

(1) X is a Hausdorff space.

(2) For all filter bases F ⊆ 2X , x = lim F = y ⇒ x = y.

(3) For all ultrafilters F ⊆ 2X , x = lim F = y ⇒ x = y.

(4) For all filter bases G on Ω(X), x = lim G = x ⇒ x = y.

3Compact spaces are normal; but even regularity suffices!
4A point p is isolated if {p} is open.
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d) Consider the following conditions :

(1) X is a compact space.

(2) Every filter basis on 2X has an accumulation point.

(3) Every ultrafilter on 2X converges.

(4) Every ultrafilter in Ω(X) converges.

Then, (1) ⇔ (2) ⇔ (3) ⇒ (4). If X is regular (1.20), all four conditions are
equivalent.

e) Give an example of a Hausdorff non-compact, non-regular space in which all
ultrafilters of opens are convergent 5. 2

21.23. Let I be a set and {Fi : i ∈ I} be a family of fields indexed by I. Let
R =

∏
i∈I Fi. Then, Spec(R) is homeomorphic to the Stone-Čech compactification

of the discrete space I. 2

21.24. Let CTop be the category of compact Hausdorff spaces and let
F : CTop −→ Set be the forgetful functor. What is the relation between βX
and F ? 2

5T0, non-Hausdorff examples are easy to find; T2 examples are harder.
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Presheaves over Topological
Spaces



CHAPTER 22

Geometric Sheaves

In this chapter many proofs are left to the reader. Its contents describe the
basic geometrical object associated to sheaves over topological spaces. General
references for this chapter are [75], [19], [22] and [66]. In [21] the reader will
find an interesting survey of the history of Sheaf Theory and its mathematical
significance.

Notation and results of section 1.2 may be used without explicit reference.
Recall that Ω(X) is the frame of opens of the topological space X.

Definition 22.1. Let pF (X,E) be the set of partial maps from X to E (2.12).
For s, t ∈ pF (X,E), define

[[s = t]] = {x ∈ doms ∩ dom t : s(x) = t(x)}
Let E

p−→ X be a map. A section for p is a map s ∈ pF (X,E) such that

doms ⊆ Imp and p ◦ s = Iddoms.

If doms = A ⊆ X, s is a section over A.

If E and X are topological spaces, p is a local homeomorphism iff for all
e ∈ E, there is an open U ∈ νe such that p(U) ∈ Ω(X) and p|U : U −→ p(U) is

a homeomorphism 1.

The basic properties of local homeomorphisms and their sections are described in

Proposition 22.2. If E
p−→ X is a local homeomorphism, then

a) p is continuous and open.

b) A section of p over an open subset of X is an open map. If s is a continuous
section of p over u ∈ Ω(X), then s and p|s(u)

are inverse homeomorphisms between

u ∈ Ω(X) and s(u) ∈ Ω(E).

c) p(E) ∈ Ω(X) and E
p−→ p(E) is a local homeomorphism.

d) Let q : F −→ X be a local homeomorphism and f : E −→ F be a map such
that q ◦ f = p. Then, f is continuous iff f is a local homeomorphism.

1νe is the filter of open neighborhoods of e; see the paragraph right after 1.9. Homeomorphisms
are defined in 1.17.(d).
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Proof. (a) Let u ∈ Ω(X); if e ∈ p−1(u), there is U ∈ νe, such that p|U is a

homeomorphism from U onto p(U) ∈ Ω(X). Consider w = u ∩ p(U); w is open
in X, with p(e) ∈ w. Since p|U is a homeomorphism, W = p−1(w) ∩ U is open

in U and consequently, in E. Further, e ∈ W ⊆ p−1(u), and p is continuous. The
argument to show that p is open is similar. Clearly, (c) follows from (a).

(b) Let u ∈ Ω(X) and s be a section of p over u. If e = s(x), there is W ∈ νe,
with p|W a homeomorphism from W onto p(W ) ∈ νx. Set v = p(W ) ∩ u ∈ νx;

since p is continuous and p ◦ s = Idu, we have p−1

|W (v) = s(v), open in E, with

e ∈ s(v) ⊆ s(u). Since e is arbitrary, s(u) must be open in E.

If s is a continuous section of p over u ∈ Ω(X), then, s is a continuous open
map from u onto the open set s(u) ⊆ E which is injective, because p ◦ s = Idu.
Thus, s is a homeomorphism from u onto s(u). Now, the fact that s is a right
inverse to p forces p|s(u)

and s to be inverse homeomorphisms between u and s(u).

(d) Clearly, it is enough to prove that if f is continuous, then it is a local homeo-
morphism. Let e ∈ E; select W ∈ νf(e) such that q|W is a homeomorphism from

W onto the open set q(W ). Since f is continuous and p is a local homeomorphism,
there is U ∈ νe, such that f(U) ⊆ W and p|U is a homeomorphism from U onto

the open set p(U). We have p(U) = q(f(U)) and W ∩ q−1(p(U)) = f(U) ∈ Ω(E).
Further, p|U and q|f(U)

are homeomorphisms, with q|f(U)
◦ f|U = p|U . Hence, f|U

is a homeomorphism from U onto f(U) ∈ Ω(F ), as needed. �

Definition 22.3. Let X be a topological space. A geometrical sheaf of sets
over X consists of a triple,

E = 〈E, p, X 〉,
where E is a topological space and p a local homeomorphism. E is called the sheaf
space, X the base space and p the projection, although we are not requiring
that p be onto X.

For x ∈ X, p−1(x) is called the stalk of E at x.

If F = 〈F, q,X 〉 is a sheaf over X, a morphism E f−→ F , is a continuous

map, E
f−→ F , such that q ◦ f = p.
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Since the (set-theoretical) composition of morphisms is a morphism and the identity
is a morphism, we have a category, Shg(X), of geometric sheaves over X.

Example 22.4. If E = 〈E, p,X 〉 is a sheaf over X, the projection p is a
continuous open map. If U is any open set in E, 〈U, p|U , X 〉 is a sheaf over X. In

fact, if S ⊆ X is given the induced topology from X, then 〈 p−1(S), p|p−1(S)
, S 〉

is a sheaf over S. 2

Example 22.5. Proposition 22.2.(d) implies that if E f−→ F is a morphism of
sheaves, then the triple 〈E, f, F 〉 is a sheaf over F , where E and F are the sheaf
spaces of E and F , respectively. 2

Definition 22.6. Let E = 〈E, p,X 〉 be a sheaf and let S, T be subsets of X.

a) Write E(S) for the set of continuous sections of p with domain S :

E(S) = {S s−→ E : s is a continuous section of p}
Unless explicit mention to the contrary, it is assumed that S has the topology
induced by X. Note that E(∅) has precisely one element, written ∗, corresponding
to the unique section of E over the empty set.

For x ∈ X, Ex =def E({x}) = p−1(x) is the stalk of E at x.

b) If S ⊆ T , define the restriction map

ρTS : E(T ) −→ E(S), given by t 7−→ t|S.

When S = {x}, write ρTx for ρT{x}. Note that if S ⊆ T ⊆ K, then

ρKS = ρTS ◦ ρKT and ρSS = IdE(S).

We shall frequently use our standard notation for restriction to indicate the maps
ρTS.

c) Let |E| =
∐
u∈Ω(X) E(u), called the domain of the sheaf E 2. The elements of

|E| will be identified with the corresponding sections of E, and called the sections
of E.

∗ If s is a section of E, write Es for doms (the extent of s).

∗ E(p(E)) is the set of global sections of the sheaf E.

Corollary 22.7. Let E = 〈E, p,X 〉 be a sheaf over X.

a) If u ∈ Ω(X) and s ∈ E(u), then s is a homeomorphism of u onto the open set
s(u) in E, with inverse p|s(u)

. Moreover, the set

2Notice that the disjoint union is taken over the open sets in X.
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{s(u) : s ∈ |E|, u ∈ Ω(X)}
is a basis for the topology of E.

b) If τ1 and τ2 are topologies on E, such that p is a local homeomorphism with
respect to both, then τ1 = τ2.

Proof. The first assertion in (a) is a restatement of 22.2.(b). By the defini-
tion of local homeomorphism, given U ∈ Ω(E), we may write U =

⋃
i∈I Wi, where

p|Wi
is a homeomorphism onto the open subset p(Wi), i ∈ I. Let si be the sections

of p given by the inverses of p|Wi
; clearly, U =

⋃
i∈I si(p(Wi)), showing that the

of images of opens in X, by the continuous sections of p, constitute a basis for the
topology on E. Item (b) is left to the reader. �

The next result describes the main properties of sections in a sheaf.

Proposition 22.8. Let a, b, c ∈ |E|, where E = 〈E, p,X 〉 is a sheaf over X.

a) [[a = b]] =
⋃
{u ∈ Ω(Ea∩Eb) : a|u = b|u}. In particular, [[a = b]] is open in

Ea ∩ Eb and in X.

b) The map [[∗ = ∗]] has the following properties :

(1) [[a = b]] = [[b = a]]; (2) [[a = b]] ∩ [[b = c]] ⊆ [[a = c]];

(3) Ea = [[a = a]]; (4) Ea = Ea = [[a = b]] ⇔ a = b.

c) Suppose {si : i ∈ I} ⊆ |E| satisfies

[compatible] For all i, j ∈ I, si|Esi∩Esj = sj |Esi∩Esj
;

then, there is a unique t ∈ |E| such that

(1) Et =
⋃
i∈I Esi; (2) For all i ∈ I, t|Esi = si.

Proof. a) The definition of [[a = b]] is in 22.1. To keep notation straight, we
shall, momentarily, write

‖a = b‖ =
⋃
{u ∈ Ω(Ea∩Eb) : a|u = b|u}.

It is clear that ‖a = b‖ ⊆ [[a = b]]; for the reverse inclusion, let x ∈ Ea ∩ Eb,
e = a(x) = b(x) and W = a(Ea) ∩ b(Eb) ∈ νe. By 22.2.(b), p|W is a homeomor-

phism between W and p(W ) ∈ νx. Moreover, a|p(W )
and b|p(W )

are inverses to

p|W . Thus, a|p(W )
= b|p(W )

and x ∈ ‖a = b‖, establishing the desired equality.

b) Items (1), (3) and (4) are clear. For (2), note that if u ∈ Ω(Ea∩Eb) and
v ∈ Ω(Eb∩Ec), then (u ∩ v) ∈ Ω(Ea∩Ec), and

a|u = b|u and b|v = c|v ⇒ a|u∩v = c|u∩v. (I)

Since Ω(X) is a frame, 8.4 and (I) yield

[[a = b]] ∩ [[b = c]] =
⋃
{u ∩ v :

u ∈ Ω(Ea∩Eb), v ∈ Ω(Eb∩Ec),
a|u = b|u and b|v = c|v

}
⊆

⋃
{w ∈ Ω(Ea∩Ec) : a|w = c|w}

= [[a = c]].
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c) Observe that the hypothesis entails that {si : i ∈ I} ⊆ pF (X,E) is compatible,
according to 1.2. Hence, by this same result, there is a unique t ∈ pF (X,E) satis-
fying conditions (1) and (2) (keep in mind that extent is the same as domain, in
this context). It remains to see that t is a section for p over Et. But this follows
easily from the fact that each si is a section for p. �

Example 22.9. Let Y be a set, considered as a topological space with the dis-
crete topology (all points are open). Let E = X × Y , with the product topology;
then, the natural projection onto the first coordinate, πX , is a local homeomor-
phism, and E = 〈E, πX , X 〉 is a sheaf over X. This sheaf is called the constant
sheaf, of stalk Y , over X. Note that for each u ∈ Ω(X), E(u) = Y u. 2

Example 22.10. Let Y
p−→ X be a continuous surjection. The triple

C = 〈Y, p,X 〉 is a covering space, if for all x ∈ X, there is u ∈ νx, such that
p−1(u) can be written as a disjoint union

⋃
i∈I vi, such that p|vi is a homeo-

morphism of vi onto u. Clearly, all covering spaces − an important topological
construction −, are geometric sheaves. References for this topic are [47], [30] and
[23]. We give two examples of this construction, which will be useful latter.

Let S1 be the unit circle in the complex plane, i.e., the set of z ∈ C, such that
|z| = 1, with the topology induced by C. Define exp : R −→ S1 by t 7→ eit; then
U(S1) = 〈R, exp, S1 〉 is a covering space, the universal covering space of S1.

Let Sn be the n-sphere in Rn+1, that is,

Sn = {〈 a1, . . . , an, an+1 〉 ∈ Rn+1 :
∑n=1
i=1 a2

i = 1}.
The identification of antipodal points in Sn, produces a covering space,

U(RPn) = (Sn, π, RPn),

called the universal covering space of the real projective space of dimension n, RPn.
For these examples, we have

∗ The stalks of U(S1) are naturally isomorphic to Z, while the stalks of U(RPn)
are naturally isomorphic to Z2 = Z/2Z.

∗ In both cases, the set of global sections is empty.

(a) To see this for U(S1), suppose that s : S1 −→ R is a continuous section; since
S1 is connected, the image of s in R must be an interval. Now, let A = S1 − {x},
where x is any point in S1. The restriction of s to A is continuous and A is still
connected, but its image is the union of two disjoint intervals in R, a contradiction.

(b) For U(RPn) the argument is more sophisticated (and also applies to U(S1)). Let
π1(X) be the first homotopy group of the space X; if f : X −→ Y is a continuous
map, let f∗ : π1(X) −→ π1(Y ) be the homomorphism induced by f on homotopy.

Since the sphere is simply connected, we have π1(Sn) = {0}. On the other hand,
since U(RPn) is a universal covering space with structure group Z2, π1(RPn) =
Z2. Now assume that s : RPn −→ Sn is a global section of U(RPn). Then, since
p ◦ s is the identity on RPn and homotopy is a functor, we obtain a commutative
diagram
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π1(RPn) - π1(Sn)

Id p∗

π1(RPn)

s∗
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Hence, s∗ would have to be injective, which is clearly impossible. 2

Example 22.11. Let {Ai : i ∈ I} be a family of non-empty sets. Endow I

with the discrete topology, and define E =
∐
i∈I Ai and a map E

p−→ I, such that
p(Ai) = {i}. Since all points in I are open, E = (E, p, I) is a geometric sheaf, and
indeed, a covering space. Note that for u ⊆ I, E(u) =

∏
i∈u Ai; in particular, the

set of global sections of E is
∏
i∈I Ai. 2

In what follows, E = 〈E, p,X 〉 is a sheaf over X.

Remark 22.12. Let x ∈ X and A =
∐
u∈νx E(u); for s, t ∈ A, define

s ≡ t iff ∃ w ∈ νx, such that w ⊆ Es ∩ Et and s|W = t|W .

By 22.8.(a), for all s, t ∈ A,

s ≡ t iff [[s = t]] ∈ νx.

It is straightforward to verify that ≡ is an equivalence relation on A. Corollary
22.7.(b) implies that there is a natural bijective correspondence between the quo-
tient A/≡ and the stalk Ex at x : s/≡ 7→ s(x). Hence, we can view the stalk at x
as the collection of “germs” (i.e., equivalence classes by ≡) of sections of E , defined
in open neighborhoods of x. Or equivalently, the stalk at x is the direct limit of the
sets of sections in open neighborhoods of x. In a sense which will become precise
later, all information about E is in fact contained in |E|, together with the way
sections restrict from larger opens to smaller ones. This point of view will be the
basis of our treatment of sheaves from the next Chapter on. 2

Under mild restrictions, geometric sheaves are not difficult to construct. First,
we set down some useful terminology.

Definition 22.13. Let X and E be sets, pF (X,E) be the set of partial maps
from X to E and S, T , Γ ⊆ pF (X,E).

a) S is compatible if for all s, t ∈ S, s|Es∩Et = t|Es∩Et
3.

b) Γ satisfies [comp] over A ⊆ X if for all compatible S ⊆ Γ,⋃
s∈S Es = A ⇒ ∃ t ∈ Γ, such that Et = A and t|Es = s, ∀ s ∈ S.

c) S is dense in T iff for all t ∈ T , Et =
⋃
s∈S [[s = t]].

It is clear that Definition 22.13 applies to a sheaf over a topological space and
its sections over open subsets of the base.

3As in 1.2. We used up-compatible in 2.33 and 2.36. Since we will not use the dual concept, we
drop the prefix “up” from here on.
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Proposition 22.14. Let p : E−→ X be a map, where X is a topological
space and E is a set. Suppose Γ ⊆ pF (X,E) satisfies

(1) For all s ∈ Γ, Es =def doms is open in X;

(2) All elements of Γ are sections of p, i.e., p ◦ s = IdEs;

(3) For all s, t ∈ Γ, [[s = t]] is open in X;

(4) For all e ∈ E, there is s ∈ Γ such that e ∈ Ims.

Then, there is a unique topology on E, such that p is a local homeomorphism.
Moreover, if E = 〈E, p,X 〉 is the sheaf so determined over X, then

a) Γ ⊆ |E| and Γ is dense in |E|.
b) Let B be a basis for the topology on X. For v ∈ Ω(X), define

ΓB, v = {s|w : w ⊆ v and w ∈ B} and Γ(v) = {s ∈ Γ : Es = v}.
If, for u ∈ Ω(X), ΓB, u satisfies [comp] over u, then Γ(u) = E(u).

Proof. Let B = {s(u ∩ Es) : 〈 s, u 〉 ∈ Γ × Ω(X)}; it is straightforward
to show that for all s, s′ ∈ Γ and u, v ∈ Ω(X),

(*) s(u ∩ Es) ∩ s′(v ∩ Es′) = s([[s = s′]] ∩ u ∩ v).

Thus, B is closed under finite intersections and is a basis for a topology on E. Note
that all s ∈ Γ are open in this topology (by definition !). Further, from (*) one
easily verifies that for all s, s′ ∈ Γ and v ∈ Ω(X),

s−1(s′(v ∩ Es′) = [[s = s′]] ∩ v,

that is open in X. Thus, all s ∈ Γ are continuous, open and injective from the
open set Es ⊆ X, onto the open set Ims ⊆ E. Therefore, every s ∈ Γ is a home-
omorphism from the open Es in X, onto the open Ims in E. Hence, assumption
(4) implies that p is a local homeomorphism and E = 〈E, p,X 〉 is a sheaf, with Γ
⊆ |E|.

To show that Γ is dense in |E|, let t ∈ |E|, x ∈ Et and e = t(x). By (4), there
is s ∈ Γ such that e = s(z) ∈ Ims. Since t and s are sections of p, we get x = z.
Since E is a sheaf, [[s = t]] ∈ νx. Hence, Et =

⋃
s∈Γ [[s = t]], as desired.

Clearly, Γ(u) ⊆ E(u); for the reverse inclusion, fix a basis B for the topol-
ogy on X and a section t ∈ E(u). By denseness, there is S ⊆ Γ, such that
Et =

⋃
s∈S [[s = t]]. Since B is basis for the topology on X and all [[s = t]] are

open in X, we can write

Et =
⋃
i∈I wi,

where, for each i ∈ I, there is s ∈ S such that wi ⊆ [[s = t]]. Thus, for i ∈ I and
s ∈ S,

s|wi = t|wi , s|wi ∈ Γu and Es|wi = wi.

Since ΓB, u satisfies [comp] over u, there is s′ ∈ Γ such that

s′|wi = s|wi = t|wi and Es′ = u.

Now, item (4) in 22.8.(b) yields s′ = t, i.e., t ∈ Γ(u). �

Perhaps the best way to understand 22.14 is to see it in action.
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Example 22.15. Let H be a HA and let X = S(H) be the Stone space of H
(19.2). Define E =

∐
F∈X H/F and p : E −→ X, by sending all elements of the

quotient H/F to the prime filter F in X. Observe that p is onto X. Each a ∈ H
gives rise to a global section of p as follows :

a ∈ H 7−→ a∗ : X −→ E, where a∗(F ) = a/F .

Let Γ = {a∗ : a ∈ H}; clearly, conditions (1), (2) and (4) are satisfied by Γ.
Regarding (3), recall (6.10) that if a, b ∈ H, then

(a ↔ b) = (a → b) ∧ (b → a) = max {z ∈ H : a ∧ z = b ∧ z}
exists in H and that for all t ≤ (a ↔ b), we have t ∧ a = t ∧ b. For a and b ∈ H,

[[a∗ = b∗]] = {F ∈ X : a/F = b/F}
= {F ∈ X : ∃ c ∈ F such that a ∧ c = b ∧ c}
= {F ∈ X : (a ↔ b) ∈ F} = Sa↔b,

which is open in X. 22.14 applies, yielding a sheaf E = 〈E, p, S(H) 〉, with Γ dense
in |E|.

Next, we show that if B = {Sa : a ∈ H} is the standard basis of opens for
S(H), then ΓB,X has [comp] over X. From this and 22.14.(b) we conclude that

Γ = Γ(X) = E(X),

that is, the set of global sections of E is an isomorphic copy of H. Let S ⊆ Γ and
us = Scs , s ∈ S, be basic opens in S(H) such that⋃

s∈S us = X and {s|us : s ∈ S} is compatible in E .

Since X is compact (19.8), there is T ⊆f S, with
⋃
t∈T ut = X. Note that if we

can find a ∈ H such that a∗|ut = t|ut , for all t ∈ T , then, by the compatibility of

S, we get a∗|us = s|us , for all s ∈ S. Hence, we may assume that S is finite, S =

{a∗i : 1 ≤ i ≤ n}, with ua∗i = Sci , 1 ≤ i ≤ n. The compatibility of a∗i |Sci
means

that for all i, j ≤ n, we have

Sci∧cj = Sci ∩ Scj ⊆ [[a∗i = a∗j ]] = Sai↔aj .

Thus, 19.5.(b) entails that for i, j ≤ n, ci ∧ cj ≤ (ai ↔ aj); in particular,

(*) ai ∧ (ci ∧ cj) = aj ∧ (ci ∧ cj),
for all i, j ≤ n. Define a =

∨n
i=1 ai ∧ ci; for each i ≤ n, (*) yields

a ∧ ci = (ai ∧ ci) ∨
∨
i6=j ci ∧ cj ∧ aj ≤ ai ∧ ci,

wherefrom it follows that a ∧ ci = ai ∧ ci. Consequently, if F is a prime filter
in H such that ci ∈ F , then a/F = ai/F , that is, a∗ restricted to Sci is equal
to ai restricted to the same basic open. Hence, ΓB,X satisfies [comp] over X, as
asserted. 2

Corollary 22.16. Every Heyting algebra can be identified with the set of the
global sections of a sheaf of Heyting algebras over its Stone space. 2

Example 22.17. Let R be a commutative ring with identity, which for ease of
exposition, we assume to be an integral domain. For each prime ideal P ∈ Spec(R),
let RP be the localization of R at P (9.41), that is, RP is the ring of fractions a/r,
such that a ∈ R and r 6∈ P . Since R is an integral domain 4, in RP

4xy = 0 iff x = 0 or y = 0; equivalently, (0) is a prime ideal.
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a/r = b/s iff as = bt.

Let E =
∐
P∈Spec(R) RP and define p : E −→ Spec(R) by sending each element

of the localization RP to the point P in Spec(R). Clearly, p is surjective. Each
element of E is of the form a/b, with a ∈ R and b outside some prime ideal in R.

Recall from Chapter 19, that Zr = {P ∈ Spec(R) : r 6∈ P} is the compact
open associated to r ∈ R and that B = {Zr : r ∈ R} is a basis for the Zariski
topology on Spec(R). Further, since R is an integral domain, Zr = ∅ iff r = 0. To
each pair 〈 a, r 〉 ∈ R × (R− {0}) we can associate a map

a/r : Zr −→ E, given by P ∈ Zr 7→ a/r ∈ RP ,

that is well defined, because for all P ∈ Zr, r 6∈ P . Hence, a/r is a section of p
over its domain, Zr.

Let Γ = {a/r : 〈 a, r 〉 ∈ R × (R− {0})}. The set of elements in Γ whose extent
equals Spec(R) = Z1 is

Γ(Spec(R)) = {a/1 : a ∈ R},
an isomorphic copy of R. Since R is a domain, Γ may be identified with the field of
quotients of R, together with the assignment to each fraction, of the set of primes
that do not contain its denominator.

Clearly, Γ satisfies conditions (1), (2) and (4) of 22.14. Further, Γ is closed
under restrictions of its elements to basic opens in Spec(R) : if a/r ∈ Γ and
Zs ⊆ Zr, then (a/r)|Zs = as/rs, since, by 19.5.(a), we have Zs = Zr ∩ Zs = Zrs.

In particular, ΓB,X ⊆ Γ. For condition (3), it is straightforward to see that

(∗) [[a/r = b/s]] =

{
Zr ∩ Zs if as = br
∅ otherwise

Hence, [[a/r = b/s]] is open in Spec(R), for all a/r, b/s ∈ Γ. By 22.14, we have a
sheaf E = 〈E, p, Spec(R) 〉, with Γ dense in |E|.

We now verify that if ai/ri, i ∈ I, is a compatible collection of sections in Γ,
such that

⋃
Zri = Spec(R), then there is a ∈ R such that (a/1)|Zri

= ai/ri, for

all i ∈ I. Thus, ΓB,Spec(R) will satisfy [comp] over Spec(R), and

Γ(Spec(R)) = {a/1 : a ∈ R} = E(R).

What is the meaning of a/r being compatible with b/s ? The fact that R is an
integral domain implies that the zero ideal, (0), is prime. Since it is contained in

every prime ideal, (0) is a generic point for Spec(R), that is, (0) = Spec(R). But
this means that (0) is in every non-empty open in Spec(R), and so the intersection
of any finite number of non-empty opens in Spec(R) is non-empty. Since r, s 6= 0
implies Zr ∩ Zs 6= ∅, from (*) we get that for all a, b ∈ R and r, s ∈ R− {0}
(**) a/r is compatible with b/s iff as = br.

Let ai/ri, i ∈ I, be a compatible subset of Γ, with
⋃
Zri = Spec(R). By Corollary

19.9, there is J ⊆f I, such that the ideal generated by the rj , j ∈ J , is equal to
R. Hence, there are αj ∈ R such that∑

j∈J αjrj = 1. (1)

Since the sections ai/ri are compatible, from (**) we get

∀ i, k ∈ I, airk = akri. (2)
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Define a =
∑
j∈J αjaj ; for each i ∈ I, (1) and (2) yield

ri a = ri
∑
j∈J αjaj =

∑
j∈J αjajri =

∑
j∈J αjrjai = ai (

∑
j∈J αjrj)

= ai.

Hence, the value of a/1 in each localization RP , P ∈ Zri , is the same as ai/ri, and
so a/1 is the “gluing” of the compatible family given at the outset.

With only slight modifications, one can show that the set of elements in Γ
with domain Zr is equal to E(Zr), for all r 6= 0 in R. Further, essentially the same
argument shows that an analogous construction holds for any module over R,
with stalks that are the localizations of the module at each prime in Spec(R). 2

Corollary 22.18. Every integral domains can be identified with the set of
global sections of a sheaf of local rings over its Zariski spectrum. 2

Corollary 22.18 is true for all commutative rings with identity, as will be seen
in the Example 27.21 and Theorem 27.22, due to A. Grothendieck.

Example 22.19. Let R be a commutative regular ring (19.19). By Theorem
20.2, every prime ideal in R is maximal. Hence, R/P is a field, for all P ∈ Spec(R),
and so if e is an idempotent in R, e/P = 0 or e/P = 1.

By 19.22, Spec(R) is a Boolean space, wherein B = {Zr : r ∈ R} is a basis of
clopens. Further, if er is the unique idempotent of R such that (r) = (er), then
Zr = Zer . Since R has no nilpotent elements, the intersection of all primes in R is
equal to {0}. The set of ideas presented below are due to R. S. Pierce ([57], [6]).

Let E =
∐
P∈ Spec(R) R/P and define p : E −→ Spec(R) by assigning to each

element of R/P the point P ∈ Spec(R). Each a ∈ R defines a map (to be indicated
by the same symbol)

a : Spec(R) −→ E, given by P 7→ a/P .

Clearly, every such map is a section of p. Let Γ be the set of sections of p over
Spec(R), just defined. We have

[[a = b]] = {P ∈ Spec(R) : a/P = b/P} = {P ∈ Spec(R) : (a− b) ∈ P}
= complement of Z(a−b) in Spec(R),

which is clopen in Spec(R). It is now straightforward to see that Γ has properties
(1) − (4) of 22.14. Hence, E = 〈E, p, Spec(R) 〉 is a sheaf, with Γ dense in |E|. We
wish to show that Γ = E(Spec(R)). As a preliminary step, we prove

Fact 1. Let a, b ∈ R and let e, f be idempotents in R. Then

a) Ze ⊆ [[a = b]] iff ae = be.

b) [[a|Ze = b|Zf ]] = [[a = b]] ∩ Ze ∩ Zf = [[a = b]] ∩ Zef .

c) a|Ze is compatible with b|Zf iff aef = bef .

Proof. (a) Let P be a prime ideal in R. If e 6∈ R and (ae−be) = 0, then, (a− b) ∈ P ,
and so P ∈ [[a = b]], proving that Ze ⊆ [[a = b]]. Now assume that Ze ⊆ [[a = b]];
we show that ae = be by proving that it is in every prime ideal in R. We may
suppose that e 6∈ P ; then P ∈ Ze, and so a/P = b/P , whence (a − b) ∈ P . But
then, (ae− be) = 0, as desired. Items (b) and (c) are left to the reader 5.

5Compare with 22.30.(c).
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Suppose ai ∈ Γ and clopens Zei , i ∈ I, verify

(1) The restrictions of the ai to Zei are compatible, that is

∀ i, j ∈ I, [[ai|Zei
= aj |Zej

]] = Zei ∩ Zej
(2)

⋃
i∈I Zei = Spec(R).

We may suppose that each ei is an idempotent. (1) and Fact 1 yield

(*) ∀ i, k ∈ I, aieiek = akekei.

As in the 22.15 and 22.17, condition (2) yields a finite J ⊆ I and cj ∈ R, such
that

(**)
∑
j∈J cjej = 1.

Define a =
∑
j∈J cjajej ; for each i ∈ I, (*) and (**) yield

aei = ei
∑
j∈J cjajej =

∑
j∈J cjajejei =

∑
j∈J cjaieiej = aiei

∑
j∈J cjej

= aiei,

and so, [[a = ai|ei ]] = Zei , for all i ∈ I, as desired. 2

Corollary 22.20. Every commutative regular ring can be identified with the
set of global sections of a sheaf of fields over its spectrum. 2

Remark 22.21. The last three examples consist of just a glimpse of what is
known as “representation of algebras by continuous sections”. A classical reference
is [29]. Recent examples also appear in [3]. 2

A geometric sheaf E = 〈E, p,X 〉 is Hausdorff if E is a Hausdorff space. The
situation in Example 22.19 is quite typical :

Lemma 22.22. For a sheaf E = 〈E, p,X 〉 over a Hausdorff space X, the
following are equivalent :

(1) E is Hausdorff.

(2) For all u ∈ Ω(X) and s, t ∈ E(u), [[s = t]] is clopen in u.

(3) For all s, t ∈ |E|, [[s = t]] is clopen in Es ∩ Et.

Proof. (1) ⇒ (2) : It is enough to show that

{x ∈ u : s(x) 6= t(x)} = u− [[s = t]]

is open in u. If x ∈ (u − [[s = t]]), since s(x) = e 6= t(x) = e′, there are V ∈ νe and
V ′ ∈ νe′ , such that V ∩ V ′ = ∅ and p restricted to V and V ′ are homeomorphisms
onto p(V ) and p(V ′), respectively. Hence, the intersection p(V ) ∩ p(V ′) is non-
empty and contained in (u − [[s = t]]), as needed. (2) ⇒ (1) is immediate from
s|[[s=t]] = t|[[s=t]] (22.30.(a)).

(3) ⇒ (1) : Given distinct e, e′ ∈ E, we have two cases :

∗ p(e) 6= p(e′). Let u and v be disjoint open neighborhoods of p(e) and p(e′),
respectively. There are U ∈ νe and V ∈ νe′ , such that p is a homeomorphism of U
and V onto p(U) ⊆ u and p(V ) ⊆ v, respectively. Clearly, U ∩ V = ∅.
∗ p(e) = p(e′) = x. Again, there are U ∈ νe and U ′ ∈ νe′ , such that p|U and p|U ′
are homeomorphisms onto p(U), p(U ′). Let v = p(U) ∩ p(U ′), let s be the inverse
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of p|U and t be the inverse of p|U ′ . Hence, x ∈ (v − [[s = t]]) = w, with w open in

V ; thus, s(w) and t(w) are disjoint opens in E, with e ∈ s(w) and e′ ∈ t(w). �

Definition 22.23. Let Ei
pi−→ X be continuous maps of topological spaces,

1 ≤ i ≤ n. The set

×ni=1 Ei = {〈 e1, . . . , en 〉 ∈
∏
Ei : pi(ei) = pj(ej), ∀ i, j ≤ n}

with the topology induced by the product topology on
∏
Ei, is the fibered product

of the family of Ei over the pi. There is a natural map

×ni=1 pi : × Ei −→ X, 〈 e1, . . . , en 〉 7−→ p1(e1) = . . . = pn(en).

For each k ≤ n, there is a projection πk : × Ei −→ Ek, the restriction of the
canonical projection onto the kth coordinate. Since × Ei has the topology induced
by
∏
Ei, each πk is a continuous function and πk ◦ pk = × pi.

×Ei - Ek

×pi pk

X

πk

A
A
A
A
AU

�
�
�
�
��

Lemma 22.24. If E i = 〈Ei, pi, X 〉 1 ≤ i ≤ n, are sheaves over X, then∏n
i=1 E i = 〈×ni=1 Ei, × pi, X 〉,

is a sheaf over X and the maps πk :
∏
E i −→ Ek in 22.23 are sheaf morphisms.

The system (
∏
E i, {πi}i≤n) is the product of the E i in the category Shg(X).

Proof. We prove × pi is a local homeomorphism, leaving the other assertions
to the reader. Let e = 〈 ei 〉 ∈ (× Ei) and x = pi(ei); the coordinate we choose
to compute x is, of course, immaterial. Since we have only a finite set of local
homeomorphisms pi, we can select u ∈ νx, as well as Wi ∈ νei , such that each
pi restricted to Wi is a homeomorphism onto u. Let si be the sections of E i,
corresponding to the inverses of the restriction of each pi to Wi. Define∏n

i=1 si : u −→ × Ei, given by z ∈ u 7−→ 〈 s1(z), . . . , sn(z) 〉.∏
si is a section for × pi; since × Ei is a subspace of

∏
Ei and sk = πk ◦

∏
si

is continuous, we conclude that
∏
si is a continuous map from u to × Ei. Clearly,

t =
∏
si is injective and for all open v ⊆ u,

t(v) =
∏n
i=1 si(v) ∩ (× Ei).

Since sections are open maps, this last relation entails that t is open. Thus, t is a
section for × pi, as needed. �

In general, |E × F| 6= |E| × |F|. For stalks, it is clear that

For all x ∈ X, (
∏n
j=1Ej)x =

∏n
j=1 (Ej)x.

that is, the stalk of a finite product is the product of the stalks of the components.
Exercise 22.35 discusses the notions of fibered product over a morphism and kernel
of a morphism.
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By 22.2.(d), a morphism of sheaves is a local homeomorphism that commutes
with the projections. Thus, given a morphism,

E = 〈E, p,X 〉 f−→ F = 〈F, q,X 〉,
we can construct, for each open u ⊆ X, a map

fu : E(u) −→ F(u), s 7→ f ◦ s.
Further, if v ∈ Ω(u), then

∀ s ∈ E(u), [fu(s)]|v = fv(s|v),
where | represents restriction in E and F .

E(v)

E(u)

?

- F(u)

|

fu

F(v)

|

fv

?
-

Lemma 22.25. Let E = 〈E, p,X 〉 and F = 〈F, q,X 〉 be sheaves over X. Let
B be a basis for the topology on X and Γ ⊆ |E|, a dense set of sections in E. If

E
f−→ F is a map, the following conditions are equivalent :

(1) f is a morphism of sheaves.

(2) For all u ∈ B and s ∈ E(u), f ◦ s ∈ F(u).

(3) For all s ∈ Γ, f ◦ s ∈ |F|.

Proof. We know that (1) implies (2) and (3). We verify (3) implies (1),
leaving (2) implies (1) to the reader. The first step is proving that q ◦ f = p. This
is equivalent to verifying that f takes Ex into Fx, for all x ∈ X. Let e ∈ E, with
p(e) = x; since Γ is dense in |E|, there is s ∈ Γ, such that s(x) = e. Consequently,
since f ◦ s is a section of F , we obtain q(f(s(x)) = q(f(e)) = x, as needed.

It remains to show that f is continuous. As above, take e ∈ E and s ∈ Γ, such
that e ∈ Ims. Let U ∈ νf(e) and set V = U ∩ Im t, where t = f ◦ s. Since t is
a section of F , with f(e) ∈ Im t, V is an open neighborhood of f(e). Consider
W = s(t−1(V )); then, W ∈ νe and f(W ) ⊆ V ⊆ U , completing the proof. �

The monics, epics and isomorphisms in Shg(X) are described in

Proposition 22.26. Let E f−→ F be a morphism of sheaves and E, F be the
sheaf spaces of E and F , respectively.

a) The following are equivalent :

(1) f is a monic in Shg(X);

(2) f is an injection from E into F ;

(3) For all u ∈ Ω(X), fu is an injection of E(u) into F(u);

(4) For all s, t ∈ |E|, [[s = t]] = [[fs = ft]].
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b) The following are equivalent :

(1) f is an epic in Shg(X); (2) f is a surjection of E onto F ;

(3) Imf is dense in |F|.
c) The following are equivalent :

(1) f is an isomorphism in Shg(X);

(2) f is a homeomorphism from E onto F .

Proof. (a) Clearly, (2) ⇒ (1); for the converse, we use the fibered product
of E over f (22.35); in the notation therein, we have f ◦ d1 = f ◦ d2, which forces
d1 = d2. But this means that f(e) = f(e′) implies e = e′, and f is an injection
from E into F . The remainder of (a) is left to the reader.

(b) Clearly, (2) → (1); we prove that (3) ⇔ (2), leaving (1) ⇒ (2) as an exercise.
To fix notation, assume that E = 〈E, p,X 〉 and F = 〈F, q,X 〉.
(3) ⇒ (2) : Fix y ∈ F ; let x = q(y) and let t be a section of F over some open

u ∈ νx, such that t(x) = y. By (3), Et =
⋃
s∈|E [[fs = t]], and so for some s ∈ |E|,

x ∈ [[fs = t]]. Hence, f(s(x)) = t(x) = y and f is onto F .

(2) ⇒ (3) : Let t ∈ F(u) be a section of F over u. Since f is surjective, for x ∈ u,

there is ex ∈ E, such that f(ex) = t(x). For x ∈ u, select sx ∈ |E| such that

∗ Esx ∈ νx ∩ Ω(u) and ∗ sx(x) = ex.

Since f(sx(x)) = t(x), x ∈ u, we have that [[(f ◦ sx) = t]] = ux are non-empty opens
in X, satisfying Et = u =

⋃
x∈u ux, and (3) follows. Item (c) is straightforward

and left to the reader. �

Remark 22.27. By 22.26.(a), the subsheaves of a geometric sheaf can be
identified, up to isomorphism, to the open sets of its sheaf space. Thus, the family
of subsheaves of E = 〈E, p,X 〉 is {〈U, p|U , X 〉 : U ∈ Ω(E)}. 2

Remark 22.28. A sheaf morphism may be an epimorphism in Shg(X),
although the maps fu are not surjections. It is this fact that produces the different
Cohomology Theories that are such an important part of sheaf theory and its
applications. 2

By 22.26.(a), if E is a subsheaf of F (written E ⊆ F), then for each u ∈ Ω(X),

there is a natural injection, E(u)
fu−→ F(u), such that for all open v ⊆ u, the

following diagram is commutative :

E(v)

E(u)

?

- F(u)

|

fu

F(v)

|

fv

?
-

Furthermore, since E is a sheaf, any compatible family of sections in |E| can be
“glued” to a section in E .
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Exercises

22.29. Let E = 〈E, p,X 〉 be a sheaf over X.

a) Prove that condition (4) in 22.8.(b) is equivalent to

If s, t ∈ E(u) are such that s|ui = t|ui , for i ∈ I, then s = t.

b) Let {ui : i ∈ I} ⊆ Ω(X), u =
⋃

ui and si ∈ E(ui), i ∈ I. Prove that the
statement in 22.8.(c) is equivalent to

If si|(ui∩uj) = sj |(ui∩uj)
, ∀ i, j ∈ I, then

there is a unique s ∈ E(u), such that s|ui = si, ∀ i ∈ I.
2

22.30. Let a, b ∈ |E|, where E = 〈E, p,X 〉 be a sheaf over X. With notation
as in 22.8,

a) a|[[a=b]]
= b|[[a=b]]

.

b) [[a = b]] is the largest open set u ⊆ (Ea∩Eb) such that a|u = b|u.

c) If u, v are opens in Ea and Eb, respectively, then

[[a|u = b|v]] = u ∩ v ∩ [[a = b]]. 2

22.31. a) For S, T ⊆ pF (X,E) show that S is dense in T iff for all t ∈ T ,
there is B ⊆ S such that Et =

⋃
b∈B [[s = b]].

b) If E = 〈E, p,X 〉 is a sheaf over X and S, T ⊆ |E|, S is dense in T iff for all
t ∈ T there is {〈ui, si 〉 : i ∈ I} ⊆ Ω(X) × S, such that

(1) Et =
⋃
ui and (2) t|ui = si|Esi∩ui , ∀ i ∈ I. 2

22.32. If X is a topological space, Ω(X) can be represented as the set of global
sections of a geometric sheaf over X, whose stalks are Ω(X)/νx, x ∈ X. 2

22.33. Let E be the sheaf of 22.19, with the convention of not distinguishing
between elements of Γ and R. Show that

a) If s ∈ E(Zr), then s = a|Zr , for some a ∈ Γ.

b) For all s, t ∈ E , if Es and Et are clopen in Spec(R), then [[s = t]] is clopen in
Spec(R).

c) If P is a prime ideal in a commutative regular ring R, then the localization of
R at P (9.41), RP , is naturally isomorphic to the residue field R/P . 2

22.34. a) In the situation of 22.24, show that for each u ∈ Ω(X), there is a
bijective map

ηu : [
∏
E i](u) −→

∏
Ei(u),

such that for all open v, u ∈ Ω(X), if v ⊆ u, then the following diagram is com-
mutative, where | is the restriction map in the sheaf

∏
E i, while |

n is the product

of the restriction maps on each E i :
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[
∏
Ei](v)

[
∏
Ei](u)

?

-
∏
Ei(u)

|

ηu

∏
Ei(v)

|
n

ηv

?
-

b) Is it possible to use 22.14 to give a proof of 22.24 ? 2

22.35. Let E = 〈E, p,X 〉 f−→ F = 〈F, q,X 〉 be a morphism of sheaves over
X. Define the fibered product of E over f by

E ×f E = {〈 e, e′ 〉 ∈ E × E : f(e) = f(e′)},
with the topology induced by E × E. Note that for all 〈 e, e′ 〉 ∈ E ×f E we have
p(e) = p(e′). Thus, 〈 e, e′ 〉 7→ p(e) defines a map from E ×f E to X, written
ρ. We also have projections d1, d2 from E ×f E to E, given by the restriction
of the projections defined on E × E onto the first and the second coordinates,
respectively. Clearly, these are continuous functions. Then :

a) E ×f E is open in E × E.

b) ρ is the restriction of p× p to E ×f E. Conclude that E ×f E = 〈E ×f E, ρ,X 〉
is a sheaf over X.

c) d1 and d2 are the restriction to E ×f E of the canonical projections from
E × E −→ E, described in 22.24. Conclude that they are sheaf morphisms from
E ×f E to E . Verify that f ◦ d1 = f ◦ d2.

In the above situation, if f = IdE then we obtain a sheaf, indicated by ∆E ,
which corresponds to the graph of the identity relation on E . 2

22.36. a) LetK be a closed set in a topological space Y . Let Z = Y ∪ ({∗} × K)
be the disjoint union Y and K, with the following topology :

(1) The topology on Y is its original topology.

(2) An open neighborhood of 〈 ∗, z 〉 ∈ ({∗} × K) is an open neighborhood V of z
in Y , with 〈 ∗, z 〉 in place of z : (V − {z}) ∪ {〈 ∗, z 〉}.

Let 〈Y, p,X 〉 be a sheaf over X.

a) Define Z
q−→ X by q|Y = p and q(∗, z) = p(z); then 〈Z, q,X 〉 is a sheaf over

X and Y
h−→ Z, given by h(y) = y, is a sheaf morphism.

b) Show that k : Y −→ Z, given by

k(z) =

{
z if z 6∈ K
〈 ∗, z 〉 if z ∈ K,

is a sheaf morphism and prove that (1) ⇔ (2) in 22.26.(b). 2

The following Exercise indicate how Examples 22.15, 22.17 and 22.19 do in
fact yield algebraic representation results.

22.37. Notation as in 22.15, let E = 〈E, p, S(H) 〉 be the sheaf constructed
therein. There are global sections >∗ and ⊥∗, defined, for F ∈ S(H), by
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>∗(F ) = >/F and ⊥∗(F ) = ⊥/F .

Define ∧, ∨ : E × E −→ E as follows :

For 〈 e, e′ 〉 ∈ (E×E), with p(e) = p(e′) = F ∈ S(H), write e = a/F and
e′ = b/F , with a, b ∈ H and set{

∧(e, e′) = a/F ∧ b/F = (a ∧ b)/F
∨(e, e′) = a/F ∨ b/F = (a ∨ b)/F .

Define ≤ = {〈 a/F, b/F 〉 ∈ E × E : a/F ≤ b/F in H/F}, together with a projec-
tion on S(H), corresponding to the restriction of p × p to ≤. Then :

a) ≤ is a subsheaf of E × E , and the maps ∧, ∨ are well-defined sheaf morphisms.

b) For each open u in S(H), the set of sections over u, E(u), inherits

(i) a binary relation ≤(u), the set of sections of ≤ over u;

(ii) two binary operations, namely ∧u and ∨u.

(iii) two distinguished elements >∗|u, ⊥∗|u.

With this structure, E(u) is a HA. Further, the restriction map E(u) −→ E(v),
v ⊆ u, are HA-morphisms.

c) For each a ∈ H there is a HA-isomorphism, γa : E(Sa) −→ H/a→, such that
for all b ≤ a the following diagram is commutative :

E(Sb)

E(Sa)

?

- H/a→

|

γa

H/b→

αab

γb

?
-

where αab is the HA-morphism αab(x/a
→) = x/b→, x ∈ H.

e) The map constructed in 22.15 is a lattice isomorphism from H onto the lattice
of global sections of E . 2

22.38. With Exercise 22.37 as a model, discuss Examples 22.17 and 22.19, to
show that integral domains and commutative regular rings are ring isomorphic to
the rings of global sections of the sheaves constructed in those Examples. 2

22.39. How would one define a first-order structure in the category of geo-
metric sheaves ? 2
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CHAPTER 23

Sheaves and Presheaves

In this Chapter we present the objects in the title from a functorial viewpoint.
This has proven to be more useful and flexible than to deal directly with geometric
objects. The results of Chapter 16 will be of constant use. The references for this
Chapter are, essentially, the same as in Chapter 22. Deviating a bit from a classical
presentation, we introduce the notation of [15] at an early stage.

From Example 16.4, we know that the poset Ω(X), of opens in a topological
space X, can be considered as a category.

Definition 23.1. Let X be a topological space and let C be a category. A
C-presheaf over X is contravariant functor, P : Ω(X) −→ C. For u ⊆ v in
Ω(X)

∗ P (u) are the sections of P over u;

∗ pvu =def P (〈u, v 〉) : P (v) −→ P (u) is the restriction morphism from P (v)
to P (u).

The expression presheaf of C-objects is synonymous with C-presheaf over X.

If P and Q are C-presheaves over X, a morphism is a natural transformation,
η : P −→ Q. C-Presheaves over X and their morphism are a category, written
pSh(X, C).

Remark 23.2. A morphism η : P −→ Q of C-presheaves is a natural trans-
formation, that is,

∗ η = {ηu ∈ [P (u), Q(u)]C : u ∈ Ω(X)} 1;

∗ For all v ≤ u in Ω(X), the following diagram is commutative :

P (v)

P (u)

?

- Q(u)

(·)|v

ηu

Q(v)

(·)|v

ηv

?
-

We shall latter see how to relate this “graded” notion of morphism with a more
“set-theoretical” concept (23.19). 2

1Recall that [A,B]C is the set of morphisms from A to B in C.
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Example 23.3. If C has a final object, 1, we may define a presheaf over X,
also indicated by 1, as follows : for all u ∈ Ω(X),

1(u) = 1 and the restriction maps are the identity morphism of 1.

It is clear that 1 is the final object in pSh(X, C). Similar comments apply when
C has an initial object or a zero. 2

Remark 23.4. It is clear that a presheaf of C-objects can also be defined as
a covariant functor from Ω(X)op to C, where ∗op is the dual category as in 16.5.
Many texts on the subject adopt this definition.

If P : Ω(X)op −→ C is a presheaf, then with the notation of 23.1, observe that
if u ⊆ v ⊆ w in Ω(X), then functoriality entails

(1) puu = IdP (u) and (2) pwu = pvu ◦ pwv.
Moreover, P (∅) must be an object in C such that [P (u), P (∅)] 6= ∅, for all u ∈ Ω(X).
Whenever C has a final object, 1, it is standard to set

P (∅) = 1,

a convention we shall also adopt. The following table exemplifies the terminology
in 23.1, with notation as in 16.3 :

Usual Name Functor from Ω(X)op to

Presheaf of sets over X Set

Presheaf of partial orders over X Po

Presheaf of distributive lattices D
Presheaf of Abelian groups over X AbGr

Presheaf of rings over X CR

Presheaf of L-structures over X L-mod

There is something in common with all the examples in the preceding table : all
are set-based categories (16.1), the only type of category that will be target of
presheaves in this book. 2

23.5. Conventions. a) From here on, the term category will mean set-based
category, that is, sets underlie its objects and maps underlie its morphisms.

b) If P : Ω(X)op −→ C is a C-presheaf over X, then

(1) P (∅) = {∗}, a fixed singleton;

(2) If u ∈ Ω(X) and s ∈ P (v), define s|u = pv,u∩v(s).

Note that if u ⊆ v in Ω(X) and x ∈ P (v), then x|u = pvu(s). Hence, the operation

(·)|u generalizes the restriction morphisms in a presheaf.

(3) For u, v ∈ Ω(X), u ≤ v stands for v ∈ Ω(X) and u ∈ Ω(v). 2

Definition 23.6. Let P : Ω(X)op −→ C be a C-presheaf over X.

a) The domain of P is the set |P | =
∐
u∈Ω(X) P (u).

b) For s ∈ |P |, the extent of s in P is defined as
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EP s = the unique u ∈ Ω(X) such that s ∈ P (u).

c) If S ⊆ |P |, the support of S is defined as

EPS =
⋃
s∈S Es.

d) For s, t ∈ |P |, define 2

[[s = t]]P =
⋃
{u ≤ (Es ∩ Et) : s|u = t|u},

called the equality of P . Note that [[s = t]]P ∈ Ω(X).

e) P is extensional 3 if for all s, t ∈ |P |,
[ext] EP s = EP t = [[s = t]]P ⇔ s = t.

Context allowing, we omit P from the notation of extent, support and equality.

Proposition 23.7. Let P be a C-presheaf over X, let s, t, z ∈ |P | and let
u, v ∈ Ω(X).

a) Restriction in P verifies the following properties :

[rest 1] : s|Es = s; [rest 2] : Es|u = u ∩ Es;

[rest 3] : (s|u)|v = s|u∩v; [E] : Es = [[s = s]].

b) The equality of P satisfies the following properties :

[= 1] : [[s = t]] = [[t = s]];

[= 2] : [[s = t]] ∩ [[t = z]] ⊆ [[s = z]].

[E =] : [[s = t]] ≤ (Es ∩ Et).

c) [[s|u = s]] = u ∩ Es
d) [[s|u = t|v]] = u ∩ v ∩ [[s = t]].

e) If P is extensional, then s|[[s=t]] = t|[[s=t]] and

[[s = t]] = max {u ≤ (Es ∩ Et) : s|u = t|u}.
f) Consider the conditions

(1) s|u = t|u; (2) u ≤ (Es ∪ Et) → [[s = t]].

Then, (1) ⇒ (2). If P is extensional, these conditions are equivalent.

Proof. a) All equations in (a) are straightforward consequences of the defi-
nitions. Relations [= 1] and [E =] in (b) are clear; the proof of [= 2] is exactly
like that given in 22.8.(b).(2) for the corresponding relation in geometric sheaves.

c) Since Es|u = u ∩ u ([rest 2]), [E =] in (b) yields

[[s|u = s]] ≤ Es|u ∩ Es = u ∩ Es ∩ Es = u ∩ Es.
To verify equality, note that [rest 1] and [rest 3] in (a) imply,

(s|u)|u∩Es = s|u∩u∩Es = s|u∩Es,
and so u ∩ Es ≤ [[s = t]], as needed.

d) Since Es|u = u ∩ Es and Et|v = v ∩ Et, [E =] entails

2Compare 22.8.(a); and keep in mind 23.5.(b).(3).
3Separated or a mono-presheaf.
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[[s|u = t|v]] ≤ u ∩ v ∩ Es ∩ Et.
In particular,

Es ∩ Et ∩ u ∩ v ∩ [[s|u = t|v]] = [[s|u = t|v]]. (I)

Item (c), (I) and the transitive property [= 2] of equality yield

u ∩ v ∩ [[s = t]] ⊇ u ∩ v ∩ [[s = s|u]] ∩ [[s|u = t|v]] ∩ [[t|v = t]]

= u ∩ v ∩ Es ∩ Et ∩ [[s|u = t|v]]
= [[s|u = t|v]].

We may once again use transitivity to write

[[s|u = t|v]] ⊇ [[s|u = s]] ∩ [[s = t]] ∩ [[t = t|v]],
and item (c) applies to yield u ∩ v ∩ [[s = t]] ≤ [[s|u = t|v]], establishing the

desired equality.

e) By the preceding items we have

Es|[[s=t]] = Es ∩ [[s = t]] = [[s = t]] = [[s|[[s=t]] = t|[[s=t]]]],
and so if P is extensional, the desired equality follows. The remaining assertion is
now clear.

f) If (1) holds, then

Es|u = Es ∩ u = Et|u = Et ∩ u.

Thus, if v = Es ∩ u = Et ∩ u, we have v ≤ (Es ∩ Et) and s|v = t|v, by the

properties in item (a). It follows that v ≤ [[s = t]]. Hence,

u ∩ (Es ∪ Et) = (u ∩ Es) ∪ (u ∩ Et) = v ≤ [[s = t]],

and the adjointness [→] in 6.1 entails u ≤ (Es ∪ Et) → [[s = t]], establishing (2).
Conversely, suppose that P is extensional and that (2) holds. Then,

u ∩ (Es ∪ Et) ≤ [[s = t]] ≤ Es ∩ Et.
Hence,

u ∩ [[s = t]] ⊆ u ∩ Es ⊆ u ∩ (Es ∪ Et) ⊆ u ∩ [[s = t]],

and so u ∩ Es = u ∩ [[s = t]]; similarly, one has u ∩ Et = u ∩ [[s = t]]. Since P
is extensional, items (a) and (e) yield

s|u = s|Es∩u = s|[[s=t]]∩u = (s|[[s=t]])|u = (t|[[s=t]])|u = t|[[s=t]]∩u
= t|Et∩u = t|u,

ending the proof. �

Definition 23.8. Let P be a C-presheaf over X and S ⊆ |P |.
a) S is compatible if for all s, t ∈ S, s|Et = t|Es.
b) P is a sheaf if for all compatible S ⊆ |P |, there is a unique t ∈ |P | such that

(1) Et =
⋃
s∈S Es; (2) For all s ∈ S, t|Es = s.

A morphism of C-sheaves over S is a morphism of the underlying presheaves.
C-sheaves and their morphisms are a category, written Sh(X, C).

Example 23.9. If E = 〈E, p,X 〉 is a geometric sheaf over X, the discussion
in Chapter 22 (22.6) indicates that E originates a sheaf as in 23.8,
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u ∈ Ω(X) 7→ E(u), with restriction maps (·)|uv.
Note that the equality defined therein coincides with the one set down here. More-
over, Lemma 22.25 and the paragraphs that precede it, show that morphisms of
geometric sheaves originate morphisms of sheaves as defined above. 2

Remark 23.10. One should beware of confusing the support of a presheaf
with the largest open over which it has sections. The support of the covering space
of the circle by the real line (22.11) is S1, but it has no global sections. Note that
this gives an example of a sheaf with this property, and so the question here is
not lack of completeness. 2

Example 23.11. Let I be a set and {Mi : i ∈ I} be a non-empty family of
sets indexed by I. Endow I with the discrete topology (all points are open). Define
a presheaf M : Ω(I) −→ Set, as follows :

∗ For u ⊆ I, M(u) =
∏
i∈u Mi;

∗ If u ≤ v ⊆ I, the restriction map, ρvu :M(v) −→M(u), is the projection that
forgets the coordinates outside u.

It is easily verified thatM is a sheaf over I, the discrete sheaf generated by the
family {Mi : i ∈ I}. For s, t ∈ |M|, Es = doms and

[[s = t]] = {i ∈ Es ∩ Et : s(i) = t(i)}.
M has a special property : all restriction maps are surjective. In particular, ev-
ery section is the restriction of a global section. Presheaves satisfying the latter
property are called flabby (31.10.(e)). 2

Example 23.12. If P is a C-presheaf over X and u ∈ Ω(X), define a functor
P|u : Ω(X)op −→ C, by

P|u(v) =

{
P (v) if v ≤ u

∅ otherwise,

with restrictions induced by P ; P|u is a C-presheaf over X, called the restriction

of P to u. Note that

∗ P|u is a sheaf whenever P is a sheaf; ∗ |P|u| = {x ∈ |P | : Ex ≤ u};
∗ For S ⊆ |P |, S ⊆ |P|u| iff ES ≤ u. 2

Example 23.13. For opens v ≤ u in Ω(X), there is a frame map

δuv : Ω(u) −→ Ω(v), given by δuv(w) = w ∩ v.

The contravariant functor Ω̃ : Ω(X) −→ Frame, given by

u 7−→ Ω(u) and ιv,u 7−→ δuv,

is a sheaf of frames over X, called the sheaf of opens of X and written Ω̃(X).
The reader may check that for p ∈ Ω(u) and q ∈ Ω(v),

[[p = q]] = (p ↔ q) ∩ u ∩ v. 2

Example 23.14. Recall that C(X, Y ) is the set of continuous functions from
X to Y . If v ≤ u are opens in X, we have a natural restriction

·|v : C(u, Y ) −→ C(v, Y ), f 7−→ f |v. (*)
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The associations

u ∈ Ω(X) 7−→ C(u, Y ) and v ≤ u 7−→ ·|v,
define a sheaf of sets over X, the sheaf of continuous functions of X into
Y , also written C(X,Y ). The fact that C(X,Y ) is indeed a sheaf comes from an
application of 1.2 to a compatible family of continuous maps, defined on open sets
of X. Since continuity is a local property, 1.2 applies ipsis litteris, once continuity
is added to its hypotheses and conclusion.

For all sections s, t in C(X,Y ),

[[s = t]] = int {x ∈ X : s(x) = t(x)}.
If Y = R 4, C(X) is an algebra over R, and the restriction maps in (*) are

algebra homomorphisms. Hence, C(X) is a sheaf of algebras over X. 2

Example 23.15. Let X, Y be topological spaces. Recall that (see [Cb] in
page 194)

Cb(X,Y ) = {f ∈ C(X,Y ) : Imf is compact in Y }.
If u ≤ v in X, the natural restrictions of 23.14 also yield restrictions from Cb(v, Y )
to Cb(u, Y ), that constitute an extensional presheaf of sets overX, written Cb(X,Y ).
Equality in this case is exactly as in Example 23.14.

If Y = R, Cb(X) is the algebra of bounded continuous real valued functions
on X, an algebra over R, associated to which we have an extensional presheaf of
algebras over X, Cb(X), that in general is not a sheaf (if X =R, for instance).

Clearly, Cb(X) = C(X), when X is a compact space. The Hausdorff spaces for
which Cb(X) = C(X) are called pseudo-compact. The reader may wish to try
his hand at proving that the first uncountable ordinal, ω1, with the order topology,
is an example of a pseudo compact space that is not compact. 2

Example 23.16. Let A be a set. The associations

u ∈ Ω(X) 7→ A and ∅ 6= v ≤ u 7→ IdA
5

define an extensional presheaf of sets over X, called the constant presheaf A on
X. The reader might wish to verify that A is a sheaf iff X is irreducible (12.8).

We can consider A as a topological space, with the discrete topology (all points
are open). The sheaf of continuous functions C(X,A), denoted by A(X), is called
the constant sheaf of stalk A on X. When X is clear from context, its mention
will be omitted. For s, t ∈ |A|,

[[s = t]] is a disjoint union of clopens in Es ∩ Et.
We also have an extensional presheaf Ab(X) = Cb(X,A) (as in 23.15). Since

A has the discrete topology, compact is the same as finite, and so for all u ≤ X,

Ab(u) = {f ∈ C(u,A) : Imf is a finite subset of A},
with restrictions induced by A. Clearly, A(u) = Ab(u) when u is compact and
A = Ab if A is finite. In this case, for s, t ∈ |Ab|,

[[s = t]] is clopen in Es ∩ Et.

4Or whenever Y is a topological ring or algebra
5Since {0} is the final object in Set, A(∅) = {0}, as accorded in 23.4.
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Our convention is that the constant sheaf is denoted by a bold letter corre-
sponding to the set from which it is constructed. Thus, if n ≥ 0 is positive integer,
n(X) is the constant sheaf of stalk {0, 1, . . . , n} over the topological space X. We
have already registered that when allowed we drop mention to X. The constant
sheaf with empty stalk is 0, while 1 is the constant {0} sheaf. 2

Example 23.17. Let X be a topological space. Notation as in 23.16, if A is
a first-order structure, then A will a sheaf of first-order structures as well. To see
this, fix a first-order language L and the L-structure A. We endow T = C(X,A)
with the L-structure from AX , as in 17.9. Explicitly, if f = 〈 f1, . . . , fn 〉 ∈ Tn and
x ∈ X, set

f(x) = 〈 f1x, . . . , fnx 〉.
Then, if R ∈ rel(n,L), ω ∈ op(n,L), c ∈ Ct(L) and f ∈ Tn,

[R] : C(X,A) |= R[f ] iff ∀ x ∈ X, A |= R[f(x)];

[ω] : ωT (f) = ωA ◦ 〈 f1, . . . , fn 〉;
[c] : The interpretation of c is the constant map ĉ, of value c.

The equation in [ω] means that for all x ∈ X, [ωT (f)](x) = ωA(f(x)).

To see that this indeed defines an element of T , it suffices to show that each x ∈ X
has a neighborhood on which ωT (f) is constant. Fix x ∈ X and select u1, . . . , un
∈ νx such that fk is constant in uk. Consider u =

⋂n
k=1uk; all fk are constant in

u and so for all y ∈ u, ωA(f(y)) = ωA(f(x)), as needed.

It is straightforward that for opens v ≤ u in X, the restriction maps

f ∈ C(u,A) 7→ f|v ∈ C(v,A)

are L-morphisms. Thus, A is a presheaf of L-structures over X. It is easily es-
tablished that A is actually a sheaf, as asserted. Similarly, Ab is an extensional
presheaf of L-structures overX. In section 24.5 we present some of the fundamental
properties of constant sheaves, as well as other examples. 2

Remark 23.18. C(·, ·) is a bifunctor from Top × Top to Set (16.15), con-
travariant in the first coordinate and covariant in the second. Hence, continuous
maps α : X ′ −→ X and β : Y −→ Y ′ induce{

〈β, α 〉 : C(X,Y ) −→ C(X ′, Y ′), f 7→ β ◦ f ◦ α

X ′
α−→ X

f−→ Y
β−→ Y ′.

For v ∈ Ω(X ′), set αv = α|α−1(v)
. Then, for all u ≤ v in Ω(X ′), the following

diagram commutes :

C(α−1(u), Y )

C(α−1(v), Y )

?

- C(v, Y ′)

·|α−1(u)

〈αv, β 〉

C(u, Y ′)

·|u

〈αu, β 〉

?
-
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This example, as well as 20.9, show that it is important to study morphisms between
sheaves with different bases, giving an indication on how to define such a concept
(see Definitions 29.1 and 29.3). 2

Let η : P −→ Q be a morphism of C-presheaves (23.2). We can view η as a
map from |P | to |Q|, as follows :

For s ∈ |P |, set ηs = ηEs(s).

The following Lemma summarizes the relations between the “natural transforma-
tion” concept of morphism and that just introduced.

Lemma 23.19. Let P and Q be C-presheaves over X. Consider the following
conditions :

(1) There is a unique C-presheaf morphism, η : P −→ Q, such that ηEs(s) = f(s),
s ∈ |P |.

(2) For all s ∈ |P | and u ∈ Ω(X),

{
(i) EQf(s) = EP s;

(ii) f(s|u) = f(s)|u.

(3) For all s, t ∈ |P |,

{
[mor 1] : EQf(s) = EP s;

[mor 2] : [[s = t]]P ⊆ [[f(s) = f(t)]]Q.

Then,

a) (1) ⇒ (2) ⇒ (3).

b) If Q is extensional, then (3) ⇒ (2).

c) If P and Q are presheaves of sets then (3) and (1) are equivalent. If Q is
extensional, all three conditions are equivalent.

Proof. We write E(·) for the extension of sections in P and in Q, the context
making it clear to which presheaf the section belongs.

a) (1) ⇒ (2) is an immediate consequence of the definitions.

(2) ⇒ (3) : Clearly it suffices to prove [mor 2]. For s, t ∈ |P |, the properties of

restriction in 23.7.(a) and (2).(ii) yield

(*) [[f(s|[[s=t]]) = f(t|[[s=t]])]] = [[f(s)|[[s=t]] = f(t)|[[s=t]]]]
= [[f(s) = f(t)]] ∩ [[s = t]].

On the other hand, s|[[s=t]] = t|[[s=t]] and Es|[[s=t]] = [[s = t]]. Thus, from (2).(i)

and (*) comes

[[s = t]] = [[f(s) = f(t)]] ∩ [[s = t]],

which is equivalent to [mor 2].

b) If 〈 s, v 〉 ∈ P (u) × Ω(u), then

Ef(s|v) = Es|v = Es ∩ v = Ef(s) ∩ v = E(fs)|v. (A)

Thus, [mor 2] and [rest 3] in 23.7.(a) yield

[[f(s|v) = (fs)|v]]] = [[f(s|v) = fs]] ∩ v ⊇ [[s|v = s]] ∩ v = Es ∩ v.

By (A), [[f(s|v) = (fs)|v]] ⊆ Es ∩ v, and so
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[[f(s|v) = (fs)|v]] = Es ∩ v = Ef(s|v) = E(fs)|v.
Now, the extensionality of Q yields f(s|v) = (fs)|v.
c) First note that if s ∈ P (u), then f(s) ∈ Q(u) ([mor 1]). Therefore, we may
define, for u ∈ Ω(X),

ηu : P (u) −→ Q(u) by s 7→ f(s).

It is straightforward that the family of maps ηu, u ∈ Ω(X), is a morphism of
presheaves of sets; its uniqueness is clear from the construction. �

Remark 23.20. Whenever possible, and based on 23.19, we shall write a
morphism without explicit mention of its grading. For instance, if η : P −→ Q is
a morphism and S ⊆ |P |, we write

ηS = {ηs : s ∈ S}
instead of {ηEss : s ∈ S}. 2

The examples we have given above are all sheaves and extensional presheaves.
There is good reason for this : if the category C is sufficiently rich, there is a
natural way to associate to a C-presheaf over X an extensional one. This produces
a functor, from the category of C-presheaves to the subcategory of extensional
C-presheaves that reflects all categorical constructions. We shall prove this for
presheaves of first-order structures, a result that is sufficiently general for our
purposes.

Theorem 23.21. Let L be a first-order language with equality and let P be a
presheaf of L-structures over X. There is an extensional L-mod-presheaf over X,
εP , and a morphism of presheaves of L-structures, ε : P −→ εP , that satisfies
the following conditions :

a) |εP | = {εs : s ∈ |P |}.
b) For all s, t ∈ |P |, [[εs = εt]] = [[s = t]].

c) If η : P −→ Q is a morphism and Q is an extensional presheaf of L-structures
over X, there is a unique morphism, εη : εP −→ Q, making the following diagram
commute :

P - εP

η εη

Q

ε

A
A
A
A
AU

�
�
�
�
��

The presheaf εP is the extensionalization of P .

Proof. We start with

Fact 1. Let ω be a n-ary relation symbol in L and u ∈ Ω(X). For s = 〈 s1, . . . , sn 〉,
t = 〈 t1, . . . , tn 〉 in P (u)n,

⋂n
k=1 [[sk = tk]] ≤ [[ω(s) = ω(t)]].
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Proof. 6 Let u1, . . . , un ∈ Ω(X) be such that for 1 ≤ k ≤ n,

uk ≤ (Esk ∩ Etk) and sk|uk = tk|uk ,

and set u =
⋂n
k=1 uk. It follows from [rest 3] in 23.7.(a) that

For all 1 ≤ k ≤ n, sk|u = tk|u. (I)

Since P is a presheaf of L-structures, the restriction maps are L-morphisms, that
is,

ω(s)|u = ω(s1|u, . . . , sn|u). (II)

(I) and (II) yield ω(s)|u = ω(t)|u, showing that u ⊆ [[ω(s) = ω(t)]]. Since

Ω(X) is a [∧,
∨

]-lattice, 8.4 guarantees that⋂n
k=1 [[sk = tk]] =

⋃
{
⋂n
k=1 uk : uk ≤ Esk ∩Etk and sk|uk = tk|uk},

and the inequality in the statement follows.

For s, t ∈ |P | define

s θ t iff Es = Et = [[s = t]].

It is clear that θ is an equivalence relation on |P |.
Fact 2. For u ∈ Ω(X), set θu = θ ∩ (P (u) × P (u)). Then, θu is a congruence
on the L-structure P (u).

Proof. Clearly, θu is an equivalence relation on P (u). Let ω be a n-ary operation
symbol in L. It must be shown that for s = 〈 s1, . . . , sn 〉 and t = 〈 t1, . . . , tn 〉 in
P (u)n, we have

sk θu tk, for 1 ≤ k ≤ n ⇒ ω(s) θu ω(t). (III)

It is clear that Eω(s) = Eω(t) = u, because ω is an operation on P (u). From the
hypothesis in (III) and Fact 1, we obtain⋃n

k=1 [[sk = tk]] =
⋃n
k=1 Esk = u ≤ [[ω(s) = ω(t)]],

and so [E =] in 23.7.(b) entails [[ω(s) = ω(t)]] = u, ending the proof of Fact 2.

For u ∈ Ω(X), let

εP (u) = P (u)/θu,

be the quotient L-structure of P (u) by θu, as in 17.21; write

εu : P (u) −→ P (u)/θu
for the canonical quotient L-morphism. For s ∈ |P |, write εs =def s/θEs. For
opens u ≤ v in X, define

ρvu : εP (v) −→ εP (u), by ρvu(εs) = ε(s|u).

Fact 3. For opens u ≤ v in X, ρvu is a L-morphism such that

(1) If u ≤ v ≤ w are opens in X, ρwu = ρvu ◦ ρwv;
(2) ρuu = IdεP (u).

Moreover, εP : Ω(X) −→ L-mod defined by

u 7−→ P (u) and ιuv 7−→ ρvu
is a presheaf over X.

Proof. Fix opens u ≤ v in X and let f = εu ◦ (·)|u.

6In fact, we should use ωP (u), but this would overload notation.
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P (v)
(·)|u
−→ P (u)

εu−→ εP (u).

By construction, f is a L-morphism. We now verify that

θv ⊆ θf = {〈 s, t 〉 ∈ P (v)2 : fs = ft},
that is, for all s, t ∈ P (v), s θv t ⇒ s|u θu t|u. Since u = Es = Et = [[s = t]],

23.7.(d) yields

[[s|u = t|u]] = u ∩ [[s = t]] = u

and the conclusion follows from [rest 2] in 23.7.(a). By the universal property in

17.21, there is a unique L-morphism, f̂ : εP (v) −→ εP (u), such that

f̂ ◦ εv = f = εu ◦ (·)|u.

Since f̂ is pointwise identical with ρvu, the latter is a L-morphism, as desired. The
verification of conditions (1) and (2) is straightforward and εP is a presheaf of
L-structures over X.

Fact 4. For all s, t ∈ |P |,
(1) Eεs = Es;

(2) [[εs = εt]] = [[s = t]];

(3) εP is an extensional presheaf of L-structures over X.

Proof. (1) is clear, because if s ∈ P (u), then εs ∈ εP (u). For (2), if u ≤ Es ∩ Et
is such that s|u = t|u, then

ρEs,u(εs) = ε(s|u) = ε(t|u) = ρEt,u(εt),

and u ≤ [[εs = εt]]. Hence, [[s = t]] ⊆ [[εs = εt]]. Conversely, if v ≤ Es ∩ Et,
satisfies ρEs,v(εs) = ρEt,v(εt), the definition of the restriction maps ρ∗∗ entails

ε(s|v) = ε(t|v),
that is, s|v θv t|v. Hence, items (a) and (d) in 23.7 yield

v ∩ Es = Es|v = Et|v = v ∩ Et = [[s|v = t|v]] = v ∩ [[s = t]].

Since v ≤ Es ∩ Et, the preceding equations entail v = v ∩ [[s = t]], that is,
v ≤ [[s = t]]. It follows that [[εs = εt]] ⊆ [[s = t]], completing the verification of
(2). Item (3) is immediate from (1) and (2).

Up to now we have proven (a) and (b) (Fact 3.(2)) in the statement of the
Theorem. It remains to verify (c).

If η = {ηu ∈ [P (u), Q(u)] : u ∈ Ω(X)} is a natural transformation from P
to Q (23.2), define εη : εP −→ Q as follows :

For u ∈ Ω(X), (εη)u : εP (u) −→ Q(u) is given by

(εη)u(εs) = ηus.

To see that this well defined, let Es = Et = [[s = t]], s, t ∈ P (u). By Lemma
23.19, we have

[[s = t]] ⊆ [[ηus = ηut]],
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and so u = Eηus = Eηut = [[ηus = ηut]]. Since Q is extensional, we conclude
that ηus = ηut, as desired. It is straightforward that εη is the unique L-morphism
making the displayed diagram commutative, ending the proof 7. �

23.22. Convention. From here on, unless explicit mention to the contrary,
“presheaf” is synonymous with “extensional presheaf”. 2

That morphisms preserve restriction, compatibility and the gluing of compat-
ible families is left as an exercise for the reader :

Lemma 23.23. Let P
η−→ Q be a morphism of presheaves and {x} ∪ S ⊆ |P |

be a set of sections in P . Then, with notation as in 23.20,

a) For all u ∈ Ω(X), η(s|u) = (ηs)|u.

b) If S is compatible in P , η(S) = {ηs : s ∈ S} is compatible in Q.

c) If t ∈ |P | satisfies Et =
⋃
s∈S Es and [[t = s]] = Es, for all s ∈ S, then, ηt

satisfies the same conditions with respect to η(S). 2

Remark 23.24. Let P be a presheaf of sets over X. For s, t ∈ |P |, define

s ≤ t iff Es ⊆ Et and t|Es = s.

yielding a partial order on |P | (because of extensionality), with which |P | is a meet
semilattice :

inf {s, t} = s ∧ t = s|[[s=t]] = t|[[s=t]].
When P is a sheaf, then for all S ⊆ |P |,∨

S exists in |P | iff S has an upper bound iff S is compatible.

In fact, for any S ⊆ |P |, even when P is a presheaf :

S has an upper bound iff
∨
S exists in |P |,

simply because the restriction of an upper bound of S to
⋃
s∈S Es will be

∨
S

in P . Thus, when P is a presheaf, we cannot use the existence of
∨

to define
compatibility. To describe it, we introduce a new binary operation on |P |, &,
defined as follows :

For s, t ∈ |P |, s & t = s|Et.
Note that

∗ E(s & t) = Es ∩ Et; ∗ s & s = s; ∗ s ∧ t ≤ s & t.

Since successive restrictions to open sets is the same as restricting once to their
intersection ([rest 2] in 23.7.(a)), & is associative. Moreover, for r, s, t, z ∈ |P |,

r ≤ t and s ≤ z ⇒ (r & s) ≤ (t & z) and (s & r) ≤ (z & t),

that is, & is increasing in both variables. The reader will have noticed that & is
not commutative. In fact, a subset S ⊆ |P | is compatible iff for all s, t ∈ S,
s & t = t & s. Hence, we may define compatibility from &, without appeal to
completeness. Observe that

s ∧ t = s & t iff s & t = t & s iff {s, t} is compatible.

7The last part of the proof also follows from the universal property in 17.21.
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The fact that P is a sheaf can be expressed as : subsets of |P | that &-commute
have supremum. It is left to the reader to check that, if P is a sheaf, then for all
compatible S ⊆ |P | and t ∈ |P |,

t &
∨
S =

∨
s∈S (t & s) and (

∨
S) & t =

∨
s∈S (s & t).

What might come as a surprise is that the maps

(·) & s, s & (·) : |P | −→ |P |,
might not have right adjoints. This is due to the fact that a sheaf is not a complete
lattice, but a semilattice in which only certain types of subsets (compatible ones)
have supremum. In any case, sheaves and presheaves are close to the concept of
quantale and their elementary counterparts ([61]). 2

Remark 23.25. Let X be the one-point topological space. A presheaf over
X can be canonically identified with a set, namely, its set of global sections. This
identification yields natural isomorphisms between the categories pSh(X,Set),
Sh(X,Set) and Set. 2

Exercises

23.26. Let P be a C-presheaf over X. P is extensional iff for all u ∈ Ω(X)
and s, t ∈ P (u)

If ui, i ∈ I, is an open covering of u,

such that puui(s) = puui(t), ∀ i ∈ I
⇒ s = t. 2

23.27. Let P be a C-presheaf over X.

a) If P is a sheaf, then it is extensional.

b) P is a sheaf iff for all si ∈ P (Ui), i ∈ I, if u =
⋃
ui, then

pui, ui∩uj (si) = puj , ui∩uj (sj),
∀ i, j ∈ I ⇒ ∃ unique s ∈ P (u), such that

puui(s) = si, ∀ i ∈ I.
2
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CHAPTER 24

Presheaves of Sets

In this chapter we discuss sheaves and presheaves of sets. The reasons for this
are twofold :

∗ Without a doubt, presheaves of sets underlie very important mathematical con-
structions and are frequently used as an introduction to the subject;

∗ Since we are ultimately interested in First-Order Logic, presheaves of first-
order structures are our main concern. Consider how the classical concept of L-
structure is defined. The basic building blocks are sets and constructions with sets.
Thus, a L-structure is a set, together with maps, elements and certain distinguished
subsets of its finite powers. It seems, reasonable to proceed by analogy to arrive at
the notion of L-structures in presheaves, replacing the category of sets by that of
presheaves. If this path is taken, elementary “set theory” must be internalized in
the category of presheaves, that is, one has to establish the analogues of unions,
intersections, the power set, maps, elements and relations, among other things.

It will turn out that “L-structure in the category of presheaves” comes to the
same thing as “presheaves of L-structures”, but the conceptual role of working
inside the category of presheaves over a topological space is important to under-
stand other situations, in which such a correspondence is false, as is the case in
the general framework of Topoi, originating with A. Grothendieck and his school,
to treat Algebraic Geometry, just to mention one notable example.

Throughout this Chapter, X is a topological space and Ω = Ω(X) is the frame
of opens in X. All presheaves will be extensional. Write pSh(X) and Sh(X) for
the categories of presheaves and sheaves of sets over X, respectively.

We employ Proposition 23.7 and Lemma 23.19, without necessarily mentioning
it. The definition of extensionality, [ext], appears in 23.6.(c).

1. Categorical Constructions

This section is dedicated to the description of some of the basic categorical
constructions in pSh(X) and Sh(X).

24.1. Initial and Final Objects. These are the constant sheaves 0 and 1,
respectively (see 23.16). It is clear that for each presheaf P on X, there are unique
morphisms from 0 to P and from P to 1 1. 2

1The empty map is the unique map with empty domain, into any set.
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24.2. Products. Let Pi, i ∈ I, be a family of presheaves overX. For u ∈ Ω(X),
define

(
∏
i∈I Pi)(u) =

∏
i∈I Pi(u),

and for an open subset v of u, a restriction

(
∏
i∈I Pi)(u) −→ (

∏
i∈I Pi)(v), 〈 si 〉 7→ 〈 si|v 〉

It is straightforward that this defines a presheaf over X, which is a sheaf if the
same is true of each component. The canonical projections

πiu : (
∏
i∈I Pi)(u) −→ Pi(u),

are presheaf morphisms, πi : (
∏
i∈I Pi) −→ Pi. The pair

〈
∏
i∈I Pi, {πi}i∈I 〉

is the product of the family Pi in the categories pSh(X) or Sh(X).

Write P =
∏
i∈I Pi; the domain of P is given by

|P | = {〈 si 〉 ∈
∏
i∈I |Pi| : ∀ i, j ∈ I, Esi = Esj}.

Note the distinction between |P | and the product of the |Pi| : only i-tuples with
constant extent are in |P |. If s = 〈 si 〉, t = 〈 ti 〉 are sections in |P |, then 2

[[s = t]] =
∧
i∈I [[si = ti]] = int

(⋂
i∈I [[si = ti]]

)
.

In particular, Es =
∧
i∈I Esi = Esi, for any i ∈ I. The projections πi may

be written as maps, πi : |P | −→ |Pi|, πis = si. If s, t are sections in P , then

Es = Et = [[s = t]],

implies that for all i ∈ I,

Esi = Eti = [[si = ti]]

and the extensionality of each component entails s = t. Hence, P is an extensional
presheaf. When I = ∅, we have

P ∅ =def P
0 = 1,

where 1 is the constant sheaf {0}, as in 23.16. The reason for this is that in any
category, the empty product is its final object. In particular, in Set, the empty
product is the final object 1 = {0}. 2

24.3. Fibered product over a map. Let λ : P −→ Q be a morphism of
presheaves over X. Define, for u ∈ Ω(X),

(P ×λ P )(u) = {〈 s, t 〉 ∈ P (u) × P (u) : λu(s) = λu(t)},
with restrictions induced by the product P × P . P ×λ P is a presheaf, called the
fibered product of P over λ. If P is a sheaf, the same is true of P ×λ P . There
are morphisms,

δ1, δ2 : P ×λ P −→ P ,

given by the restriction to (P ×λ P )(u) ⊆ P (u) × P (u), of the projections of
the product presheaf P × P on each coordinate. Clearly, λ ◦ δ1 = λ ◦ δ2.

If λ = IdP , the fibered product of P over λ is the graph of the identity relation
on P , ∆P ; when P is clear from context, write ∆ for this presheaf. 2

24.4. Equalizers. Let λ, β be morphisms from P to Q. For each u ∈ Ω(X),
define

2Recall that
∧

in the frame Ω(X) is the interior of the intersection; 2.11.(b).
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Eq(λ, β)(u) = {s ∈ P (u) : λu(s) = βu(s)}.
If v ≤ u 3, since λ and β are morphisms, we may define a restriction

Eq(λ, β)(u) −→ Eq(λ, β)(v) by s 7→ s|v.
Then, Eq(λ, β) is a presheaf, and a sheaf whenever P is a sheaf. For u ∈ Ω(X),
there is a map ηu : Eq(λ, β)(u) −→ P (u), the canonical embedding of Eq(λ, β)(u)
as a subset of P (u). Clearly, η = 〈 ηu 〉u∈Ω(X) is a morphism and λ ◦ η = β ◦ η.

〈Eq(λ, β), η 〉 is the equalizer of the pair 〈λ, β 〉 in pSh(X) or Sh(X). 2

24.5. Coproducts. Let Pi, i ∈ I, be a family of presheaves over X. Define a
presheaf, C =

∐
i∈I Pi, by the following prescriptions 4 :

(i) For u ∈ Ω(X), C(u) =
∐
Pi(u);

(ii) If u ≤ v and 〈 i, s 〉 ∈ C(u), then 〈 i, s 〉|v = 〈 i, s|v 〉.

It is straightforward that C is a presheaf over X, which is a sheaf whenever
the same is true of each component. For i ∈ I, there is a morphism of presheaves,

λi : Pi −→ C, given by λis = 〈 i, s 〉.
It is straightforward that if Q is a presheaf over X and f i : Pi −→Q are morphisms,
then there is a unique morphism, f : C −→ Q, such that f ◦ λi = f i, ∀ i ∈ I.

Pi - C

f i f

Q

λi

A
A
A
A
AU

�
�
�
�
��

Hence, the pair 〈C, {λi : i∈ I} 〉 is the coproduct of the family Pi in pSh(X)
or Sh(X). Domain and equality in C are given, respectively by

∗ |C| = {〈 i, s 〉 : i ∈ I and s ∈ |Pi|};
∗ For 〈 i, s 〉, 〈 j, t 〉 ∈ |C|,

[[〈 i, s 〉 = 〈 j, t 〉]] =

{
∅ if i 6= j

[[s = t]] otherwise

It is clear that C is an extensional presheaf over X. 2

2. Monics and Epics. The Structure of Subpresheaves

The notions of monic and epic in a category are defined in 16.8. The following
result should be compared with Proposition 22.26.

Proposition 24.6. Let P and Q be sheaves or presheaves over X and let

P
η−→ Q be a morphism.

a) The following are equivalent in pSh(X) or Sh(X) :

3Recall (23.5.(3)) that v ≤ u means u ∈ Ω and v ∈ Ω(u).
4The definition of disjoint union of sets is in 1.5.
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(1) η is monic; (2) For all u ∈ Ω(X), ηu is injective;

(3) For all s, t ∈ |P |, [[ηs = ηt]] = [[s = t]].

b) The following are equivalent in pSh(X) or Sh(X) :

(1) η is epic.

(2) For all t ∈ |Q|, there are ui ⊆ Ω(X) and si ∈ P (ui), i ∈ I,
such that

(i)
⋃
i∈ I ui = Et; (ii) For all i ∈ I, t|ui = ηui(si).

(3) For all t ∈ |Q|, Et =
⋃
s∈|P | [[t = s]].

c) The following are equivalent in pSh(X) or Sh(X) :

(1) η is an isomorphism. (2) For all u ∈ Ω(X), ηu is bijective.

Proof. We treat sheaves and presheaves at the same time, asking the reader
to notice that, when P and Q are sheaves, the objects we need, fibered product
over a morphism (24.3) and the sheaf of opens of X (23.13), are sheaves.

(a) Clearly, (2) ⇒ (1), while (2) ⇒ (1) can be handled exactly as in Proposition
22.26, by considering the two maps originating in the fibered product of P over η
with values in P .

(2) ⇒ (3) : If s, t ∈ |P |, then [[s = t]] ⊆ [[ηs = ηt]] ([mor 2]). To prove the reverse

inclusion, set w = [[ηs = ηt]]]; note that [mor 1] implies w ⊆ Et ∩ Es. Thus, both
s|w and t|w are in P (w). Hence,

Eη(s|w) = Es|w = Es ∩ w = w;

similarly, we can show that Eη(t|w) = w. Moreover,

[[η(s|w) = η(t|w)]] = [[(ηs)|w = (ηt)|w]] = [[ηs = ηt]] ∩ w = w.

Thus, [ext] yields η(s|w) = η(t|w) in Q(w). Since ηw is injective, we get s|w = t|w.

Now, [rest 3] entails w = [[[s|w = t|w]] = [[s = t]] ∩ w, and so w ⊆ [[s = t]],

as desired.

(3) ⇒ (2) : Suppose s, t ∈ P (u) satisfy ηs = ηt. Then,

Eηs = Eηt = [[ηs = ηt]].

Hence, Es = Et = [[s = t]], and the conclusion follows by extensionality.

b) It is easily seen that (2) iff (3); we prove (1) ⇒ (2), leaving the converse, as

well as item (c) as exercises. Recall that Ω̃ (23.13) is the sheaf of opens of X. We

define two morphisms, α, β : Q −→ Ω̃, as follows : for t ∈ Q(u), set

∗ αu(t) = 〈u, u 〉; ∗ βu(t) = 〈
⋃
s∈|P | [[ηs = t]], u 〉.

Clearly, αu, βu are maps from Q(u) into Ω̃(u) = {〈 v, u 〉 : v ≤ u}. We shall verify
that β is a morphism, omitting the (much simpler) case of α. For t ∈ Q(u) and
v ≤ u, it must be shown that

βv(t|v) = βu(t)|v. (I)

It suffices to check that the first coordinate of these pairs are the same in Ω̃(v),
since both second coordinates are v. We have
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s∈|P | [[ηs = t|v]] =

⋃
s∈|P | v ∩ [[ηs = t]]

= v ∩
⋃
s∈|P | [[ηs = t]].

(II)

Since restriction to v in Ω̃ is given by intersection with v in both coordinates, it
is clear that (II) entails (I) and so β is a morphism of presheaves. Note that for
u ∈ Ω(X) and s ∈ P (u), βu(ηu(s)) = 〈u, u 〉, because⋃

a∈|P | [[ηa = ηs]] = Eηs = u.

Hence, α ◦ η = β ◦ η; since η is epic, this entails α = β, completing the proof. �

Example 24.7. Important example of sheaves come from the theory of an-
alytic functions. For an open set u in complex plane C, let H(u) be the ring of
holomorphic functions in u, with the canonical restriction maps if v ≤ u. If T is
an open set in C, let HT be the sheaf of analytic functions in opens of T . There is

a morphism, HT
exp−→ HT , given by f 7→ ef . It is clear that exp is monic. The Rie-

mann mapping theorem gives a necessary and sufficient condition for an analytic
map to a have a logarithm : its domain must be simply connected. Since C has
a basis consisting of simply connected opens, 24.6.(b) entails that exp is an epic.
However, expu is onto iff u is simply connected. This shows that it is impossible to
do better than conditions (2) and (3) in the statement of 24.6, even if dealing with
sheaves. Similar examples are obtained from the distinction between exact and
closed differential forms in open sets that are not simply connected. This example
also shows that a morphism of sheaves may be monic and epic without being an
isomorphism. 2

Item (a) in Proposition 24.6.(a) is the basis of the following

Definition 24.8. If P is a presheaf over X, a subpresheaf of P is a presheaf
Q over X such that for all u ≤ v in Ω(X),

∗ Q(u) ⊆ P (u);

∗ The restriction of Q is that induced by P .

Or equivalently, a subpresheaf Q of P is a subset |Q| ⊆ |P | that is closed under
the restriction map of P .

If P is a sheaf, a subsheaf of P is a subpresheaf Q that has gluing of all
compatible families, i.e., for all compatible S ⊆ |Q|,

∃ ! t in |Q|, such that Et =
⋃
s∈S Es and t|Es = s, ∀ s ∈ S.

Write Q ⊆ P to indicate that Q is a subpresheaf of P and PP (X) for the set of
subpresheaves of P .

Remark 24.9. It is clear that 〈 PP (X), ⊆〉 is a partially ordered set. More-
over, if S, T ∈ PP (X), then

S ⊆ T iff |S| ⊆ |T |,
a fact that will be used repeatedly below without further comment. 2

24.10. Intersections. If Pα, α ∈ A, are subpresheaves of P , set, for u ∈ Ω(X),

[
⋂
α∈A Pα](u) =

⋂
α∈A Pα(u),

With the restriction maps induced by P ,
⋂
Pα is a subpresheaf of P , the inter-

section of the Pα. Further,
⋂
Pα is a sheaf, if each Pα is a sheaf.
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The presheaf
⋂
Pα is the meet of the family Pα in the poset PP (X), which

is, therefore, a complete lattice. It is left to reader to describe domain, extent and
equality of the intersection of subpresheaves. 2

A description of “unions”, or more precisely of joins, in the complete lattice
PP (X) is the content of Exercise 24.71.

Now consider the analogous problem for subsheaves. There is no problem with
intersection, as noted in 24.10. For joins, it is another story. With notation as in
24.71, the point is that there may be many compatible subsets of the union of the
Pα that have no gluing in it. To treat this problem, we introduce :

Definition 24.11. Let P be a presheaf over X, C,B ⊆ |P | and T a sub-
presheaf of P .

a) C is dense in B iff for all b ∈ B, 5 Eb =
⋃
c∈C [[b = c]], i.e., if for all b ∈ B,

there is an open covering ui of Eb, together with ci ∈ C, such that b|ui = ci|ui ,
for all i ∈ I.

b) T is a closed subpresheaf of P , if for all t ∈ |P |,
Et =

⋃
a∈T [[a = t]] ⇒ t ∈ |T |.

Write PP (X) for the set of closed subpresheaves of P .

c) The subpresheaf generated by B in P is

pB =
⋂
{Q ⊆ P : Q is a presheaf and B ⊆ |Q|}.

d) The closed subpresheaf generated by B in P is

B =
⋂
{Q ⊆ P : Q is a closed subpresheaf and B ⊆ |Q|}.

B is called the closure of B in P 6.

Clearly, B ⊆ |pB| ⊆ |B| and pB is a subpresheaf of B. Moreover, 〈PP (X), ⊆〉
is a poset.

Remark 24.12. If P is a presheaf and S ∪ {x} ⊆ |P |, then the following
conditions are equivalent :

(1) Ex ≤
⋃
s∈S [[s = x]]; (2) Ex =

⋃
s∈S [[s = x]].

To see this, just recall that [[y = x]] ≤ Ex, for all y ∈ |P |, by [E =] in 23.7.(b).
Similarly, if S ⊆ T ⊆ |P |, then (1) entails Ex =

⋃
t∈T [[t = x]], because⋃

s∈S [[s = x]] ⊆
⋃
t∈T [[t = x]].

These relations will be used frequently, without comment. 2

Lemma 24.13. If P is a sheaf over X and Q ⊆ P , then Q is a closed sub-
presheaf of P iff Q is a subsheaf of P . In particular, PP (X) is the complete
lattice of subsheaves of P .

Proof. Suppose that Q is a subsheaf of P and t ∈ |P | verifies Et =⋃
q∈|Q| [[q = t]]. Consider the family

S = {q|[[q=t]] : q ∈ |Q|}.

5Compare with 22.13.(c).
6Here there is need of Exercise 24.72.(b).
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Since Q is a presheaf, it is closed under restrictions. Hence, S ⊆ |Q|. Next, observe
that S is compatible, because for all q ∈ |Q|

q|[[q=t]] = t|[[q=t]],
by 23.7.(e). Alternatively, since Eq|[[q=t]] = [[q = t]], for q, q′ ∈ |Q|,
(q|[[q=t]])|[[q′=t]] = (t|[[q=t]])|[[q′=t]] = t|[[q=t]]∩[[q′=t]]

= (t|[[q′=t]])|[[q=t]]
= (q′|[[q′=t]])|[[[q=t]],

verifying the compatibility of S. Since Q is a sheaf, there is s ∈ |Q| such that

Es =
⋃
q∈|Q| [[q = t]] and s|[[q=t]] = q|[[q=t]] = t|[[q=t]].

Hence, Es = Et and the transitive property of equality ([= 2] in 23.7.(b)) entails
that for all q ∈ |Q|,
[[s = t]] ⊇ [[s = t|[[q=t]]]] ∩ [[t|[[q=t]] = t]] = [[s = t|[[q=t]]]] ∩ [[q = t]]

= [[s|[[q=t]] = t|[[q=t]]]] = [[q = t]].

Thus, [[s = t]] ⊇
⋃
q∈|Q| [[q = t]] = Es = Et, and extensionality guarantees

that s = t ∈ |Q|, as desired.

Conversely, suppose that Q is a closed subpresheaf of P and that S ⊆ |Q| is
compatible. Then, S has a gluing t in |P | (it is a sheaf). Conditions (1) and (2)
in 23.8.(b) yield

(1) Et =
⋃
s∈S Es; (2) t|Es = s, ∀ s ∈ S.

But then,
⋃
s∈S [[s = t]] =

⋃
s∈S [[t|Es = t]] =

⋃
s∈S Es ∩ [[t = t]]

= Et ∩
⋃
s∈S Es = Et ∩ Et = Et,

and so we must have (24.12) Et =
⋃
q∈|Q| [[q = t]]. Since Q is a closed subpresheaf

of P , we obtain t ∈ Q, as needed. �

Lemma 24.14. Let µ, η : P −→ Q be presheaf morphisms and let D be a
dense subset of sections in P . The following are equivalent :

(1) µ = η; (2) µ|D = η|D.

Proof. We prove that (2) ⇒ (1). For s ∈ |P | we may write

Es =
⋃
d∈D [[s = d]]. (I)

The transitive law for equality, [mor 1] and [mor 2] in 23.7.(3) yield, for d ∈ D,

[[µs = ηs]] ⊇ [[µs = µd]] ∩ [[µd = ηd]] ∩ [[ηd = ηs]]

= [[µs = µd]] ∩ Ed ∩ [[ηd = ηs]]

⊇ [[s = d]] ∩ [[s = d]] = [[s = d]],

and so, taking joins with respect to d ∈ D, (I) entails

Es = Eµs = Eηs = [[µs = ηs]],

and extensionality implies µs = ηs, as desired. �

Theorem 24.15. Let P be a presheaf over X and Γ ⊆ |P |. For u ∈ Ω(X),
set Γ(u) = {s ∈ Γ : Es = u}.
a) pΓ is the subpresheaf of P whose domain is given by
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|pΓ| = {t|u ∈ |P | : t ∈ Γ and u ∈ Ω(X)}.
Moreover, Γ is dense in pΓ and the embedding Γ ⊆ pΓ has the following morphism
extension property :

If Q is a presheaf and Γ
f−→ Q is a map such that for all s, s′ in Γ

(i) Ef(s) = Es; (ii) [[s = s′]] ⊆ [[fs = fs′]],

then, there is a unique presheaf morphism, pf : pΓ −→ Q, such that
pf(s) = f(s), ∀ s ∈ Γ.

b) Γ is the subpresheaf whose domain is given by

|Γ| = {t ∈ |P | : Et =
⋃
s∈Γ [[t = s]]}.

Further, Γ is dense in Γ and satisfies the following morphism extension property :

If Q is a sheaf and Γ
f−→ Q a presheaf morphism, then f has a unique

extension, f : Γ −→ Q.

Proof. a) It is clear that pΓ is closed under restriction and contained in any
subpresheaf of P that contains Γ. Hence, it must be the subpresheaf generated by
Γ in P . Since for all 〈 t, u 〉 ∈ Γ × Ω(X)

Et|u = u ∩ Et = [[t = t|u]],

we have Et|u =
⋃
s∈Γ [[s = t|u]], and Γ is dense in pΓ.

For the extension property, assume that f : Γ −→ Q satisfies (i) and (ii). If
s ∈ |pΓ|, there is 〈 t, u 〉 ∈ Γ × Ω(X), such that s = t|u. Define pf(s) = (fs)|u;

if this in fact defines a map, then it is easily established that f is a morphism.
Clearly, pf extends f to pΓ. So assume that s = t|u = z|v, with t, z ∈ Γ and

u, v ∈ Ω(X). We wish to show that (ft)|u = (fz)|v in Q. Note that

Es = Et ∩ u = Ez ∩ v = [[t|u = z|v]] = [[z = t]] ∩ u ∩ v. (*)

From Efs = Es and Eft = Et, we get

E(ft)|u = Eft ∩ u = Et ∩ u and E(fz)|v = Ez ∩ v.

Consequently, by (*),

E(ft)|u = E(fz)|v = Et ∩ u = Ez ∩ v. (**)

But then, (i) yields

[[(ft)|u = (fz)|v]] = [[ft = fz]] ∩ u ∩ v ⊇ [[t = z]] ∩ u ∩ v,

and so, (*) and (**) entail [[(ft)|u = (fz)|v]] = E(ft)|u = E(fz)|v. Extensionality

now entails (ft)|u = (fz)|v, as desired. Uniqueness is clear from 24.14.

b) For Γ to be a closed subpresheaf of P , we must show that

(1) If 〈 t, u 〉 ∈ |cΓ| × Ω(X), then t|u ∈ |cΓ|; (it is a subpresheaf)

(2) For all t ∈ |P |, Et =
⋃
s∈|cΓ| [[s = t]] ⇒ t ∈ |cΓ|.

For (1), note that if 〈 t, u 〉 ∈ |cΓ| × Ω(X), then

Et|u = Et ∩ u =
⋃
s∈|Γ| ([[s = t]] ∩ u) =

⋃
s∈|Γ| [[s = t|u]],
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and t|u ∈ |cΓ|. For (2), note that for a ∈ Γ and s ∈ |cΓ|, transitivity of equality

yields [[s = t]] ∩ [[s = a]] ⊆ [[a = t]]. Hence, taking unions with respect to a ∈ Γ
on both sides, we arrive at

[[s = t]] ∩
⋃
a∈Γ [[s = a]] ⊆

⋃
a∈Γ [[a = t]]. (+)

Since s ∈ |cΓ|, Es =
⋃
a∈Γ [[a = s]], which substituted into (+) yields

[[s = t]] ∩ Es = [[s = t]] ⊆
⋃
a∈Γ [[a = t]]. (++)

Since (++) holds for all s ∈ |cΓ|, the hypothesis in (2) entails

Et =
⋃
s∈|cΓ| [[s = t]] ⊆

⋃
a∈Γ [[a = t]],

wherefrom it follows that Et =
⋃
a∈Γ [[a = t]] and t ∈ |cΓ|, as needed. Clearly, Γ

is contained in any closed subpresheaf of P that contains Γ, being therefore the
closure of Γ in P . The preceding argument also shows that Γ is dense in Γ.

For the extension property, let f be a morphism from Γ to a sheaf Q; for t ∈ Γ,
consider the following family of sections in Q :

S = {(fs)|[[t=s]] : s ∈ Γ}.
We contend that S is compatible in Q and

⋃
{Ex : x ∈ S} = Et. For s, z ∈ |Γ|,

[mor 2] (23.19) and [= 2] (23.7) yield

[[(fs)|[[t=s]] = (fz)|[[z=t]]]] = [[fs = fz]] ∩ [[s = t]] ∩ [[z = t]]

⊇ [[s = t]] ∩ [[s = t]] ∩ [[z = t]]

= [[s = t]] ∩ [[z = t]].

By [mor 1] (23.19), E(fs)|[[s=t]] = Efs ∩ [[s = t]] = [[s = t]]; similarly,

E(fz)|[[z=t]] = [[t = z]], and S is a compatible family in Q. Since Γ is dense in cΓ,

we have Et =
⋃
{[[s = t]] : s ∈ |Γ|}. Thus,⋃
{E(fs)|[[s=t]] : s ∈ Γ} =

⋃
s∈Γ [[t = s]] = Et.

The unique extension of f to Γ is given by ft = the unique gluing of S in |Q|. �

Lemma 24.16. Let P be a presheaf over X and S, T , B ⊆ |P |.
a) If S is dense in T and B ⊆ T , then S is dense in B.

b) S dense in T and T dense in B ⇒ S dense in B.

c) If S ⊆ T and S is dense in T , then for all x ∈ |P |⋃
s∈S [[s = x]] =

⋃
t∈T [[t = x]].

d) If S ⊆ T , then S is dense in T iff S = T .

Proof. Item (a) is clear. For (b), if x ∈ B, denseness and transitivity of
equality yield

Ex =
⋃
t∈T [[x = t]] =

⋃
t∈T ([[x = t]] ∩ Et)

=
⋃
t∈T

(
[[x = t]] ∩

⋃
s∈S [[s = t]]

)
=

⋃
t∈T

⋃
s∈S [[x = t]] ∩ [[s = t]]) ⊆

⋃
s∈S [[x = s]],

and the conclusion follows from 24.12.

c) Since S ⊆ T , it is clear that the left-hand side of (c) is contained in its right-hand
side for any x ∈ |P |. For the reverse inclusion, denseness and 8.4 yield
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⋃
t∈T [[t = x]] =

⋃
t∈T ([[t = x]] ∩ Et)

=
⋃
t∈T

(
[[t = x]] ∩

⋃
s∈S [[t = s]]

)
=

⋃
t∈T

⋃
s∈S [[t = x]] ∩ [[t = s]]

⊆
⋃
t∈T

⋃
s∈S [[x = s]] =

⋃
s∈S [[x = s]],

and we conclude by 24.12.

d) If S = T , since S is dense in S (24.15.(b)), we have S dense in T and the
conclusion follows from (a). Conversely, if S is dense in T , then 24.15.(b) entails
T ⊆ S. Since T is the least closed subpresheaf of P containing T , we obtain T ⊆ S.
The reverse inclusion follows immediately from S ⊆ T . �

Here is how denseness propagates to finite products :

Proposition 24.17. Let D ⊆ |P | be a dense subset of a presheaf P over X
and n ≥ 1 be an integer. For d = 〈 d1, . . . , dn 〉 ∈ Dn, set

Ed =
⋂n
i=1 Edi and d|Ed = 〈 d1|Ed, . . . , dn|Ed 〉.

Then, Dn = {d|Ed : d ∈ Dn} is dense in Pn.

Proof. First note that Dn is indeed a subset of the domain of Pn, because
for all i ∈ n 7, E(di|Ed) = Ed ∩ Edi = Ed.

For t = 〈 t1, . . . , tn 〉 ∈ |Pn| and d ∈ Dn, we have⋂
i≤n Ed ∩ [[di = ti]] =

⋂
i≤n Edi ∩ [[di = ti]] =

⋂
i≤n [[di = ti]].

Hence, since Et = Eti, for all i ∈ n, 8.4 yields⋃
s∈Dn [[s = t]] =

⋃
d∈Dn [[d|Ed = t]] =

⋃
d∈Dn

⋂
i≤n [[di|Ed = ti]]

=
⋃
d∈Dn

⋂
i≤n Ed ∩ [[di = ti]]

=
⋃
d∈Dn

⋂
i≤n [[di = ti]] =

⋂
i≤n

⋃
d∈Dn [[di = ti]]

=
⋂
i≤n Eti = Et,

and Dn is dense in Pn. �

We can now describe joins in PP (X) :

Corollary 24.18. If P is a presheaf and Pα, α ∈ A, are closed subpresheaves
of P , then their join in PP (X) is given by∨

α∈A Pα =
⋃
α∈A Pα,

that is,
∨
Pα is the subpresheaf of P whose domain is

(∗) |
∨
Pα| = {z ∈ |P | : Ez =

⋃
{[[z = s]] : s ∈

⋃
α∈A |Pα|}.

Moreover,
⋃
α∈A |Pα| is dense in

∨
α∈A Pα. 2

The extension properties in 24.15 yield

Corollary 24.19. a) Let P
f−→ Q and P

g−→ T be monics in pSh(X) and

let Γ be a set of sections in P . Then, there is a unique isomorphism, pf(Γ)
γ−→ pg(Γ),

making the diagram below-left commutative :

7Recall that n = {1, 2, . . . , n} (page 15).
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Γ - pf(Γ)

g|Γ γ

pg(Γ)

f|Γ

A
A
A
A
AU

�
�
�
�
��

P - f(P )

g γ

g(P )

f

A
A
A
A
AU

�
�
�
�
��

b) Let P
f−→ Q and P

g−→ T be monics in pSh(X), with Q and T sheaves

over X. There is a unique isomorphism, γ : f(P ) −→ g(P ), making the diagram
above-right commutative. 2

By Corollary 24.19, the closure or the presheaf generated by a set S of sections
is, up to isomorphism, independent of the presheaf in which S is embedded.

We now state a result guaranteeing that every presheaf can be embedded in a
sheaf, called its completion or sheafification.

Theorem 24.20. If P is a presheaf over X, there is a sheaf cP over X and
a morphism, c : P −→ cP , such that

a) c is monic and epic.

b) If Q is a sheaf over X and λ : P −→ Q is a presheaf morphism, then there is a
unique sheaf morphism cλ : cP −→ Q making the following diagram commutative :

P - cP

λ cλ

Q

c

A
A
A
A
AU

�
�
�
�
��

Theorem 24.20 is a consequence of Theorem 27.9, to be proven in Chapter
27. Note that the universal property in 24.20.(b) implies that cP is unique up to
isomorphism and that completion is left adjoint to the natural forgetful functor
from Sh(X) to pSh(X).

We now discuss the structure of the complete lattices PP (X) and PP (X).

Proposition 24.21. Let 1 be the constant {0}-sheaf (23.16, 24.1).

a) Any set of sections in 1 is compatible.

b) S is a subsheaf of 1 iff S = 1|ES.

c) The map u ∈ Ω(X) 7→ 1|u ∈ P1(X) is an isomorphism of complete lattices.

Proof. a) Is immediate from the fact that |1| is the set of continuous maps
from opens in X to the one point set {0}.
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b) For S ⊆ |1|, 23.12 implies that S ⊆ 1|ES . Since all sets of sections in 1 are

compatible, |S| is compatible and must glue to the unique map from ES to {0}.
But then S = 1|ES . The converse is clear, since all restrictions of a sheaf to an

open set are sheaves.

c) By (b), the map in (c) is bijective. To show that it is an isomorphism of complete
lattices, it is enough to prove that it is an isomorphism of posets, that is, for all
u, v ∈ Ω(X),

u ≤ v iff 1|u ⊆ 1|v.
One direction is obvious; the other follows from E1|u = u and the fact that support

is increasing, i.e., S ⊆ T ⇒ ES ≤ ET , completing the proof. �

Proposition 24.21 shows that, in general, PP (X) will not be a Boolean algebra,
since Ω(X) cannot be a Boolean algebra except in (very) special circumstances.
Generalizing 24.21, we have

Theorem 24.22. PP (X) and PP (X) are frames, with ⊥ = ∅ (the empty sheaf)
and > = P .

Proof. We treat the case of PP (X), leaving the other as an exercise. Let
T , Sα, α ∈ A, be closed subsheaves of P . By 8.7, it is enough to prove that

T ∩
∨
Sα ⊆

∨
α∈A (T ∩ Sα).

Since the restriction is that induced by P , this relation is equivalent to the inclusion
of the respective domains. Let z ∈ |T ∩

∨
Sα|; then, (∗) in 24.18 yields

Ez =
⋃
{[[z = s]] : s ∈ |T | ∩ |

∨
Sα|}

=
⋃
{[[z = s]] : s ∈ |T | ∩

⋃
α∈A |Sα|}

=
⋃
{[[z = s]] : s ∈

⋃
α∈A |T | ∩ |Sα|}

and so z ∈ |
∨
α∈AT ∩Sα|, as desired. �

Explicit formulas for implication and negation are the content of

Proposition 24.23. For S, T ∈ PP (X), P a presheaf over X, we have 8

a) |S → T | = {x ∈ |P | : ∀ u ∈ Ω(X) (x|u ∈ |S| ⇒ x|u ∈ |T |)}.
9

b) |¬S| = {x ∈ |P | : ∀ u ∈ Ω(X), x|u 6∈ |S|}.

Proof. a) The first step is verifying that the right-hand side of the equality,
A, is a closed subpresheaf of P . If z ∈ |P | is such that

Ez =
⋃
a∈A [[a = z]],

and u ∈ Ω(X), assume that z|u ∈ |S|. For each a ∈ A, 23.7.(e) and [rest 3] in

23.7.(a) yield

a|u∩[[a=z]]
= z|u∩[[a=z]]

,

8Exactly the same formulas hold for S, T ∈ PP (X).
9The ⇒ here is classical material implication !
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and so, S being a presheaf, it follows that a|u∩[[a=z]]
∈ |S|. Since a ∈ A, we conclude

that a|u∩[[a=z]]
∈ |T |. But then,⋃

a∈A [[x|u = a|u∩[[a=z]]
]] =

⋃
a∈A u ∩ [[a = z]] ∩ [[a = z]]

= u ∩
⋃
a∈A [[a = z]] = u ∩ Ez = Ez|u,

and z|u ∈ |T | because T is closed. Hence, A is a closed subpresheaf of P . We now

verify that for all Z ∈ PP (X)

S ∩ Z ⊆ T iff Z ⊆ A,

and so A = (S → T ). Assume that S ∩ Z ⊆ T , x ∈ |Z| and that z|u ∈ |S|, for

u ∈ Ω(X); then, since Z is a presheaf, z|u ∈ |S| ∩ |Z| = |S ∩ Z|. Hence, x|u ∈ |T |
and x ∈ |A|. The converse is clear. Item (b) follows from (a) and the fact that
¬S = (S → 0). �

24.24. Image and Restriction of Morphisms Let P
η−→ Q be a morphism

of presheaves. If T is a subpresheaf of P , the restriction of η to T , η|T : T −→ Q, is

given by t ∈ |T | 7→ ηt ∈ |Q|. If one prefers to view it as a natural transformation,
then

η|T = {ηu|T (u)
: u ∈ Ω(X)}.

The image of η is defined as

Imη = {ηx : x ∈ |P |},
that is, the closure of the set-theoretical image of η. The set-theoretical image is
a subpresheaf of Q, but it will not be a subsheaf, even if P and Q are sheaves.
Hence, we prefer to use closure to uniformly obtain subobjects in pSh(X) and
Sh(X). In general, if S ⊆ |P |,

η∗S = {ηs : s ∈ S},
is the image of S by η. 2

Lemma 24.25. If η : P −→ Q is a morphism of presheaves, the map
η∗ : PP (X) −→ PQ(X) 10 is a

∨
-morphism.

Proof. Let {Si : i ∈ I} ⊆ PP (X); it is clear that η∗ is increasing, and so it
is enough to check that

η∗(
∨
i∈I Si) ⊆

∨
i∈I η∗Si.

Since
⋃
|Si| is dense in

∨
Si (Corollary 24.18), 24.16.(c) yields, for y ∈ |η∗(

∨
i∈I Si)|,

Ey =
⋃
s∈

∨
Si

[[y = ηs]] =
⋃
s∈

⋃
|Si| [[y = ηs]]

=
⋃
i∈I

⋃
s∈|Si| [[y = ηs]] =

⋃
i∈I

⋃
z∈|η∗Si| [[y = z]] 11

=
⋃
t∈

⋃
|η∗Si| [[y = t]],

and so y ∈ |
∨
i∈Iη∗Si|, as needed. �

10Defined in 24.24.
11Because {ηs : s ∈ |Si|} is dense in η∗Si and 24.16.(c).
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24.26. Inverse Image. Let P
η−→ Q be a morphism of presheaves. If S is a

subpresheaf of Q, the map

u ∈ Ω(X) 7→ η−1
u (S(u)) ⊆ P (u),

with the restrictions induced by P , is a subpresheaf of P , the inverse image of S
by η and written η−1(S). Notice that the domain of the inverse image is given by

|η−1(S)| = {s ∈ |P | : ηs ∈ |S|},
that is, the set-theoretic inverse image. It is well-known that in the case of sets, in-
verse image is well-behaved, preserving all set-theoretic operations. The analogous
properties in our present setting are described in Proposition 24.27. 2

Proposition 24.27. Let η : P −→ Q be a morphism of presheaves.

a) For S, T ⊆ |Q|, S dense in T ⇒ η−1S is dense in η−1T . Moreover,

(1) η−1(T ) = η−1T ; (2) T ∈ PQ(X) ⇒ η−1T ∈ PP (X).

b) The map η∗ : PQ(X) −→ PP (X), S 7→ η−1(S), is an open frame-morphism.

c) The pair 〈 η∗, η∗ 〉 satisfies, for S ∈ PP (X) and T ∈ PQ(X),

[adj] η∗S ⊆ T iff S ⊆ η∗T ,

being therefore an adjoint pair (4.6, 7.8), with η∗ left adjoint to η∗.

d) η∗ is monic iff η is epic.

Proof. a) Let S ⊆ Q and x ∈ η−1T ; then ηx ∈ T and so

Eηx =
⋃
s∈S [[ηx = s]]. (I)

Let A = {x|[[ηx=s]]
: s ∈ S}; then, for all s ∈ S, condition (ii) in 23.19.(2) and

23.7.(e) yield η(x|[[ηx=s]]
) = (ηx)|[[ηx=s]]

= s|[[ηx=s]]
∈ |S|, and so y|[[ηx=s]]

∈ η−1S,

i.e., A ⊆ η−1S. Hence, since Eηx = Ex, (I) entails⋃
s∈S [[x = y|[[ηx=s]]

]] =
⋃
s∈S [[ηx = s]] ∩ [[x = x]] =

⋃
s∈S [[x = s]]

= Eηx = Ex,

showing that x ∈ A ⊆ η−1S, as desired. To get the full conclusion in (a), recall
that a subset of |P | is dense in the presheaf it generates and that denseness is
transitive (24.15.(a), 24.16.(b)). For (1), since T is dense in T and T ⊆ T , we have

η−1T dense in η−1(T ) and η−1T ⊆ η−1(T ),

and we conclude by 24.16.(d). Item (2) follows immediately from (1).

b) Let {Ti : i ∈ I} ⊆ PQ(X). Since (set-theoretical) inverse image preserves
arbitrary intersections, it is clear that η∗ is a

∧
-morphism. For joins, we have,

using (a).(1)

η∗(
∨
Ti) = η∗(

⋃
i∈I |Ti|) = η∗(

⋃
i∈I |Ti|)

=
⋃
i∈I η

∗Ti =
∨
η∗Ti.

Since η∗ preserves meets, if S, T ∈ PQ(X), then

η∗S ∩ η∗(S → T ) = η∗(S ∩ (S → T )) ⊆ η∗T ,

and so η∗(S → T ) ⊆ (η∗S → η∗T ) 12. To prove the reverse inclusion, it is enough
to show, by the adjointness condition [→] in 6.1, that for A ∈ PP (X),

12Note : this argument is valid for any ∧-semilattice morphism between HAs.
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A ∩ η∗S ⊆ η∗T ⇒ A ⊆ η∗(S → T ). (*)

For x ∈ |A|, assume that (ηx)|u ∈ |S|, u ∈ Ω(X). From ηx|u = η(x|u), it follows

that x|u ∈ |A| ∩ |S| = |A ∩ S|. The hypothesis in (*) entails x|u ∈ η
∗T , that is,

η(x|u) ∈ T . This reasoning (and 24.23.(a)) proves that ηx ∈ |S → T |, completing

the proof of (b).

Item (c) is straightforward and left to the reader. For (d), observe that 7.9.(a)
guarantees that η∗ is monic (i.e., injective) iff η∗ is onto. Hence, it is enough to
show that η∗ is onto iff η is an epic. If η∗ is onto PQ(X), then

η∗P = Q = {ηx : x ∈ |P |},
showing that the set-theoretical image of |P | by η is dense in Q. By 24.6.(b), η is an
epic. If η is epic and S ∈ PQ(X), it is left to the reader to show that η∗η

∗S = S,
completing the proof. �

Since we have products and the notion of subobject in pSh(X), we can gen-
eralize Definition 18.15, as follows :

Definition 24.28. Let Ai, i ∈ I, be a family of presheaves over X and

let A =
∏
i∈I Ai. Let P be a presheaf and A

f−→ P be a morphism. Let S be a
subpresheaf of A and let J be a subset of I.

a) f depends only on J iff for all u ∈ Ω(X), fu : A(u) −→ P (u) depends only
on J , that is, if s = 〈 si 〉 and t = 〈 ti 〉 are sections in A(u), then

J ⊆ {i ∈ I : si = ti} implies fu(s) = fu(t).

b) S depends only on J iff for all u ∈ Ω(X) and all s = 〈 si 〉, t = 〈 ti 〉 in A(u),

J ⊆ {i ∈ I : si = ti} and s ∈ S(u) implies t ∈ S(u).

24.29. Notation. Let n ∈ N and let A be a non-empty set. For s = 〈 si 〉 ∈ An,
for k ∈ (n+ 1) and a ∈ A, define 〈 a/k; s 〉 ∈ An+1, by

〈 a/k; s 〉(i) =


si if i < k

a if i = k

s(i−1) if i > k.

Hence, 〈 a/k; s 〉, corresponds to constructing the (n+ 1)-tuple that has si in the
first (k−1) coordinates, has a in the kth coordinate, and has si−1 in the coordinates
indexed by i > k. This notation applies both to sections over an open set in powers
of a presheaf, as well as to sections in powers of the domain of a presheaf. 2

24.30. Quantifiers. Let P be sheaf over X and let S be a subsheaf of Pn,
n ∈ N. For k ∈ n, let π̂k : Pn −→ P (n−1), be the projection that forgets the kth

coordinate. What are the meanings of ∃xk S and ∀xk S ? The classical answers in
Set are

(I)


∃xk S = Im π̂k;

∀xk S = largest A ⊆ P (n−1), such that π̂−1
k (A) ⊆ S

= {s ∈ P (n−1) : For all t ∈ P , 〈 t/k; s 〉 ∈ S}.
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Because these answers are “structural”, it is natural to use the same ideas to
define these concepts in Sh(X). Thus, in view of 24.24, define,

[∃xk S](u) = {z ∈ P (u)(n−1) :

∃ ui ≤ u and ti ∈ P (ui), i ∈ I,

such that
⋃
ui = u and

〈 ti/k; z|ui 〉 ∈ S(ui), i ∈ I.

 [∃]

Then, u 7−→ [∃xk S](u), with restrictions induced by P (n−1), is a subpresheaf of
P (n−1), the existential quantification along the kth component.

For the universal quantifier, one might be tempted to consider

A(u) = {z ∈ [P (u)](n−1) : For all t ∈ P (u), 〈 t/k; z 〉 ∈ S(u)}.
But observe that, for v ⊆ u, if the restriction map of P is not onto, then u 7→ A(u)
will not be a presheaf. Thus, we are led to define

[∀xk S](u) = {z ∈ P (u)(n−1) :
For all v ∈ Ω(u) and t ∈ P (v),

〈 t/k; z|v 〉 ∈ S(v)

}
[∀]

which, with restrictions induced by P (n−1), is a subpresheaf, the universal quan-
tification of S along the kth component. The reader can then verify that we have

Fact 24.31. If S ⊆ Pn depends only on α, then (∃xk S) and (∀xk S) depend
only on α − {k}. 2

By 24.75, S can be considered as a subpresheaf of Pα, namely πα(S), where
πα : Pn −→ Pα is the map that forgets the coordinates outside α. Moreover,

πα
−1(πα(S)) = S. (II)

Fact 24.31 and (II) imply that if k 6∈ α, then

(∃xk S) = (∀xk S) = S. (III)

Moreover, if S ⊆ Pn, after quantifying, existentially or universally, with respect
to all components on which S depends, we obtain a subsheaf of the final object 1,
that is, an open set in X (24.21). 2

3. Relations and Quotients

In this section we develop an elementary theory of relations in pSh(X). A
full blown theory will emerge when we discuss characteristic maps in Part 7.

As is well known in the case of sets, a relation from A to B is a subset of A × B.
This can, of course, be generalized to any set of components. In particular, if n is
a positive integer, a n-ary relation on a set A is a subset of An. In pSh(X), the
concept is analogous, with one subtlety :

Definition 24.32. If P , Q are presheaves over X, a relation from P to
Q is a closed subpresheaf of P × Q. If n ≥ 1 is an integer, a n-ary relation
on P is a closed subpresheaf of Pn.

Thus, a relation from P to Q consists of

∗ For each u ∈ Ω(X), a subset R(u) ⊆ P (u) × Q(u);

∗ For v ≤ u, 〈 s, t 〉 ∈ R(u) ⇒ 〈 s|v, t|v 〉 ∈ R(v);
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∗ If 〈x, y 〉 ∈ |P × Q| is such that

Ex = Ey =
⋃
〈s,t〉∈|P×Q| [[x = s]] ∩ [[y = t]],

then 〈x, y 〉 ∈ |R| 13. Write ∆ for ∆2, the diagonal of P 2.

If R is a relation from P to Q, its inverse, R−1 is defined by

R−1(u) = {〈 t, s 〉 ∈ Q(u) × P (u) : 〈 s, t 〉 ∈ R(u)},
with restriction induced by Q × P ; clearly, R−1 is a closed subpresheaf of Q × P .

Binary relations can be composed. Care must be exercised in transcribing the
usual set-theoretic definition, so as to furnish closed subpresheaves. This idea is
used so often that we take time to explain it.

Let R be relation from P to Q and S a relation from Q to T . By analogy with
the set-theoretic case, consider, for each u ∈ Ω(X)

C(u) = {〈 s, t 〉 ∈ P (u) × T (u) :
∃ z ∈ Q(u), such that

〈 s, z 〉 ∈ R(u) and 〈 z, t 〉 ∈ S(u)

}
with restrictions induced by P × T ; C is a subpresheaf of P × T , but will not,
in general, be closed. We are then led to define the composition of R and S as
the closure of C in P × T . Hence, for u ∈ Ω(X) and 〈 s, t 〉 ∈ P (u) × T (u)

〈 s, t 〉 ∈ (S ◦ R)(u)

iff

∃ ui ≤ u and zi ∈ Q(ui) such that u =
⋃
ui and ∀ i ∈ I,

〈 s|ui , zi 〉 ∈ R(ui) and 〈 zi, t|ui 〉 ∈ S(ui).

Hence, the distinction between C and (S ◦ R) is that one must use the set-
theoretical idea locally. One way to further understand this is to realize that
(S ◦ R) is the image by a morphism of the relation

{〈 s, z, t 〉 ∈ |P ×Q× T | : 〈 s, z 〉 ∈ |R| and 〈 z, t 〉 ∈ |S|}.
Next, we discuss equivalence relations in pSh(X).

Definition 24.33. If P is a presheaf over X, an equivalence relation on
P is a binary relation E on P such that :

[ER1] : ∆ ⊆ E; [ER2] : E = E−1; [ER3] : E ◦ E ⊆ E.

The following observations are straightforward :

I. For each u ∈ Ω(X), E(u) is a (set-theoretic) equivalence relation on P (u);

II. The intersection of a family of equivalence relations on P is an equivalence
relation on P ;

III. P × P is the largest and ∆ is the smallest equivalence relation on P ; the set
of equivalence relations on a presheaf is a complete lattice under inclusion.

Item (III) allows us to set down

Definition 24.34. If P is a presheaf over X and R ⊆ P × P , the equiva-
lence relation generated by R is

E(R) =
⋂
{E ⊆ P × P : E is an equivalence relation and R ⊆ E}.

13Notation as in 24.2.
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Example 24.35. Let P
λ−→ Q be a morphism. The set

|ker(λ)| = {〈 s, t 〉 ∈ |P × P | : λs = λt}
is the domain of an equivalence relation on P , called the kernel of λ. Note that
ker(λ) is the inverse image of the diagonal of Q × Q by the canonical morphism

λ × λ : P × P −→ Q × Q,

and so a closed subpresheaf of P × P , by 24.27.(a). Clearly, ker(λ) is the equalizer
(24.4) of the pair 〈λ, λ 〉. Moreover, if R ⊆ P × P is a binary relation on P , then

(*) ∀ 〈 s, t 〉 ∈ |R|, λs = λt iff E(R) ⊆ ker(λ). 2

Let E be an equivalence relation on P and let v ≤ u be opens in X. Since E is
a subpresheaf of P × P , for all s, t ∈ P (u), if s and t are equivalent with respect
to E(u), then s|v and t|v are equivalent with respect to E(v). Thus, if

[P/E](u) = P (u)/E(u) = {s/E(u) : s ∈ P (u)},
is the set of equivalence classes of P (u) with respect to the E(u), the map

[P/E](u) −→ [P/E](v), s/E(u) 7→ s|v/E(v)

is a well defined restriction on P/E, making it a presheaf over X, the quotient
of P by the equivalence E. The natural map, πE : P −→ P/E, defined by

s ∈ P (u) 7−→ s/E(u) ∈ P (u)/E(u)

is a morphism of presheaves, the projection or quotient morphism. Since
E = ker(πE), every equivalence relation is the kernel of a morphism (24.35).

As an application, we can construct, in pSh(X), the coequalizer of a pair of
morphisms, λ, µ : P −→ Q. Let E be the equivalence relation on Q, generated by
the subpresheaf R of Q × Q, whose domain is given by

|R| = {〈λs, µs 〉 : s ∈ |P |}.
By (*) in 24.35, πE ◦ λ = πE ◦ µ, where πE : Q −→ Q/E is the quotient morphism.
〈Q; πE 〉 is the coequalizer of the pair (λ, µ), that is, it has the following universal
property (16.30) :

If Q
f−→ T is a presheaf morphism and f ◦ λ = f ◦ µ, then there is a unique

g : Q/E −→ T , such that f = g ◦ πE :

Q - Q/E

πE g

T

f

A
A
A
A
AU

�
�
�
�
��

Write Coeq(λ, µ) for the coequalizer of the pair (λ, µ).

In general, it is not true that if P/E is a sheaf when P and E are sheaves.
However, Theorem 24.20 applies to yield a completion of P/E, which is defined as
the quotient of the sheaf P by the equivalence relation E in the category Sh(X).
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Similarly, the coequalizer of a pair of morphisms in Sh(X) is the completion of
the construction presented above for presheaves.

Theorem 16.31, together with the constructions in this section and in section
24.1, yield

Theorem 24.36. Sh(X) and pSh(X) are complete and cocomplete cate-
gories.

4. The Sheaf of Subsheaves. Exponentiation

In the category Set, an important object is the family of subsets of a set and
the family of maps between two sets. These concepts are of course related, because
the set {0, 1} = 2 has a special role : there is a natural and bijective correspondence
between subsets of A and functions from A to 2.

In this section, we discuss what sheaf plays the role of 2 in Sh(X), as well as
exponentiation. We shall focus, mainly, on the category Sh(X), because it is the
most important case. To treat these themes for presheaves or closed presheaves all
that is needed are minor modifications and/or the use of Theorem 24.20.

To construct an analogue of the power set in Sh(X), we must find a sheaf
that fulfills that role. The next definition sets down the concept we need.

Definition 24.37. Let Q be a sheaf over the topological space X. With no-
tation as in 23.12, for u ∈ Ω(X), set

PQ(u) = {T ⊆ Q : T is a subsheaf of Q|u}.
For v ≤ u in X, there is a natural restriction map

|v : PQ(u) −→ PQ(v), given by T 7−→ T|v.

The association u ∈ Ω(X) 7−→ PQ(u), together with the restriction maps |v defined

above, constitute a presheaf written PQ.

Note that the set of global sections of PQ is precisely PQ(X), which is a
frame by Theorem 24.22, but in general, not a cBa. This points to a fundamental
difference between the categories Set and Sh(X) : the analogue of the power set
is a frame, not a cBa.

Recall (23.6.(c)) that the support of a sheaf Q is the open set

EQ =
⋃
{u ∈ Ω(X) : Q(u) 6= ∅}.

Clearly, EQ|u ⊆ u. Hence, an alternate description of PQ is :

i) |PQ| = {〈S, u 〉 ∈ PQ(X) × Ω(X) : ES ⊆ u};
ii) For 〈S, u 〉 ∈ |PQ| and v ∈ Ω(X), set 〈S, u 〉|v = 〈S|u∩v, v 〉;

iii) For 〈S, u 〉, 〈T, v 〉 ∈ |PQ|,
[[〈S, u 〉 = 〈T, v 〉]] =

⋃
{w ∈ Ω(u ∩ v) : S|w = T|w}

=
⋃
{w ∈ Ω(u ∩ v) : S(w) = T (w)}.

Perhaps a comment is in order regarding the equalities in (iii). To say that two
sheaves are the same or equal is to say that the corresponding functors are
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the same. However, if S and T are subsheaves of a sheaf Q, since restrictions are
those induced by Q, S will be equal to T if and only if they have the same set of
sections over all opens in X. This leads from the second to the third term in (iii).
The last description can be seen to be equivalent to the (classical) one in 24.37,
by realizing that PQ(u) can be identified with the set of pairs 〈S, u 〉, where S is
a subsheaf of Q with support contained in u.

Note that for all S ∈ PQ(u), ES = [[S = S]] = u.

Proposition 24.38. Let Q be sheaf over X.

a) For u ∈ Ω(X), PQ(u) is a frame, with Q|u as its top and ∅ as its bottom.

Implication and pseudo-complementation in PQ(u) are given by the following pre-
scriptions, where w ∈ Ω(u) and the restrictions are those induced by Q :

(S → T )(w) = {s ∈ Q(w) : ∀ v ≤ w, s|v ∈ S(v) ⇒ s|v ∈ T (v)};

¬ S(w) = {s ∈ Q(w) : ∀ v ≤ w, v 6= ∅ ⇒ s|v 6∈ S(v)}.
b) The restriction maps, |v : PQ(u) −→ PQ(v), S 7−→ S|v, are open frame

morphisms.

c) PQ is a sheaf over X.

Proof. Left to the reader; the main ingredients, besides the comments just
made on equality and restriction in PQ, are the computations used in the proof
of 24.22 and 24.23. �

The sheaf PQ is the sheaf of subsheaves of Q.

If Q ∈ Sh(X), the sheaf PQ has a special property, called flabbyness, whose
definition is item (a) of

Proposition 24.39. Let Q and P be sheaves over X.

a) For all u ∈ Ω(X), the restriction map from PQ(X) to PQ(u) is surjective 14.
In particular, PP (X) is dense in PQ.

b) Let λ, µ be morphisms from PQ to P . Then, λ = µ iff λX = µX .

c) There is a natural bijective correspondence between the set of morphisms from
PQ to P and the set of maps from PQ(X) to P (X), given by λ 7→ λX .

Proof. a) Since Q|u is a subsheaf of Q, all of its subsheaves are subsheaves

of Q. The density assertion is now obvious. Item (b) is an immediate consequence
of the fact that global sections are dense and 24.14.

c) Let PQ
λ−→ P be a sheaf morphism. If 〈S, u 〉 is a section in PQ, then

λu(〈S, u 〉) = λX(〈S,X 〉)|u,

and so the values of λ are entirely determined by those of λX . The remaining
statements follow from this and item (b). �

14Or equivalently, every section in PQ can extended to a global section (i.e., an element of
PQ(X)); see also 31.10.(e)
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Our next result shows that the sheaf Ω̃ of opens in X (23.13) is a subobject
classifier. Before the statement, we need the following

24.40. Notation. Let Q be a sheaf over X.

a) For S ∈ PQ(X) and u ∈ Ω(X), define

γSu : Q(u) −→ Ω(u), by γSu(s) = {v ≤ u : ∃ t ∈ Q(v), with s|v = t}.

The family γS = {γSu : u ∈ Ω(X)} is a morphism from Q to Ω̃, the characteristic
morphism of S.

b) Let λ : Q −→ Ω̃ be a morphism. For u ∈ Ω(X), define

Qλ(u) = {s ∈ Q(u) : λus = u}.
With restrictions induced by Q, Qλ is a subsheaf of Q, the characteristic sub-
sheaf of λ. 2

With these preliminaries, the reader is invited to prove

Theorem 24.41. Let Q be a sheaf over X. With notation as above, the maps{
S ∈ PQ(X) 7→ γS : Q −→ Ω̃

λ : Q −→ Ω̃ 7→ Qλ ∈ PQ(X),

are inverse bijective correspondences between PQ(X) and the set of all sheaf mor-

phisms from Q to Ω̃. 2

One of the fundamental laws in Set is the existence of a natural bijective

correspondence between AB×C and AB
C

, i.e., between [B × C, A] and [C, AB ],
where [X, Y ] is the set of morphisms from X to Y , as in Chapter 16. An important
ingredient in this adjunction is the concept of “evaluation at a point” :

ev : AB × B −→ A, given by 〈 f, b 〉 7→ f(b).

Indeed, the correspondence mentioned above can be constructed as follows : for a

morphism C
λ−→ AB , consider

λ × IdB : C × B −→ AB × B, defined by 〈 c, b 〉 7→ 〈λ(c), b 〉;
we associate to λ the map g = ev ◦ (λ × IdB) from C × B to A :

C × B - AB × B

g ev

A

λ× IdB

A
A
A
A
AU

�
�
�
�
��

Note that the construction is entirely categorical. This same law holds in Sh(X),
once the appropriate concepts have been defined.

Recall that if λ : P −→ Q is a morphism of sheaves and S is a subsheaf of P ,
the restriction of λ to S is the morphism

λ|S : S −→ Q, given by s 7→ λs.
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If u ∈ Ω(X), define λ|u as the restriction of λ to the subsheaf P|u. Observe that,

in fact, λ|u : P|u −→ Q|u. Further, if v ≤ u in X, then (λ|u)|v = λ|v. In particular,

if QP (u) is the set of morphisms from P|u to Q|u and v ≤ u in X, there is a map

|v : QP (u) −→ QP (v), given by λ 7→ λ|v.

These assignments constitute a contravariant functor, QP , from Ω(X) to Set, i.e.,
a presheaf over X. For λ ∈ QP (u) and µ ∈ QP (v), we have

[[λ = µ]] =
⋃
{w ∈ Ω(u ∩ v) : λ|w = µ|w}

=
⋃
{w ∈ Ω(u ∩ v) : ∀ s ∈ P (w), λs = µs}.

It is now straightforward that QP is a sheaf over X.

Definition 24.42. Let P and Q be sheaves over X. With notation as above,
the sheaf QP is defined to be the sheaf of morphisms from P to Q.

Define the evaluation morphism ev : QP × P −→ Q, as the natural trans-
formation ev = {evu : u ∈ Ω(X)}, where

evu : QP (u) −→ Q(u) is given by evu(λ, s) = λs.

Proposition 24.38 now yields

Corollary 24.43. The correspondences in Theorem 24.41 extend to iso-

morphisms between the sheaves PQ and Ω̃
Q

. 2

With the same proof as in Set, we have

Theorem 24.44. In Sh(X), exponentiation and Cartesian product are ad-
joints that is, if P , Q and R are sheaves, there is a natural sheaf isomorphism

between QP×R and QP
R

, given by

λ ∈ [R, QP ] 7→ ev ◦ (λ × IdR) ∈ [P × R, Q],

where ev is the evaluation morphism of 24.42. 2

Remark 24.45. Since Sh(X) has finite products and the adjunction in 24.44,
it is, like Set, a Cartesian closed category (see [44], section IV.6, p.95 ff). 2

In Part 7 we shall return to the theme of 24.41, describing a theory of char-
acteristic functions, fundamental in treating first-order structures in pSh(X).

5. Constant Sheaves

Let A be a set and A be the constant A sheaf over X, as in 23.16 and 23.17.
By definition, for each u ∈ Ω(X), A(u) consists of the set of continuous maps,
s : u −→ A, where A has the discrete topology (all points as open).

We can identify A with the set of constant maps from X to A : for a ∈ A,

write â for the constant map of value a on X. Write Â for the image of A in A(X)
by the injection a 7−→ â.

For s ∈ |A| and a ∈ A, s−1(a) = [[s = â]], which is clopen in Es. Thus,

[[s = â]] 6= ∅ iff a ∈ Ims.
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Furthermore, if a 6= b in A, then [[s = â]] ∩ [[s = b̂]] = ∅. We summarize some of
the basic properties of sections of constant sheaves in

Lemma 24.46. Let A be a set, f ∈ AX , s, t ∈ |A| and u ∈ Ω(X).

a) f ∈ |A| iff for all a ∈ A, [[f = â]] is clopen in X.

b) Es =
⋃
a∈Ims [[s = â]], this union being composed of pairwise disjoint non-

empty clopens in Es. Moreover,

(1) For all a ∈ Ims, s|[[s=â]]
= â|[[s=â]]

; (2) Â is dense in A.

c) [[s = t]] = {x ∈ Es ∩ Et : s(x) = t(x)}.
d) [[s = t]] is clopen in Es ∩ Et.
e) If f = 〈 f1, . . . , fn 〉 ∈ A(u)n, then there are non-empty pairwise disjoint clopens
in u, {ui : i ∈ I}, such that u =

⋃
i∈I ui and each fk is constant on ui, for all

i ∈ I and 1 ≤ k ≤ n.

f) Let 〈 ti, ui 〉 ∈ A(X) × Ω(u), i ∈ I, be such that

(1) {ui : i ∈ I} are pairwise disjoint non-empty clopens in u;

(2) u =
⋃
i∈I ui;

Then, there is s ∈ A(u), such that for all i ∈ I, s|ui = ti|ui .

g) If u is clopen in X, then the restriction map from A(X) to A(u) is a surjection.

Proof. (a) is just a restatement of the fact that f is continuous. Item (b) is
clear; to verify (c), recall that

[[s = t]] =
⋃
{w ∈ Ω(Es ∩ Et) : s|w = t|w}

⊆ {x ∈ Es ∩ Et : s(x) = t(x)}.
Now, if s(x) = t(x) = a, then x ∈ [[s = â]] ∩ [[t = â]] = w, a clopen subset of
Es ∩ Et, such that s|w = t|w. But this implies the equality in (c).

d) To show that [[s = t]] is clopen in Es ∩ Et, let x ∈ Es ∩ Et satisfy s(x) = a
6= t(x). Then, x ∈ [[s = â]] ∩ Et, a clopen in Et, and

[[s = â]] ⊆ {x ∈ Es ∩ Et : s(y) 6= t(y)}.
Thus, the complement of [[s = t]] is open in Es ∩ Et, as needed. Item (e) follows
from (b) and 8.4.

f) Just observe that the family {ti|ui : i ∈ I} is compatible and so can be glued

to a section s over u.

g) Fix s ∈ A(u) and a ∈ A; since the sections â|(X−u)
and s have disjoint extents

whose union is X, (d) implies that there is t ∈ A(X) such that t|Es = s, as

desired. �

Remark 24.47. It is well known (and easy to verify) that if Yi are topological
spaces, i ∈ n, then 15

C(X,
∏
Yi) is naturally isomorphic to

∏
C(X,Yi),

15n = {1, . . . , n}, as in page 15.
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where
∏
Yi has the product topology. Since the finite product of discrete spaces

is discrete, the finite product of constant Ai sheaves is naturally isomorphic to the
constant

∏
Ai sheaf. 2

Remark 24.48. A map A
f−→ B induces a morphism (23.18)

A
f−→ B, given by s 7−→ f ◦ s.

This produces a covariant functor from Set to the category of constant sheaves
over X, that preserves monics and epics. 2

The next result characterizes morphisms whose domain is a constant sheaf.

Proposition 24.49. Let Q be a presheaf over X, let A be a set and let
λ, µ: A −→ Q be presheaf morphisms.

a) The following are equivalent : 16

(1) λ = µ. (2) λX |Â = µX |Â.

b) If Q is a sheaf, then the map τ : [A, Q] −→ Q(X)A, λ 7→ λX |Â, is a

natural bijective correspondence between the morphisms from A to Q and the set
of maps from A to the set of global sections of Q, Q(X).

Proof. a) Since Â is dense in A, (1) ⇔ (2) follows from 24.14.

b) It is enough to verify that every f ∈ Q(X)Â gives rise to a morphism, whose

restriction to Â is f (24.14). For s ∈ |A|, consider the family

T = {fâ|[[s=â]]
: a ∈ A} ⊆ |Q|.

Since Â is a dense set of global sections in A,

Es =
⋃
a∈A [[s = â]] =

⋃
a∈A fâ|[[s=â]]

.

Hence, T is compatible, and there is a unique t ∈ |Q|, such that for all a ∈ A,

Et = Es and t|[[s=â]]
= fâ|[[s=â]]

.

Define λs = t. It is straightforward that λ is a morphism, such that λX |Â = f . �

In particular, we have

Corollary 24.50. Let P be a presheaf over X. There is a natural bijective
correspondence between the morphisms from 1 to P and the set of global sections
of P , P (X), given by

λ ∈ [1, P ] 7→ λX(0̂) ∈ A(X).

where 0̂ is the constant map with value 0 17.

We now return to the consideration of constant sheaves of L-structures as in
23.17. Let X be a topological space, let L be a first-order language with equality
and M a L-structure. We know from 23.17 that M and Mb are presheaves of
L-structures, with relations, constants and operations defined pointwise. We know

16Recall that λ = {λu : u ∈ Ω(X)}.
170̂ is the unique element of 1(X).
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that M is a sheaf over X. To characterize the type of completeness of Mb we
introduce

Definition 24.51. Let C be a category. A C-presheaf P over X is finitely
complete if all finite compatible sets of sections in P have a unique gluing. That
is, if S ⊆f |P | is compatible, then there is a unique t ∈ |P | such that

Et =
⋃
s∈S Es and t|Es = s, for all s ∈ S.

Proposition 24.52. Mb is a finitely complete presheaf over X.

Proof. If S ⊆f |Mb| is compatible, since continuity is a local property, 1.2
yields a continuous t :

⋃
s∈S −→ M , whose restriction to each Es is s ∈ S. Since

S is finite and all sections in S have finite image, the same must be true of t. �

Definition 24.53. Let φ(v1, . . . , vn) be a formula in L, in the free variables
v1, . . . , vn. Let u ∈ Ω(X) and f = 〈 f1, . . . , fn 〉 ∈ M(u)n. Define

vu(φ)(f) = {x ∈ u : M |= φ[f1(x), . . . , fn(x)]}
called the Feferman-Vaught value of φ at f 18. When u is clear from context,
its mention will be omitted.

Recall (17.4) that a formula is primitive if it is of the form ∃xφ, where φ is a
conjunction of atomic formulas. Note that the set of primitive formulas is closed
under conjunction.

Proposition 24.54. Let u ∈ Ω(X) and f ∈ M(u)n. Notation as above,

a) If φ(v1, . . . , vn) is a formula in L, then vu(φ)(f) is clopen in u.

b) Let ∆ be the set of formulas φ(v1, . . . , vn) in L such that

[∆] For all f ∈ M(u)n, M(u) |= φ[f ] iff vu(φ)(f) = u.

Then, ∆ is closed under conjunction and contains all primitive formulas in L.

c) Let Γ be the set of formulas φ(v1, . . . , vn) in L such that

[Γ] For all f ∈ M(u)n, vu(φ)(f) = u ⇒ M(u) |= φ[f ].

Then,

(1) φ, ψ ∈ ∆ ⇒ (φ → ψ) ∈ Γ; (2) φ ∈ Γ ⇒ ∀ z φ ∈ Γ.

d) Let σ be a sentence of the form ∀z (φ → ∃ y ψ), where φ, ψ are conjunctions of
atomic formulas. Then,

M |= σ ⇒ M(u) |= σ.

Proof. a) By 24.46.(e), there is a partition of u into clopens, {ui : i ∈ I},
such that all fk are constant in ui, i ∈ I. Write aik for the constant value of fk on
ui. Consequently

v(φ)(f) =
⋃
{ui : M |= φ[ai1, . . . , a

i
n]}

and

v(¬φ)(f) =
⋃
{ui : M |= ¬φ[ai1, . . . , a

i
n]}.

18In honor of the seminal [14]; see Theorem 24.55.

F. Miraglia. An Introduction to Partially Ordered Structures and Sheaves. Lógica no Avião.



Chapter 24. Presheaves of Sets 272

Hence, u is the union of the disjoint opens v(φ)(f) and v(¬φ)(f), and both these
values are clopen in u.

b) Note that atomic formulas are in ∆ because M(u) is, by definition, a substruc-
ture of Mu with the L-interpretation given in 17.9. It is straightforward that ∆ is
closed under conjunctions. Next, we show

(*) φ ∈ ∆ ⇒ ∃zφ ∈ ∆.

For 〈 g; f 〉 ∈M(u)n+1, suppose that M(u) |= φ[g; f ]. Then, for all x ∈ u,

M |= φ[g(x); f(x)]

and so v(∃zφ)(f) = u. If this equality holds, let ui, i ∈ I, be a clopen partition
of u, such that fk is constant in ui, 1 ≤ k ≤ n (24.46.(e)). Let ai1, . . . , a

i
n be the

values of f1, . . . , fn on ui. Since M |= ∃zφ[z; ai1, . . . , a
i
n], there are bi ∈ M , such

that

For all i ∈ I, M |= φ[bi; a
i
1, . . . , a

i
n].

Let g : u −→M be the map that on each ui has constant value bi. Then, g ∈M(u)
and v(φ)(g; f) = u. Since φ ∈ ∆, we get M(u) |= φ[g; f ], and so M(u) |= ∃zφ[f ],
completing the proof of (*) and of item (b).

c) (1) Suppose φ, ψ ∈ ∆ and v(φ → ψ)(f) = u. If M(u) |= φ[f ], then v(φ)(f) =
u and so v(ψ)(f) = u. But then, the hypothesis that ψ ∈ ∆ yields M(u) |= ψ[f ],
as needed.

(2) Suppose that φ ∈ Γ and v(∀zφ)(f) = u. For g ∈M(u) and x ∈ u, we have

M |= φ[g(x); f(x)]

because M |= ∀zφ[z; f(x)]. Hence, v(φ)(g; f) = u, and the hypothesis that φ ∈ Γ
entails M(u) |= φ[g; f ]. Since g is arbitrary in M(u), we obtain M(u) |= ∀zφ[f ],
as desired.

d) It is immediate from (b) and (c) that σ ∈ Γ. Since the hypothesis is equivalent
to v(σ) = u, we conclude that M(u) |= σ, as claimed. �

As a consequence of 24.54.(d), the L-structure of locally constant functions on
any topological space with values in a model of a theory T whose axioms are of the
form ∀z(φ → ∃yψ), with φ, ψ a conjunction of atomic formulas, are also models
of T . This applies to many interesting mathematical structures, such as groups,
rings, lattices, Boolean or Heyting algebras, etc.

The satisfaction of general formulas in the global sections of Mb is character-
ized by the following fundamental result :

Theorem 24.55. (Feferman-Vaught) Let M be a L-structure and X a Boolean
space. To each formula φ(v1, . . . , vn) in L we can recursively associate a sequence

〈Φ(x1, . . . , xm); ψ1(v1, . . . , vn), . . . , ψm(v1, . . . , vn) 〉
such that

∗ Φ(x1, . . . , xm) is a formula of the language of Boolean algebras;

∗ For 1 ≤ k ≤ m, ψk(v1, . . . , vn) are L-formulas in the same free variables as φ;

∗ For all f = 〈 f1, . . . , fn 〉 ∈ Mb(X)n,

Mb(X) |= φ[f1, . . . , fn] iff B(X) |= Φ[v(ψ1)(f), . . . , v(ψm)(f)].
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Proof. By induction on the complexity of formulas. The proof given in [14]
or [7] is easily adapted to this case, via 24.46, once it is remarked that the passage
through the existential quantifier requires only finite completeness. The reader
might also consult [76]. �

As an illustration of the techniques used to treat structures of locally constant
functions on a topological space, we shall prove the following result, complementing
9.33 and 9.35.

Theorem 24.56. Let X be a compact space and R a commutative ring with
identity. If Mσ(R) is a frame, then Mσ(R(X)) is an algebraic frame.

Proof. We shall use the notation and results in section 9.2. Recall that
B(X) is the Boolean algebra of clopens in X.

By 24.54.(d), R(X) = C(X,R) is a commutative ring with identity 1̂ (the

constant function with value 1 ∈ R) and additive neutral 0̂ (the constant function
with value 0 ∈ R). Addition and multiplication in R(X) are defined pointwise,
i.e., for f , g ∈ R(X) and x ∈ X,

[f + g](x) = f(x) + g(x) and [f · g](x) = f(x)g(x).

For S ⊆ R(X) and x ∈ X, set

S(x) = {f(x) ∈ R : f ∈ S}.
If f , g ∈ R(X) and u ∈ B(X), write

f|u ∨ g|uc
for the element of R(X) that coincides with f on u and with g on uc (24.46.(f)).

The proof develops through a series of Facts, that describe the relationship
between global and local aspects of the pertinent concepts.

Fact 24.57. Let S, T be a multiplicative subsets of of R(X). Then

a) For all x ∈ S, S(x) ∈ M(R) and S ⊆ T ⇒ S(x) ⊆ T (x).

b) If S ∈ Mσ(R(X)), f ∈ S and u ∈ B(X), then
(
f|u ∨ 1̂|uc

)
∈ S.

c) S ∈ Mσ(R(X)) ⇒ S(x) ∈ Mσ(R), for all x ∈ X.

d) For all x ∈ X, σ(S)(x) = σ(S(x)) 19.

Proof. Item (a) is straightforward. For (b), consider

g = f|u ∨ 1̂|uc and h = 1̂|u ∨ f|uc .
Then, f = gh and saturation implies g, h ∈ S, as desired.

c) Fix x ∈ X and suppose that ab = c ∈ S(x). Then, there is s ∈ S and a clopen

u in X, such that s is constantly equal to c in u. By (b), f = s|u ∨ 1̂|uc is in S.

Now define g, h ∈ R(X) as follows :

g = â|u ∨ 1̂|uc and h = b̂|u ∨ 1̂|uc ,

19σ is saturation, as in 9.23. Its basic property is described in 9.23.(a).
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where â is the constant a-valued map on X. It is clear that gh = f . Since S is
saturated, we get g, h ∈ S, and so a = g(x) and b = h(x) are both in S(x), as
needed.

d) Fix x ∈ X; since S(x) ⊆ σ(S)(x) and the latter is saturated, we have
σ(S(x)) ⊆ σ(S)(x). Now suppose that a ∈ σ(S(x)); then, there are b ∈ R and
c ∈ S(x), such that ab = c. Select f ∈ S and u ∈ B(X) such that f is constantly
equal to c on u. Define g, h ∈ R(X) by

g = â|u ∨ 1̂|uc and h = b̂|u ∨ f|uc .
Then, gh = f ∈ S and so g, h ∈ σ(S). Hence, a = g(x) ∈ σ(S)(x), as needed. �

Fact 24.58. If S, T ∈ Mσ(R(X)), then

S = T ⇔ For all x ∈ X, S(x) = T (x).

Proof. It is enough to verify (⇐). This is the only step of the proof in which
we shall use the compactness of X. Let f ∈ S. For each x ∈ X, there is gx ∈ T , such
that gx(x) = f(x). Since all elements of R(X) are locally constant, we conclude
that for each x ∈ X, there is a pair 〈 gx, ux 〉 ∈ T × B(X), such that x ∈ ux and
f , gx are constant and equal in ux. Since {ux : x ∈ X} is a clopen covering of X,
compactness entails that it has a finite subcovering. Hence, we may assume that
there is a finite collection

{〈 gk, uk 〉 ∈ T × B(X) : 1 ≤ k ≤ n}
such that

⋃n
k=1 uk = X and f , gk coincide in uk. Define, by induction on k ≤ n,{

v1 = u1 and

vk = uk −
⋃
j≤(k−1) vj if k ≥ 2.

Then, vk ⊆ uk, the vk are pairwise disjoint and still a covering of X. Hence, the
collection

{〈 gk, vk 〉 : 1 ≤ k ≤ n}
still has the property of the original one, i.e., gk and f are constant and equal in
each vk and the vk are a (pairwise disjoint) covering of X. Define, for 1 ≤ k ≤ n

hk = gk|vk ∨ 1̂|vck .

Since T is saturated, (b) guarantees that hk ∈ T , 1 ≤ k ≤ n. Now observe that
for each vk we have

(h1h2 . . . hn)|vk = gk|vk = f|vk ,

and so f = h1h2. . .hn ∈ T . We have shown that S ⊆ T . The argument being
symmetrical in S and T , we conclude that S = T , as desired. �

Fact 24.59. If S, T ∈ Mσ(M(X)), then, for all x ∈ X,

a) (S ∩ T )(x) = S(x) ∩ T (x); b) (S · T )(x) = S(x) · T (x);

c) (S ∨ T )(x) = S(x) ∨ T (x).

Proof. a) Clearly, (S ∩ T )(x) ⊆ S(x) ∩ T (x). If a ∈ S(x) ∩ T (x), select
f ∈ S, g ∈ T and u ∈ B(X) such that f and g are constantly equal to a on u. By
Fact 24.57.(b)
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h = f|u ∨ 1̂|uc = g|u ∨ 1̂|uc
are in S and T , establishing that a ∈ (S ∩ T )(x).

b) It suffices to check that S(x) · T (x) ⊆ (S · T )(x). If c = ab, with a ∈ S(x) and
b ∈ T (x), there are f ∈ S, g ∈ T and u ∈ B(X) such that f and g are constant

on u, with values a and b, respectively. Then, g = f|u ∨ 1̂|uc belongs to S and

h = g|u ∨ 1̂|uc is in T , with gh(x) = c, as needed.

c) By 9.23.(b), S ∨ T = σ(S · T ); the conclusion follows immediately from (b)
and 24.57.(d). �

Since Mσ(R(X)) is a complete algebraic lattice (9.25.(c)), by 8.14 it will
be a frame iff it is distributive. Hence, to complete the proof, let S, T1, T2 be
saturated multiplicative sets in R(X). The fact that Mσ(R) is a frame, together
with 24.57.(c), implies that that for all x ∈ X

S(x) ∩ (T1(x) ∨ T2(x)) = (S(x) ∩ T1(x)) ∨ (S(x) ∩ T2(x)).

But then, items (a) and (c) in 24.59 yield

S ∩ (T1 ∨ T2) = (S ∩ T1) ∨ (S ∩ T2)

as needed. �

Proposition 9.33, together with Theorems 9.35 and 24.56, produce a wide a
variety of commutative rings with identity whose lattice of saturated multiplicative
sets constitute an algebraic frame.

To end this section we present a further example of sheaf, that are important
in applications ([43], [1], [36], [49], [10]).

Definition 24.60. Let X be a topological space and M a L-structure. A
filtration Σ in 〈X,M 〉 is a collection of pairs

Σ = {〈Fi,Mi 〉 : i = 1, . . . , n}
such that

∗ F1, . . . , Fn is an increasing sequence of closed set in X;

∗ M1, . . . ,Mn is an increasing sequence of substructures of M .

If u ∈ Ω(X) write Σ|u for the induced filtration on u, that is, 20

Σ|u = {〈u ∩ Fi, Mi 〉 : i ∈ n}.
Define, for u ∈ Ω(X)

M(u,Σ) = {s ∈ M(u) : ∀ i ∈ n (x ∈ Fi ⇒ f(x) ∈ Mi)}.
With relations, operations and constants induced by M , M(u,Σ) is a L-structure.

For u ≤ v in X, the canonical restrictions of M are L-morphisms, taking
M(v,Σ) into M(u,Σ). Hence, we have an extensional presheaf over X, the fil-
tered power of M over X by Σ, written M(X,Σ).

Write Mb(X, Σ) for the subpresheaf of M(X,Σ) whose domain is consti-
tuted by all sections with finite image in M . Mb(X, Σ) is the bounded filtered

20Recall that n = {1, . . . , n} as in page 1.
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power of M over X by Σ. If u ∈ Ω(X), write Mb(u, Σ) for the L-structure of
sections of Mb(X, Σ) over u.

Remark 24.61. Note that when Σ = {〈X,M 〉},
M(X,Σ) = M and Mb(X, Σ) = Mb.

Moreover, neither the filtered power nor the bounded filtered power are changed if
the pair 〈X,M 〉 is added to the filtration. Whenever convenient we shall assume
that 〈X,M 〉 belongs to the filtration in consideration. 2

The following is straightforward :

Lemma 24.62. If Σ is a filtration on 〈X,M 〉 then

a) M(X,Σ) is a sheaf over X;

b) Mb(X, Σ) is a finitely complete presheaf over X. 2

Lemma 24.63. Let X, Y be topological spaces and M a L-structure. Let

ΣX = {〈Fi,Mi 〉 : i ∈ n} and ΣY = {〈Ki,Mi 〉 : i ∈ n}
be filtrations on X and Y , respectively. Suppose that f : X −→ Y is a continuous

map such that for all k ∈ n, Fi ⊆ f−1(Ki). If f̂ is the map (23.18),

f̂ : M(Y , ΣY ) −→ M(X, ΣX), given by s 7→ s ◦ f
then, 21

a) f̂ is a L-morphism.

b) Imf is dense in Y , f̂ is a L-monomorphism.

c) The restriction of f̂ to Mb(Y , Σ) takes values in Mb(X, Σ) and statements
(a) and (b) above hold for this restriction.

Proof. It is clear that f̂ takes M(Y , ΣY ) to M(X, ΣX) and restricts to a
map from the bounded filtered power of M over Y to the bounded filtered power
of M over X.

a) Let R ∈ rel(n,L) be a n-ary relation symbol in L and s = 〈 s1, . . . , sn 〉 be
sections in M(Y , ΣY ). Then,

M(Y , ΣY ) |= R[s] iff ∀ y ∈ Y , M |= R[s1(y), . . . , sn(y)].

Since f̂(sk) = sk ◦ f , for each x ∈ X we have

M |= R[s1(f(x)), . . . , sn(f(x))],

that is, M(X, ΣX) |= R[f̂(s1), . . . , f̂(sn)]. Similarly, one shows that f̂ preserves

operations in L. It is clear that f̂ takes constant maps to constant maps and so is
a L-morphism. Since the bounded filtered power is a L-substructure of the filtered

power, the restriction of f̂ to the bounded filtered power is also a L-morphism.

b) In view of (a), to show that f̂ is a L-monomorphism it is enough to check that
if R ∈ rel(n,L) and s1, . . . , sn ∈M(Y , ΣY ), then

M(X, ΣX) |= R[f̂(s1), . . . , f̂(sn)] ⇒ M(Y , ΣY ) |= R[s].

By 24.46.(e), there is a partition {vi : i ∈ i} of Y into non-empty clopens such
that each sk is constant in vi, i ∈ I. For y ∈ Y , there is a unique i ∈ I such that

21For the definition of L-morphism and L-monomorphism see 17.7.
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y ∈ vi. Since Imf is dense in Y , there is x ∈ X such that f(x) ∈ vi. Hence, our
hypothesis entails

M |= R[s1(f(x)), . . . , sn(f(x))],

and so M |= R[s1(y), . . . , sn(y)], because each sk is constant in vi. Since y is
arbitrary in Y , we obtain M(Y , ΣY ) |= R[s], as needed. The bounded filtered
power being a L-substructure of the filtered power, (c) is also verified. �

Proposition 24.64. Let M be an L structure, X a topological space and γX
the Booleanization of X (20.7). Let

Σ = {〈Fi,Mi 〉 : i ∈ n}
be a filtration on 〈X,M 〉. Then,

a) Σ induces a filtration γΣ = {〈 γFi, Mi 〉 : i ∈ n}, such that for all i ∈ n,
Fi ⊆ γ−1(γFi).

b) For each v ∈ Ω(γX), the map

αv : Mb(v, γΣ) −→ Mb(γ
−1(v),Σ), given by αv(s) = s ◦ γ

is a L-isomorphism, such that for all opens w ≤ v in γX, the following diagram
commutes :

Mb(w, γΣ)

Mb(v, γΣ)

?

- Mb(γ
−1(v),Σ)

·|w

αv

Mb(γ
−1(w), γΣ)

·|γ−1(w)

αw

?
-

In particular, for all u ∈ B(X), Mb(u, Σ) is isomorphic to Mb(Su, γΣ).

Proof. a) Since F 7→ γF is an increasing map (20.9.(c)), it is clear that γΣ
is a filtration on 〈 γX,M 〉. Recalling that

γF =
⋂
{v ∈ B(γX) : F ⊆ γ−1(v)}

we have F ⊆ γ−1(γF ), for any closed set F in X.

b) Taking 20.9 and 24.63 into account, there only remains to verify that αv is a
surjection. The reader can check that the proof used to show that αv is onto in
20.9 also applies to the situation at hand. �

Remark 24.65. As was the case in 20.9, it follows from 24.64 that Mb(X, Σ)
is isomorphic to M(γX, γΣ), with γX a Boolean space. Hence, if we are interested
only in global sections, we may as well assume that X is Boolean. However, sheaf-
theoretically, the situation is more complex : the structure of sections over each
v ∈ Ω(γX) is isomorphic to the structure of sections over its inverse image by γ.
ButX may very well possess opens that are not in the image of γ∗. In fact, the proof
of 20.9 indicates what one must do to produce such an example. It is shown that
the image of γ∗ corresponds to the set of opens in X that are unions of elements
of B(X). Hence, if X is not totally disconnected, we must have Ω(X) 6= Imγ∗. In
this case, the presheaves Mb(X, Σ) and Mb(γX, γΣ) are not isomorphic.
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Since the image of a compact set by a continuous map is compact, if X is not
compact and M is infinite, it is clear that there is no compact space that can play
the role γX for M(X, Σ). 2

6. Natural Numbers

We now turn to the existence of a “natural number object” in Sh(X).

Perhaps one of the most fundamental properties of N is the possibility of

defining functions by recursion. More precisely, let A be a set, let A
f−→ A be a

map and let a0 be an element of A. Then, the following principle holds :

[ind]
There is a unique map, g : N −→ A, such that

g(0) = a0 and g(n+ 1) = f(g(n)).

Consider the class of all triples (A, f, a0), where A is a set, f ∈ AA and a0 is
a distinguished element of A. If σ is the successor function on N, n 7→ (n + 1),
then (N, σ, 0) is such a triple. Given A = (A, f, a0) and B = (B, g, b0), define a
morphism h : A −→ B, to be a function h : A −→ B, such that h(a0) = b0 and
h ◦ f = g ◦ h :

B

A

?

- A

h

f

B

h

g

?
-

This collection of objects and morphisms form a category. The principle [ind]
means that (N, σ, 0) is an initial object in this category. Phrased in this way, it
is possible to define the concept of natural number object in any category, once
we know how to interpret the notion of “distinguished element”.

If A is a set, there is a bijective correspondence between A and the set of maps
from {∗} to A. Actually, any one element set could take the place of {∗}, since all
of them represent the final object, 1, in Set. We therefore define, in a category
with final object, 1, a distinguished element of an object A as a morphism
from 1 to A. This is the notion we shall adopt. It has shortcomings : the usual
notion of Robinson diagram of a structure can not be rendered sheaf theoretic
with this definition of interpretation of constants.

In Sh(X), the final object is the constant {∗} sheaf, written 1. Hence, by
24.50, the “elements” of a presheaf A are the global sections of A.

Let Ind be the category of triples (S, f, c), with S a sheaf over X, f is a
morphism from S to S and c is a global section of S, with morphisms as above.
A natural number object in Sh(X) is an initial object of Ind, i.e., a triple
(N, σ, ω) in Ind, satisfying :
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[ind]
For all (S, f, c) in Ind, there is a unique g : N −→ S,

such that fX(ω) = c and f ◦ g = g ◦ σ.

S

N

?

- N

g

σ

S

g

f

?
-

Clearly, if it exists, such an object is unique, up to isomorphism.

Theorem 24.66. The triple (NNN, σ, 0̂), consisting of

∗ The constant N sheaf, NNN;

∗ The ‘successor’ morphism σ, defined, for each u ∈ Ω(X), by

s ∈ NNN(u) 7→ σu(s) = s+ 1;

∗ The global section constantly equal to 0, denoted by 0̂,

is the natural number object in Sh(X). Furthermore, the following induction prin-
ciple holds in NNN : if S is a subsheaf of NNN, the following are equivalent :

(1) S = NNN.

(2) (i) 0̂ ∈ S(X) (ii) σ(S) ⊆ S.

Proof. Let Q ∈ Sh(X), let q0 ∈ Q(X) be a global section of Q and let
µ : Q −→ Q be a morphism. By the classical principle of definition by recursion,
there is a unique g : N −→ Q(X), such that g(0) = q0 and g(n+ 1) = µX(g(n)),
∀ n ∈ N. By Proposition 24.49.(b), there is a unique morphism λ : NNN −→ Q, such
that λX(n̂) = g(n). It is straightforward that λ is the unique morphism from NNN to

Q, such that λX(0̂) = q0 and λ ◦ σ = µ ◦ λ, as needed.

For the induction principle, clearly (1) ⇒ (2); for the converse, the conditions
in (2) and the usual induction principle entail that n̂ ∈ |S|, for all n ∈ N. Since

N̂ is dense in NNN (24.46.(a).(2)) and S is a subsheaf of NNN, we obtain S = NNN, as
needed. �

We now introduce the sheaf-theoretic counterpart of the familiar structure on
NNN. For s, t ∈ |NNN|, define{

s + t : Es ∩ Et −→ N by [s + t](x) = s(x) + t(x);

s · t : Es ∩ Et −→ N by [s · t](x) = s(x)t(x),

where the operations in the right-hand side are the usual ones in N. Note that for
all a ∈ N, {

[(s + t) = â] =
⋃
b+c=a [[s = b̂ ]] ∩ [[t = ĉ ]]

[(s · t) = â] =
⋃
bc=a [[s = b̂ ]] ∩ [[t = ĉ ]],

and so s + t, st are, by 24.46.(a), in |NNN|. It is readily verified that addition and
product are sheaf morphisms from NNN × NNN to NNN.
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We also define a binary relation ≤ on NNN by the following prescription, where
u ∈ Ω(X) :

≤(u) = {〈 s, t 〉 ∈ NNN(u) × NNN(u) : ∀ x ∈ u, s(x) ≤ t(x)},
with restrictions induced by NNN × NNN. The reader can check that ≤ is a subsheaf of
NNN2. We can consider NNN as a structure

NNN = 〈NNN, ≤, +, ·, 0̂, 1̂ 〉,
that has basic properties that are analogous to those found in elementary number
theory. Although we have not defined the value of formulas in presheaves, we shall
discuss the interpretation of very simple formulas in NNN, in particular because it is
a good introduction to the general case. For instance

(i) ∀s ∀t (s + t = t + s)

expressing the commutativity of addition is true because addition is defined point-
wise and it is commutative in N. Similarly, the sheaf operations + and · are commu-
tative, associative and have 0̂ and 1̂ as neutrals, respectively. Of a slightly different
sort are the properties

(ii) ∀s(s 6= 0̂ → ∃t(s = t + 1̂));

(iii) ∀s (s = 0̂ ∨ ∃t (s = t + 1̂).

Classically, (ii) and (iii) are equivalent, but not intuitionistically (see 6.8.(h)); in
general, we only have (iii) ⇒ (ii). To see that NNN |= (iii), note that, if s ∈ |NNN|, its
extent Es can be partitioned into two disjoint opens :

Es = [[s = 0̂ ]] ∪ u, where u =
⋃
n≥1 [[s = n̂ ]]. (*)

In u we may certainly write s as t + 1̂. Since the union of where the two alternatives
in (iii) hold is Es, we consider that NNN |= (iii). For (ii), let s be a section in NNN; the

idea is that in Es (where s exists), if it is distinct from 0̂, then it must locally be
the successor of a section of NNN, that is

Es ∩ int {x ∈ Es : s(x) 6= 0} ⊆
⋃
t∈|NNN| [[s = (t+ 1)]]. (**)

But this is exactly the content of (*), verifying that NNN |= (ii) 22. In a similar vein,
one can prove that ≤ is a linear order on NNN, that is a partial order satisfying

(iv) ∀s ∀t (s ≤ t ∨ t ≤ s).

For, consider

u = {x ∈ Es ∩ Et : s(x) ≤ t(x)};
since s and t are locally constant, for x ∈ u select a clopen v in νx, such that
v ⊆ (Es ∩ Et) and s, t are constant in v. Then v ⊆ u, and so u ∈ Ω(X). A similar
reasoning shows that

v = {x ∈ Es ∩ Et : t(x) ≤ s(x)} ∈ Ω(X).

Since u ∪ v = Es ∩ Et, it follows that NNN models (iv).

Once we have N, there are well known constructions to produce the integers,
Z, and the rationals, Q. The proof of this left to the reader as Exercise 24.83

It is also possible to construct the reals in Sh(X). In general however, “com-
pletion by Cauchy sequences” gives a different result than “completion by Dedekind

22This can be obtained on general grounds, since, as it shall be seen, sheaves are models for the
intuitionistic predicate calculus.
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cuts”. The completion by Dedekind cuts of the sheaf QQQ is the sheaf of con-
tinuous real valued functions on X, C(X). We refer the interested reader to [55].

If A is a set, a sequence in A is a map f : N −→ A. For presheaves we have

Definition 24.67. If P is a presheaf over X, a sequence in P is a morphism
from NNN to P .

From 24.49 we get

Corollary 24.68. Let P be a presheaf over X. There is a natural bijective
correspondence between sequences in P and (set-theoretical) sequences in P (X).

Exercises

24.69. Determine domain, equality and extent for the initial and final objects
0 and 1 (as in 24.1). 2

24.70. Let P -
-

λ

β

Q be morphisms of presheaves.

a) P ×λ P is the equalizer of P -
-

λ

λ

Q.

b) Determine the domain, equality and extent of Eq(λ, β), establishing it is an
extensional presheaf of sets over X. 2

24.71. Let Pα, α ∈ A, be a family of subpresheaves of P . For u ∈ Ω(X), set

B(u) =
⋃
α∈A Pα(u),

with restrictions induced by P . Then, B is a presheaf and the join of the Pα in
the complete lattice PP (X). 2

24.72. a) The constant presheaf A over X (23.16) is dense in the constant
sheaf A over X.

b) If Pα, α ∈ A, are closed subpresheaves of P , then so is their intersection.
Conclude that PP (X) is a complete lattice.

c) Show that PP (X) and PP (X) are closed under the restriction operation defined
in Example 23.12. 2

24.73. a) Completion is a functor, c : pSh(X) −→ Sh(X).

b) The functor c preserves monics and epics. 2

24.74. Let P be a presheaf over X and S, T ⊆ |P |.
a) S ⊆ T ⇒ S ⊆ T and S ∩ T = S ∩ T .

b) The map (·) : PP (X) −→ PP (X), S 7→ S, is an increasing nucleus on PP (X)
(13.1), whose set of fixed points is PP (X). 2

24.75. a) Generalize Lemma 18.17 to pSh(X).

b) Let {Pi : i ∈ I} be presheaves over X and let P =
∏
i∈I Pi. For J⊆ I, set
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P|J =
∏
j∈J Pj

and let π̂J : P −→ P|J be the projection that forgets the coordinates outside J .

Then, the map

S ∈ PP|J(X) 7→ π̂J
−1(S) ∈ PP (X),

is a natural bijective correspondence between closed subpresheaves of P|J and

closed subpresheaves of P that depend only on J . A similar statement holds for
PP (X) and PP|J(X). 2

24.76. If P is a presheaf over X, the diagonal of Pn,

∆n = {(〈 s1, . . . , sn 〉 ∈ |P |n : si = sj , ∀ i, j ≤ n},
is a n-ary relation on P . 2

24.77. If R is a relation from P to Q, define domain and image of R. 2

24.78. Let Q be a sheaf over X.

a) The map u ∈ Ω(X) 7→ Q|u ∈ PQ(X) is a frame isomorphism of Ω(X) onto its

image.

b) Is every subsheaf of Q of the form Q|u, for some u ∈ Ω(X) ? 2

24.79. Extend 24.49 to any finite product of constant sheaves. 2

24.80. Every finitely complete C-presheaf is extensional. 2

24.81. Let R1, . . . , Rn be a commutative rings with identity such thatMσ(Ri)
is an algebraic frame. If R =

∏n
i=1 Ri, then Mσ(R) is a frame 23. 2

24.82. Let N be the natural numbers and Z the ring of integers. Let R = ZN

be the ring of sequences of integers, with its natural coordinate-wise structure.

a) If S ∈ M(Z) and F is a filter on N, then

[F, S] = {s ∈ R : {n ∈ N : s(n) ∈ S} ∈ F}
is a multiplicative subset of R, which is saturated if the same is true of S. Moreover

F ⊆ G and S ⊆ T ⇒ [F, S] ⊆ [G,T ].

b) Let F be the filter of cofinite subsets of N and S = U(Z) = {±1}. Then, for all
n ∈ N, 24

[F, S](n) = {s(n) : s ∈ [F, S]} = Z.

c) Show that the equivalence in 24.58 is false if X is not compact. 2

24.83. Show that the usual way of introducing the additive inverse in N to
construct the integers Z, produces, in Sh(X), the constant sheaf ZZZ. Show that
the “field of fractions” construction, applied to ZZZ, yields the constant sheaf QQQ. 2

23If Ri = R, 1 ≤ i ≤ n, this is an immediate consequence of 24.56.
24Notation as in the proof of 24.56.
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Part 5

L-sets



In this Part we begin the study of an abstract version of sheaves and presheaves
that originated with [26] but developed essentially in [15] and [50]. The symbol
L denotes a semilattice (3.1), H stands for a Heyting algebra (6.1), while Ω will
be reserved for a frame (8.1).

Many of the results are generalizations of the ones proven for sheaves and
presheaves over topological spaces. However, since in general HAs do not have
points, many of the constructions have to be obtained in an intrinsic way. The
proofs of a fair amount of the properties of L-sets are straightforward transcriptions
of those for presheaves of sets over topological spaces.



CHAPTER 25

L-sets and L-presheaves

We start with a general concept of a set with values in a semilattice, obtained
by transcribing to the semilattice context the first two properties in 23.7.(b).

Definition 25.1. Let L be a semilattice. A L-set, A, consists of a set, |A|,
(the domain of A), together with a map

[[· = ·]] : |A| × |A| −→ L,

satisfying, for all x, y, z ∈ |A|,
[= 1] : [[x = y]] = [[y = x]];

[= 2] : [[x = y]] ∧ [[y = z]] ≤ [[x = z]].

The map [[· = ·]] is the equality relation on A. For x ∈ |A|,
Ex =def [[x = x]]

is the extent of x. Clearly, [[x = y]] ≤ Ex ∧ Ey. For S ⊆ |A|, the support of
S is

ES =
∨
a∈S Ea,

whenever this sup exists in L. When there is need to register explicitly that equality,
extent or support refer to A, write [[· = ·]]A and EA.

We refer to an element in |A| as a section of A. For p ∈ L,

A(p) = {x ∈ |A| : Ex = p},
is the set of sections of A over p. A global section of A is an element of A(>).
We shall assume that whenever L has ⊥, any L-set has a unique section over ⊥,
indicated by ∗.

A L-set A is extensional iff it satisfies

[ext] For all x, y ∈ |A|, Ex = Ey = [[x = y]] ⇒ x = y.

Unless explicit mention to the contrary, all L-sets are assumed to be
extensional.

If A is an L-set and |B| ⊆ |A|, then |B| is the domain of a L-set, obtained
by restricting [[· = ·]] to |B| × |B|. Moreover, if A is extensional, the same will be
true of B; write B ⊆ A to indicate the L-set structure induced by A on |B|.

Example 25.2. Presheaves, P , over a topological space X give rise to a Ω(X)-
set, also denoted by P , with |P | =

∐
u∈Ω(X) P (u) and for s ∈ P (u), t ∈ P (v),

[[s = t]] =
⋃
{w ∈ Ω(u ∩ v) : s|w = t|w}.

By 23.7.(b), this equality relation makes P into a Ω(X)-set. It will be extensional
iff P is an extensional presheaf over X. 2
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Example 25.3. If A is a L-set and p ∈ L,

|A|p| = {x ∈ |A| : Ex ≤ p}.
is the domain of a L-set A|p, the restriction of A to p. Equality in A|p is induced

by A, i.e., for x, y ∈ |A|p|, [[x = y]]A|p = [[x = y]]A. Clearly, A|p is extensional

whenever the same is true of A. 2

Example 25.4. Let H be a HA. Define an H-set, H̃, as follows :

∗ |H̃| = {〈 a, p 〉 ∈ H × H : a ≤ p} =
⋃
p∈H p← × {p};

∗ [[〈 a, p 〉 = 〈 b, q 〉]] = p ∧ q ∧ (a ↔ b),

where ↔ is equivalence in H (6.9). By 6.23, this equality satisfies [= 1] and [= 2].

Clearly, E〈 a, p 〉 = p, for all 〈 a, p 〉 ∈ |H̃|. H̃ corresponds to the sheaf of opens

of a topological space X (23.13). To establish that H̃ is extensional, note that
E〈 a, p 〉 = E〈 b, q 〉 = [[〈 a, p 〉 = 〈 b, q 〉]] entails p = q = p ∧ (a ↔ b). Hence,
p ≤ (a ↔ b), and 6.10.(a) yields a = a ∧ p = b ∧ p = b, as needed. 2

Example 25.5. Let L be a semilattice. Define a L-set, 1, by

∗ |1| = L; ∗ [[x = y]] = x ∧ y.

Clearly, 1 is an extensional L-set. 2

Example 25.6. Let R be a commutative ring with identity and let Ω be the
frame Rad(R), of radical ideals in R, of Chapter 9, the results of which we shall
use freely. Recall that (x) is the principal ideal generated by x ∈ R. Define a Ω-set,

R̃, as follows :

∗ |R̃| = R; ∗ [[a = b]] = (
√
a ↔

√
b) = (

√
a :
√
b) ∩ (

√
b :
√
a).

Recalling that ↔ is the equivalence operation in the frame Ω, it follows from 6.23

that R̃ is a Rad(R)-set, in which every section is global.

R̃ will be extensional iff for all a, b ∈ R√
a =
√
b ⇒ a = b.

Since
√

(a2) =
√
a (the set of primes containing a and a2 are the same), we must

have that a2 = a, for all a ∈ R, that is, R is a Boolean ring. Conversely, if R is
a Boolean ring, then

√
a =

√
b ⇒ a = b. Indeed, by 9.12.(b), the hypothesis

means that there are n, m ≥ 1 such that

an = a ∈ (b) and bm = b ∈ (a).

These relations entail the existence of x, y ∈ R such that a = xb and b = ya;
the first of these equations yields ab = xb2 = xb = a, while the second implies
ab = ya2 = ya = b, showing that a = b. Hence,

R̃ is an extensional Rad(R)-set iff R is a Boolean ring. 2

Example 25.7. Let R be a commutative regular ring with identity and
let B(R) the BA of idempotents in R (19.19). For a, b ∈ R, there is a unique
eab ∈ B(R), such that the principal ideal (a − b) is equal to the principal ideal
(eab). Hence,

(a− b)eab = (a− b) and eab = αab(a− b), (I)

for some αab ∈ R. Define a B(R)-set, R, as follows :
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∗ |R| = {〈 a, e 〉 ∈ R × B(R) : ae = a};

∗ [[〈 a, e 〉 = 〈 b, f 〉]]] = (1 − eab)ef .

Clearly, E〈 a, e 〉 = e. One should keep in mind that e·f is e ∧ f in B(R). This con-
struction corresponds to the structure sheaf of R over the Boolean space Spec(R)
(Example 22.19 and Corollary 22.20). R is extensional, because

E〈 a, e 〉 = E〈 b, f 〉 = [[〈 a, e 〉 = 〈 b, f 〉]],
implies e = f = (1− eab)ef ; hence, eabe = 0, and so

a − b = ae − be = e(a − b) = eeab(a − b) = 0,

verifying that a = b, as desired. 2

Example 25.8. This example is an abstract version of the presheaf fA in

23.16. Let A be a set and let L be a distributive lattice, with ⊥ and >. If A
s−→ L

is a map, the support of s is

spt(s) = {a ∈ A : s(a) 6= ⊥}.
Now define 1

|fA| = {s ∈ LA :
spt(s) ⊆f A and ∀ a, b ∈ A
a 6= b ⇒ s(a) ∧ s(b) = ⊥.

}
For s, t ∈ |fA|, set

[[s = t]] =
∨
a∈A s(a) ∧ t(a).

Note that the join in the definition of [[· = ·]] is finite because the support of s and
t are finite. Clearly, [[· = ·]] satisfies [= 1]; for [= 2], we have, using distributivity
and the fact that t(a) is disjoint from t(b) for a 6= b,

[[s = t]] ∧ [[t = z]] =
∨
a∈A s(a) ∧ t(a) ∧

∨
a∈A t(a) ∧ z(a)

=
∨
a,b∈A s(a) ∧ t(a) ∧ t(b) ∧ z(b)

=
∨
a∈A s(a) ∧ t(a) ∧ z(a)

≤
∨
a∈A s(a) ∧ z(a) = [[s = z]].

Note that Es =
∨
a∈A s(a). Hence, fA is a L-set, the bounded constant A

L-set. To see it is extensional, suppose Es = Et = [[s = t]]; for a ∈ A, we have

s(a) = s(a) ∧ Es = s(a) ∧ [[s = t]] = s(a) ∧
∨
b∈A s(b) ∧ t(b)

=
∨
b∈A s(a) ∧ s(b) ∧ t(b) = s(a) ∧ t (a),

and so s(a) ≤ t(a). Since the argument is symmetrical in s and t, we conclude that
s(a) = t(a), as needed.

To describe the sections in fA that correspond to the constant functions, for
each a ∈ A, define ǎ : A −→ L by

ǎ(b) =

{
⊥ if a 6= b;

> if b = a.

Then, ǎ is a global section in fA; write Ǎ = {ǎ : a ∈ A}. The map

a ∈ A 7−→ ǎ ∈ fA(>)

is an injection of A into the global sections of fA, with image Ǎ.

1Recall (page 15) that ⊆f means “finite subset of”.
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If L is Ω(X), X a topological space, the construction above is isomorphic
to that in Example 23.16. We leave details to the reader, but make the following
observations :

∗ If f : X −→ A is a continuous map with finite image, define

α(f) : A −→ Ω(X), given by α(f)(a) = [[f = â ]].

Note that α(f) ∈ fA;

∗ If s ∈ |fA|, define β(s) : X −→ A by

β(s)(x) = a iff x ∈ s(a).

Then, β(s) is a continuous map, with finite image in A;

∗ α(β(s)) = s and β(α(f)) = f .

∗ α and β are morphisms of Ω(X)-sets 2. 2

Example 25.9. This example is the abstract counterpart of the constant
sheaf presented in 23.17 and discussed in section 24.5.

Let Ω be a frame and A be a set. Let

|A| = {s ∈ ΩA : ∀ a, b ∈ A, a 6= b ⇒ s(a) ∧ s(b) = ⊥}.
Thus, |A| is analogous to |fA|, but without the finiteness assumption on support.
For s, t ∈ |A|

[[s = t]] =
∨
a∈A s(a) ∧ t(a).

As in 25.8

∗ A is an extensional Ω-set, the constant A Ω-set;

∗ The map ·̌ : A −→ Ǎ ⊆ A(>) is an injection of A into the set of global sections
of A.

∗ As was the case in 25.8, if Ω is the frame of opens of a topological space, then
the definition of A given here and that in 23.17 are isomorphic presentations of
the same object. 2

We now introduce the notion of morphism of L-sets.

Definition 25.10. Let A, B be L-sets. A morphism, A
f−→ B, is a set-

theoretical map, f : |A| −→ |B|, such that for all x, y ∈ |A|
[mor 1] : EBfx = EAx;

[mor 2] : [[x = y]]A ≤ [[fx = fy]]B.

L-sets and their morphisms form a category, written Lset.

Note that there is no extensionality assumption in 25.10. Moreover, 25.10 is
just a rewriting, with L in place of Ω(X), of item (3) in 23.19 and hence a direct
descendant of the corresponding notion for presheaves over a topological space.

25.11. Final and Initial Object. The final object in Lset is the L-set 1
of Example 25.5. If A is a L-set, the unique morphism from A to 1 is given by
a 7→ Ea. The final object in Lset is the empty L-set, written ∅. Recall that if L
has ⊥, then |∅| = {∗}, with E∗ = ⊥. 2

2Defined in 25.10.
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25.12. Products. Let A1, . . . , An be L-sets. Define a L-set,
∏n
i=1 Ai, by the

following rules :

∗ |
∏n
i=1 Ai| = {〈 a1, . . . , an 〉 ∈

∏n
i=1 |Ai| : Ea1 = Ea2 = . . . = Ean};

∗ [[x = y]] =
∧n
i=1 [[xi = yi]],

where x, y ∈ |
∏n
i=1Ai|. Note the distinction between the domain of the product

and the product of the domains. Moreover,
∏n
i=1 Ai is extensional if the same is

true of each coordinate. There are natural morphisms of L-sets

πi :
∏n
i=1 Ai −→ Ai, πi(a) = ai,

the projections to the ith coordinate. The family

〈
∏n
i=1 Ai, {πi : 1 ≤ i ≤ n} 〉

is the product of the Ai in the category Lset. If L is complete lattice, an analogous
construction shows that Lset has all products. As usual in any category, the
empty product is the final object 1. 2

Before going on to describe some of the other standard constructions in the
category Lset, we set down a vector notation for L-sets, complementing the con-
ventions set down in 1.4.

25.13. Notation. Let L be a semilattice and let A1, . . . , An be L-sets. Write
x = 〈x1, . . . , xn 〉 for an element of

∏n
i=1 |Ai|. For x, y ∈

∏n
i=1 |Ai|, define

∗ Ex =
∧n
i=1 Exi; ∗ [[x = y]] =

∧n
i=1 [[xi = yi]].

If L is complete, this notation applies to any family of L-sets. 2

Lemma 25.14. a) If A1, . . . , An are L-sets and a, b, c ∈
∏n
i=1 Ai, then

(1) [[a = b]] ≤ Ea ∧ Eb; (2) [[a = b]] ∧ [[b = c]] ≤ [[a = c]].

If L is a complete lattice, the above laws hold for any family of L-sets.

b) Let A
f−→ B

g−→ C be morphisms of L-sets with h = g ◦ f . If L is a complete
lattice, then for all sets I, a ∈ |A|I and c ∈ |C|I ,

[[ha = c]] =
∨
b∈|B|I [[fa = b]] ∧ [[gb = c]].

Proof. Item (a) is a straightforward consequence that meets − even infini-
tary −, are associative (Lemma 7.7).

b) Fix a ∈ |A|I and c ∈ |C|I ; since g is a morphism, for each b ∈ |B|I and i ∈ I,
we have

[[fai = bi]] ≤ [[gfai = gbi]] = [[hai = gbi]],

and so, taking meets over i ∈ I yields [[fa = b]] ≤ [[ha = gb]]. Thus, if b ∈ |B|I

[[fa = b]] ∧ [[gb = c]] ≤ [[ha = gb]] ∧ [[gb = c]] ≤ [[ha = c]],

wherefrom it follows that∨
b∈|B|I [[fa = b]] ∧ [[gb = c]] ≤ [[ha = c]].

On the other hand, if we take b = f(a) then∨
b∈|B|I [[fa = b]] ∧ [[gb = c]] ≥ [[fa = fa]] ∧ [[gfa = c]]. (1)

Since g is a morphism, one has
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[[fa = fa]] = Efa = Egfa = Eha.

Thus, item (a) yields

[[fa = fa]] ∧ [[gfa = c]] = Eha ∧ [[ha = c]] = [[ha = c]],

and (1) implies the desired equality. �

Recall (25.1) that the support of a L-set A is EA =
∨
a∈|A| Ea, whenever

this join exists in L. The next result discusses the support of non-empty powers
and products 3.

Lemma 25.15. Let L be a complete lattice.

a) A is a L-set and I 6= ∅ is a set, then

EA = EAI =
∨
a∈|A|I Ea.

b) If Ai, i ∈ I, are L-sets, then

(1) E(Πi∈I Ai) ≤
∨
c∈Π|Ai| Ec ≤

∧
i∈I EAi.

(2) If L is a frame and I is finite, then∨
c∈Π|Ai| Ec =

∧
i∈I EAi.

Proof. a) The diagonal morphism, ∆ : A −→ AI , ∆(a) = â 4 and 25.36
entail EA ≤ EAI . Since |AI | ⊆ |A|I , it suffices to check that

∨
a∈|A|I Ea ≤ EA.

But this is clear, because for a ∈
∏
i∈I |Ai| we have, for some fixed k ∈ I,

Ea =
∧
i∈I Eai ≤ Eak ≤ EA,

as needed.

b) The inequality in (1) is clear, recalling that |
∏
i∈I Ai| ⊆

∏
i∈I |Ai|. If I is finite

and L is a frame, distributivity of joins over finite meets (8.4) yields, with∧
i∈I EAi =

∧
i∈I

∨
ai∈|Ai| Eai =

∨
a∈Π|Ai|

∧
i∈I Eai

=
∨
a∈Π|Ai| Ea.

ending the proof. �

Remark 25.16. The reader will easily find examples of Ω-sets A, B such that
|A × B| = {∗} 5, but EA ∧ EB 6= ⊥. Hence, the equality between the support of
a product and the meet of the supports of its components is false for Ω-sets, even
for finite products. For Ω-presheaves, the relation holds for finite products (see
26.13); however, even for presheaves, it is false for arbitrary products, as shown in
26.14. The same example shows that the equality (2) in 25.15.(b) is also false for
infinite products. 2

25.17. Fibered product over a map. Let f : A −→ B be a morphism in
Lset. Define a L-set A×f A by the rules :

∗ |A×f A| = {〈x, y 〉 ∈ A × A : fx = fy}
= {〈 t, z 〉 ∈ |A| × |A| : Ex = Et and ft = fz};

∗ Equality is that induced by A × A.

3The support of the empty product, 1, is >.
4The constant I-sequence with entries a.
5∗ is the unique section over ⊥ as in 25.1.
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A ×f A is extensional, whenever A is extensional. There are natural morphisms,
ρ1, ρ2 : A ×f A −→ A, given by the restrictions of the coordinate projections of
A × A. Clearly, f ◦ ρ1 = f ◦ ρ2.

The triple 〈A×f A, ρ1, ρ2 〉 is the fibered product of A over the morphism f ;
it is characterized by the fact that the following diagram is a pull-back :

A

A×f A

?

- A

ρ2

ρ1

B

f

f

?
-

2

25.18. Equalizers. Let f , g : A −→ B be a pair of morphisms in L-sets.
Define a L-set Eq(f, g), by the rules :

∗ |Eq(f, g)| = {a ∈ A : fa = ga}; ∗ Equality is that induced by A.

There is a natural morphism, Eq(f, g)
ι−→ A, whose carrier is the inclusion of

|Eq(f, g)| into |A|. The pair 〈Eq(f, g), ι 〉 is the equalizer of 〈 f, g 〉 in Lset. 2

25.19. Coproducts. Let Ai, i ∈ I, be a family of L-sets and assume that L
has ⊥. Define a L-set,

∐
i∈I Ai, by

∗ |
∐
i∈I Ai| =

⋃
i∈I |Ai| × {i};

∗ [[〈x, i 〉 = 〈 y, j 〉]] =

{
[[x = y]] if i = j

⊥ if i 6= j.

For each i ∈ I, the map Ai
αi−→

∐
i∈I Ai, whose carrier is a 7→ 〈 a, i 〉, is a L-set

morphism. The family 〈
∐
i∈I Ai, {αi : i ∈ I} 〉 is the coproduct of the Ai in

Lset. It is straightforward that the empty coproduct is the initial object ∅. 2

From 25.12, 25.18, 25.11 and Theorem 16.31, we get

Corollary 25.20. The category Lset is finitely complete. If L is a complete
lattice, then Lset is complete.

We now to the description of monics and epics n Lset.

Lemma 25.21. For a morphism in Lset, A
f−→ B, consider the conditions :

(1) f is monic in Lset; (2) f is an injection of |A| into |B|;
(3) For all x, y ∈ |A|, [[x = y]]A = [[fx = fy]]B.

Then, (1) ⇔ (2). If A is extensional, then (3) ⇒ (2) (and (1)).

Proof. Clearly, (2) ⇒ (1). For the converse, we use 25.17; if f is monic,
then ρ1 = ρ2. Hence, if x, y ∈ |A| satisfy fx = fy, we have Ex = Ey and
〈x, y 〉 ∈ |A×f A|. Consequently,
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x = ρ1(〈x, y 〉) = ρ2(〈x, y 〉) = y,

showing that f is an injection. To complete the proof, it is enough to verify that
(3) implies (2), when A is extensional. If x, y ∈ |A| are such that fx = fy, then,

[[x = y]] = [[fx = fy]] = Efx = Efy = Ex = Ey,

and extensionality yields x = y, as needed. �

By Lemma 25.21, the notion of subobject in Lset is just subset of the
domain, with the induced equality. Hence, the construction described right
after 25.1, written, A ⊆ B, yields all sub L-sets of B.

The L-set morphism verifying (3) in 25.21 deserve a special name :

Definition 25.22. A L-set morphism A
f−→ B is a regular monic if for

all x, y ∈ |A| [[fx = fy]]B = [[x = y]]A.

Lemma 25.23. If f : A −→ B is a morphism of L-sets, the following are
equivalent :

(1) f is an isomorphism, i.e., there is a morphism g : B −→ A, such that
g ◦ f = IdA and f ◦ g = IdB.

(2) f is bijective and a regular monic (25.22).

If A is extensional, these conditions are equivalent to

(3) f is surjective and a regular monic.

Proof. (1) ⇒ (2) : It is enough to check that [[fx = fy]]B ≤ [[x = y]]A. Since
g ◦ f = IdA, the needed inequality amounts to

[[gfx = gfy]]A ≥ [[fx = fy]]B ,

that is a consequence of g being a morphism.

(2) ⇒ (1) : Let g be the (set-theoretical) inverse of f ; thus, for all 〈 a, b 〉 ∈ |A| × |B|,
f a = b iff gb = a.

It is immediate that Egb = Eb, for all b ∈ |B|. If b = fa and b′ = fa′, then

[[b = b′]]B = [[fa = fa′]]B = [[a = a′]]A = [[gb = gb′]]A,

verifying that g is a morphism, as needed. To end the proof, just note that, in case
A is extensional, 25.21 guarantees that a regular monic is injective. �

The description of epics appears in

Lemma 25.24. Let f : A −→ B be a morphism of L-sets. Assume that L is
a frame and consider the following conditions :

(1) f is epic in Lset; (2) ∀ b ∈ |B|, Eb =
∨
a∈|A| [[b = fa]].

Then, (1) ⇒ (2); if B is extensional, these conditions are equivalent.

Proof. (1) ⇒ (2) : Let L̃ be the L-set of 25.4. We construct two morphisms

h, k : B −→ L̃, as follows : for b ∈ |B|{
h(b) = 〈Eb,Eb 〉;
k(b) = 〈

∨
a∈|A| [[b = fa]], Eb 〉.
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Note that Ehb = Ekb = Eb; to see that k is indeed a morphism, it is enough to
show that [[b = b′]] ≤ [[kb = kb′]]

= Eb ∧ Eb′ ∧
(∨

a∈|A| [[b = fa]] ↔
∨
a∈|A| [[b′ = fa]]

)
,

or equivalently (6.10.(a)) that

[[b = b′]] ∧
∨
a∈|A| [[b = fa]] = [[b = b′]] ∧

∨
a∈|A| [[b = fa]]. (I)

Since L is a frame, we have

[[b = b′]] ∧
∨
a∈|A| [[b = fa]] =

∨
a∈|A| [[b = b′]] ∧ [[b = fa]]

≤
∨
a∈|A| [[b′ = fa]].

By symmetry, we obtain the equality in (I), as needed. The verification that h is
also a morphism is straightforward. Now observe that for all a ∈ |A|

k(fa) = 〈
∨
a′∈|A| [[fa = fa′]], Efa 〉 = 〈Efa,Efa 〉 = h(fa),

and so h ◦ f = k ◦ f . Since f is epic, we conclude that h = k, establishing the
equality in (2) for all b ∈ B.

(2) ⇒ (1) : Assume that B is extensional and let B -
-

h

k

C be morphisms,

such that f ◦ h = f ◦ k. For b ∈ |B|, the transitivity of equality ([= 2] in 25.1)
yields, with a ∈ |A|
[[hb = kb]] ≥ [[hb = hfa]] ∧ [[hfa = kb]] = [[hb = hfa]] ∧ [[kfa = kb]]

≥ [[b = fa]] ∧ [[fa = b]] = [[b = fa]]. (II)

Hence, taking joins over a ∈ |A| in (II) yields

[[hb = kb]] ≥
∨
a∈|A| [[b = fa]] = Eb,

and extensionality entails hb = kb, concluding the proof. �

The notions of compatibility and of “gluing” compatible families is at the heart
of sheaf theory. We shall discuss these notions in the context of L-sets, indicating
the need for L to satisfy a [∧,

∨
]- law (8.6) in order to have a smooth theory of

sheaves and presheaves.

Let A be L-set, with L a semilattice. How would we define compatibility of
sections in |A| ? Given x ∈ |A|, we think of Ex as the largest element of L where
x exists. Equality, is thought of as the largest element of L over which x and y
coincide. Thus, two sections x, y of A should be compatible if and only if the value
of their equality is the intersection of their extents. Hence,

Definition 25.25. A set of sections S ⊆ |A| in a L-set A is compatible iff
for all s, t ∈ S Es ∧ Et = [[s = t]].

Next, what would be the right concept of “gluing” ? We wish to find, given a
compatible S ⊆ |A|, a section t ∈ |A| that “extends” all s ∈ S. Consequently, t
must have extent, at least

∨
s∈S Es; in particular, we must assume that this sup

exists in L. Secondly, it is expected that in each Es, t and s coincide. Since there
is no information about t outside

∨
s∈S Es, we are led to require that t satisfy
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[gl >]

{
(i) Et =

∨
s∈S Es

(ii) For all s ∈ S, Es = [[t = s]].

Note that if t and t′ satisfy (i) and (ii) in [gl >], then, for s ∈ S,

[[t = t′]] ≥ [[t = s]] ∧ [[t′ = s]] = Es ∧ Es = Es,

and so [[t = t′]] ≥
∨
s∈S Es = Et = Et′. Hence, extensionality implies

uniqueness of a section satisfying [gl >]. All seems to be working fine, even in the
general context of semilattices. It is a different matter when we try to localize the
above reasoning.

Definition 25.26. Let L be a semilattice and p ∈ L. A set of sections S in
a L-set A is compatible over p iff for all s, t ∈ S,

p ∧ Es ∧ Es = p ∧ [[s = t]]. 6

If S is compatible over p ∈ L, one expects to be able to glue, uniquely, the
pieces of elements of S that lie over p. To each s ∈ S, there corresponds a piece
of s over p − which may not be in |A| −, but whose extent ought to be p ∧ Es.
Hence, by analogy with [gl >], if

∨
s∈S p ∧ Es exists in L, we are looking for t ∈

|A|, such that

[gl p]∗

{
(i) Et =

∨
s∈S p ∧ Es;

(ii) For all s ∈ S, p ∧ Es = p ∧ [[t = s]].

If t and t′ satisfy [gl p]∗, then, for s ∈ S,

[[t = t′]] ≥ [[t = s]] ∧ [[s = t′]] = p ∧ Es,
and so, [[t = ′t′]] ≥

∨
s∈S p ∧ Es = Et = Et′, and extensionality again

entails the desired uniqueness.

But there is another plausible alternative for the extent condition (i) in [gl p]∗:
Et = p ∧

∨
s∈S Es. After all, we have information to determine t in the inter-

section of p and
∨
s∈S Es, assuming, of course, that this join exists in L. Since L

does not necessarily satisfy the [∧,
∨

]-law of 8.6, we may have

p ∧
∨
s∈S Es >

∨
s∈S p ∧ Es,

with a (possibly) significant difference between these terms. Requiring that the
extent of the gluing be the largest it can be is coded by

[gl p]∗

{
(i) Et = p ∧

∨
s∈S Es;

(ii) For all s ∈ S, p ∧ Es = p ∧ [[t = s]].

Perhaps a fruitful analogy is with integration : condition [gl p]∗ yields a “lower
gluing”, while [gl p]∗ defines an “upper gluing” of S over p. In general, upper
gluings are not unique :

Example 25.27. Let L be the complete (non-distributive) lattice of Remark
5.2 :

6Thus, compatibility (25.25) corresponds to the case p = > in the present definition.
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Let |C| = {〈x, x 〉 : x ∈ L and x 6= x3} ∪ {〈 a, x3 〉, 〈 b, x3 〉}, where a and b are
distinct. For 〈α, p 〉, 〈β, q 〉 ∈ |C|,

[[〈α, p 〉 = 〈β, q 〉]] =

{
⊥ if p = q = x3 and α 6= β

p ∧ q otherwise

A straightforward (and tedious) computation shows that this is an extensional
equality on |C|, with which it becomes a L-set, C (compare with 25.5). If x 6= x3

in L, write x̂ for 〈x, x 〉. Note that Ex̂ = x, while E〈 a, x3 〉 = E〈 b, x3 〉 = x3.

Let S = {x̂1, x̂2}; S is compatible in C because

Ex̂1 ∧ Ex̂2 = ⊥ = [[x̂1 = x̂2]].

We have > = (Ex̂1 ∨ Ex̂2), and >̂ is the unique section in C that satisfies [gl >]
for S. Now, S is compatible over x3, because

x3 ∧ Ex̂1 ∧ Ex̂2 = ⊥ = x3 ∧ [[x̂1 = x̂2]].

Observe that (x3 ∧ x1) ∨ (x3 ∧ x2) = ⊥ and that ⊥̂ is the unique element of
|C| that satisfies [gl x3]∗ for S. On the other hand,

x3 ∧ (x2 ∨ x1) = x3,

and there are two distinct sections of extent x3, verifying [gl x3]∗ for S, namely
〈 a, x3 〉 and 〈 b, x3 〉. 2

If we wish to have gluings that satisfy maximum extent and uniqueness, we
are led to work in a context where [gl p]∗ and [gl p]∗ are equivalent. This happens
for p = >, because > is distributive in L, that is, an element q, verifying, for all
K ⊆ L,

q ∧
∨
K =

∨
k∈K q ∧ k,

with the convention that if
∨
K exists in L, so does

∨
k∈K q ∧ k, and they are

equal. Moreover, if we are interested in gluing only finite subsets of a L-set, then it
is enough that L be a distributive lattice. The route we shall take here is to define
gluings when the base algebra is a frame. Nevertheless, it is useful to develop
properties for general L-sets, even if sometimes it will be assumed that L is a
[∧,
∨

]-semilattice, that is,

Definition 25.28. A semilattice L is a [∧,
∨

]-semilattice if for all S ⊆ L
and x ∈ L,

x ∧
∨
S =

∨
s∈S x ∧ s,

with the usual convention that if one term of this equality exists in L, then so does
the other, and they are the same.

The following result gives a characterization of [∧,
∨

]-semilattices.
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Proposition 25.29. Let L be a semilattice with ⊥ and >. The following are
equivalent :

(1) L is a [∧,
∨

]-semilattice. (2) L can be regularly embedded in a frame.

Proof. The definition of regular embedding appears in 7.3. By 8.7, (2) im-
plies (1). For the converse, the reader can verify that Definition 14.1, as well
as the proofs of Lemma 14.2 and Theorem 14.4 apply, verbatim, to a [∧,

∨
]-

semilattice. �

The hypothesis of regular in 25.29.(2) cannot be omitted, for the complete
lattice L in 25.27 can be embedded, as a semilattice, into a complete Boolean
algebra.

By 8.7, HAs and BAs are [∧,
∨

]-semilattices; moreover, a complete [∧,
∨

]-
semilattice is a frame. Thus, there is enough variety in structure to sample impor-
tant constructions. We formally set down 7

Definition 25.30. Let A be an Ω-set, S ∪ {t} ⊆ |A| and p ∈ Ω. The section
t is a gluing of S over p if the following conditions are satisfied

[glu p]

{
(i) Et = p ∧

∨
s∈S Es;

(ii) For all s ∈ S, p ∧ Es = [[t = s]],

When p = >, t is a gluing of S in A.

The next result shows that equality of gluings is determined by the equality
of the pieces being glued.

Lemma 25.31. Let A be a Ω-set and x, y be sections in A, that are gluings
over p ∈ Ω of S, T ⊆ |A|, respectively. Then,

p ∧ [[x = y]] = p ∧
∨
〈s,t〉∈S×T [[s = t]].

Proof. We shall treat the case in which p = >, leaving the straightforward
generalization to the reader. By 25.30, we have

(i) Ex =
∨
s∈S Es;

(ii) ∀ s ∈ S, Es = [[x = s]];

(iii) Ey =
∨
t∈t Et;

(iv) ∀ t ∈ t, Et = [[y = t]];
(*)

The equations in (*), the distributive law in 8.4 and Exercise 25.35 yield

[[x = y]] = [[x = y]] ∧ Ex ∧ Ey = [[x = y]] ∧
∨
s∈S Es ∧

∨
t∈T Et

=
∨
〈s,t〉∈S×T [[x = y]] ∧ Es ∧ Et

=
∨
〈s,t〉∈S×T [[x = y]] ∧ [[x = s]] ∧ [[y = t]]

=
∨
〈s,t〉∈S×T [[s = t]] ∧ [[x = s]] ∧ [[y = t]]

=
∨
〈s,t〉∈S×T [[s = t]] ∧ Es ∧ Et

=
∨
〈s,t〉∈S×T [[s = t]],

as desired. �

Another concept that can be conveniently treated when the base is a frame is
denseness.

7Recall our standing convention that L is a semilattice, H is a HA and Ω a frame.
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Definition 25.32. Let A be a Ω-set and S, T ⊆ |A|.

a) S is dense in T if for all t ∈ T , Et =
∨
s∈S [[s = t]].

b) The density of A, d(A), is the least cardinal γ such that there is dense subset
of A of cardinal γ. A is separable if d(A) is at most countable.

Lemma 25.33. Let A be a Ω-set and D be a dense set of sections in A. Let
B be an extensional Ω-set.

a) The relation of being dense is transitive.

b) If a, b ∈ |A|, then [[a = b]] =
∨
d,d′∈D [[d = d′]] ∧ [[a = d]] ∧ [[b = d′]].

c) If f , g : A −→ B are morphisms of Ω-sets, then f|D = g|D ⇒ f = g.

c) A morphism A
f−→ B is epic iff f(A) is dense in B.

Proof. a) If S is dense in T , T is dense in X and x ∈ X, then

Ex =
∨
t∈T [[x = t]] =

∨
t∈T [[x = t]] ∧ Et

=
∨
t∈T [[x = t]] ∧

(∨
s∈S [[t = s]]

)
=

∨
s∈S

∨
t∈T [[x = t]] ∧ [[t = s]]

≤
∨
s∈S [[x = s]] ≤ Ex,

establishing that S is dense in X.

b) As in the proof of 25.31, if a, b ∈ |A|, then 25.35 yields

[[a = b]] = [[a = b]] ∧ Ea ∧ Eb
= [[a = b]] ∧

∨
d∈D [[a = d]] ∧

∨
d′∈D [[b = d′]]

=
∨
d,d′∈D [[a = b]] ∧ [[a = d]] ∧ [[b = d′]]

=
∨
d,d′∈D [[d = d′]] ∧ [[a = d]] ∧ [[b = d′]],

as needed.

c) For a ∈ A and d ∈ D, we have

[[fa = ga]] ≥ [[fa = fd]] ∧ [[fd = ga]] = [[fa = fd]] ∧ [[gd = ga]]

≥ [[a = d]],

and so taking joins over d ∈ D, we arrive at [[fa = ga]] ≥ Ea. Since B is exten-
sional, we conclude that fa = ga, as desired. Item (c) is just a rephrasing of the
equivalence in 25.24. �

We end this section with the concept of finite completeness.

Definition 25.34. Let L be a distributive lattice. A L-set A is finitely com-
plete (fc) if for all p ∈ L and S ⊆f |A|, if S is compatible over p, then there is
a unique t ∈ |A| such that

Et = p ∧
∨
s∈S E s and p ∧ Es = [[t = s]], ∀ s ∈ S.
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Exercises

25.35. If A is a L-set and a, b, x, y ∈ |A|, then the following exchange rules
hold true :

a) [[a = b]] ∧ [[a = x]] ∧ [[b = y]] = [[x = y]] ∧ [[a = x]] ∧ [[b = y]].

b) [[x = b]] ∧ [[x = a]] = [[a = b]] ∧ [[x = a]]. 2

25.36. If A, B are L-sets such that EA, EB ∈ L (25.1) and there is a morphism
from A to B, then EA ≤ EB. 2

25.37. If L is a semilattice, p ∈ L and I is a finite set,

(1|p)
I ≈ 1|p.

The same is true for any set I whenever L is complete. 2

25.38. Let A, B be Ω-sets, S ⊆ |A| and p ∈ Ω. Let f : A −→ B be a
morphism of Ω-sets.

a) If S has a gluing over p, then S is compatible over p.

b) If A is extensional, then gluings are unique (whenever they exist).

c) If S is compatible over p in A, then f(S) = {fs : s ∈ S} is compatible over p
in B.

d) If t is a gluing of S over p in A, then ft is a gluing of f(S) over p in B. 2

25.39. a) H̃(>) is dense in H̃ (25.4).

b) Ǎ is dense in fA (25.8) and in A (25.9).

c) There are separable Ω-sets with domain of arbitrarily large cardinality. 2

25.40. a) fA is finitely complete.

b) If H is a HA, H̃ (25.4) is finitely complete.

c) Show that the categorical constructions discussed in this Chapter lead from
fc-sets to fc-sets.

d) Determine which of the Examples of this Chapter are finitely complete. 2
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CHAPTER 26

Presheaves over a Semilattice

As was the case with L-sets, the definition of a presheaf over a semilattice is
obtained by specifying [rest 1] through [rest 3] in 23.7.(a) as axioms :

Definition 26.1. Let L be a semilattice.

a) A presheaf P over L 1 is a set |P | (the domain of P ), together with maps

E : |P | −→ L (extent) and

{
| : |P | × L −→ |P |

〈 a, p 〉 7→ a|p
(restriction)

satisfying, for all a ∈ |P |, p, q ∈ L
[rest 1] : a|Ea = a; [rest 2] : Ea|p = Ea ∧ p;

[rest 3] : (a|p)|q = a|p∧q.

b) For q ∈ L, P (q) = {a ∈ |P | : Ea = q} is the set of sections of P over
q; an element of P (>) is called a global section of P .

Whenever L has ⊥, we assume that any presheaf over L has a unique section
over ⊥, written ∗ (as for L-sets).

c) For p ∈ L and S ⊆ |P |,
∗ ES =

∨
a∈A Ea is the support of S in P , whenever this join exists in L;

∗ S is compatible over p iff for all x, y ∈ S, x|p∧Ex∧Ey = y|p∧Ex∧Ey.

∗ S is compatible if x|Ex∧Ey = y|Ex∧Ey, for all x, y ∈ S.

d) If S ⊆ |P | and t ∈ |P |, t is a gluing of S in P if

Et =
∨
s∈S Es and t|Es = s, ∀ s ∈ S.

e) A presheaf P over L is extensional if for all x, y ∈ |P | and D ⊆ L

[ext] ∀ p ∈ D, x|p = y|p and Ex = Ey =
∨
D ⇒ x = y.

f) If P and Q are L-presheaves, a map f : |P | −→ |Q| is a morphism iff for all
x ∈ |P | and p ∈ L

[pmor 1] : Efx = Ex [pmor 2] : f(x|p) = (fx)|p.

Write pSh(L) for the category of L-presheaves and their morphisms.

1Or L-presheaf.

299
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As for L-sets (25.36), the support of the source of a morphism is less than or
equal to the support of its target.

By Proposition 23.7, every presheaf over a topological space X gives rise to
a Ω(X)-presheaf, with same domain and restriction, which is extensional iff the
original presheaf is extensional. Moreover, by 23.19, a morphism of presheaves over
X gives rise to a morphism of Ω(X)-presheaves. In fact, we have

Lemma 26.2. The categories pSh(X) and pSh(Ω(X)) are isomorphic,
the same being true of the corresponding extensional subcategories.

Proof. We only comment in how a Ω(X)-presheaf P gives rise to a presheaf
over X. If u ≤ v, the restriction map of P yields a map

pvu : P (u) −→ P (v), pvu(s) = s|v,
which satisfies puu = IdP (u) (by [rest 1]) and pvu ◦ pwv = pwu, if u ≤ v ≤ w
(by [rest 3]); that morphisms correspond bijectively follows from 23.19.(c). �

Because of 26.2, we shall not distinguish between the categories of Ω(X)-
presheaves and presheaves over X.

Exercise 26.23 collects some of basic properties of L-presheaves and their mor-
phisms, entirely analogous to the ones for presheaves over topological spaces. The
concept of [∧,

∨
]-semilattice is defined in 25.28.

Example 26.3. Let 2 = {⊥, >}; a 2-presheaf can be naturally identified
with its set of global sections; and morphisms identified with the induced map on
global sections. Hence, the categories pSh(2) and Set are naturally isomorphic
and Sheaf Theory can be considered as a generalization of Set Theory. 2

Example 26.4. Let A be a set and L a semilattice. We construct a L-presheaf,
also written A, as follows :

(i) |A| =
⋃
⊥6=p∈L A × {p} ∪ {〈 ∗,⊥〉}; (ii) E〈x, p 〉 = p;

(iii) 〈x, p 〉|q = 〈x, p ∧ q 〉.

A is the constant presheaf on L. If f : A −→ B is a map, f induces a morphism
of L-presheaves,

〈x, p 〉 7−→

{
〈 fx, p 〉 if p 6= ⊥
〈 ∗,⊥〉 if p = ⊥,

still indicated by f . It is straightforward that these definitions yield a functor from
Set to pSh(L), the constant presheaf functor. 2

Example 26.5. Let L ⊆ R be semilattices and let A be a R-presheaf. We
define a L-presheaf, A|L, the restriction of A to L, by the following rules :

i) |A|L| =
∐
p∈R A(p);

ii) Extent and restriction are those induced by A.

Note that for p, q ∈ L and x ∈ A(p), we have

x|q = x|p∧q ∈ A(p ∧ q) ⊆ |A|L|,
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and A|L is indeed a L-presheaf. Clearly, A|L is extensional whenever the same is

true of A. If L = p←, p ∈ R, write A|p for the restriction of A to p←. Note that

|A|p| = {x ∈ |A| : Ex ≤ p},
as was the case for L-sets in 25.3. There is a natural injection

rA : A|L −→ A, given by x ∈ |A|L| 7−→ x ∈ |A|,
such that for all p ∈ L and x ∈ |A|L|, rA(x|p) = (rAx)|p. 2

Before giving more examples, we establish a connection between L-presheaves
and L-sets, starting with the following

Definition 26.6. Let L be a semilattice and let A be a L-set which is also a
L-presheaf. The equality and restriction in A are compatible if for all x, y ∈ |A|
and all p, q ∈ L

(i) Ex = [[x = x]]; (ii) [[x|p = y|q]] = p ∧ q ∧ [[x = y]],

where in (i), Ex is the extent map that comes with the L-presheaf structure of A.

Lemma 26.7. Let L be a semilattice and let A be a L-presheaf with a compatible
structure of L-set.

a) For x ∈ |A| and p ∈ L, Ex|p = [[x|p = x]] = p ∧ Ex. If A is an extensional

L-set, then x|p is the unique element t ∈ |A| satisfying Et = [[t = x]] = p ∧ Ex.

b) If A is an extensional L-set, then A is an extensional presheaf.

c) Let B be an extensional L-set with a compatible structure of L-presheaf. Then
every L-set morphism from A to B is a presheaf morphism.

Proof. a) The definition of L-presheaf entails Ex|p = p ∧ Ex; on the other

hand, (i) and (ii) in 26.6 yield [[x|p = x]] = p ∧ Ex, as desired. The remaining

statement is clear.

b) Suppose x, y ∈ |A| and there is D ⊆ L such that
∨
D = Ex = Ey and x|p = y|p,

for all p ∈ D. Transitivity of equality and (a) yield, for p ∈ D,

[[x = y]] ≥ [[x = x|p]] ∧ [[x|p = y]] = p ∧ Ex ∧ [[y|p = y]]

= p ∧ Ex ∧ Ey = p,

and so [[x = y]] ≥
∨
D = Ex = Ey. Hence, extensionality entails x = y, as needed.

c) It must be shown that if x ∈ |A| and p ∈ L, then f(x|p) = (fx)|p. Since f is a

morphism, item (a) yields ∗ Ef(x|p) = Ex|p = p ∧ Ex = E(fx)|p;

∗ p ∧ Ex = [[x|p = x]] ≤ [[f(x|p) = fx]] ≤ Ef(x|p) = p ∧ Ex,

and the extensionality of B implies f(x|p) = (fx)|p, as desired. �

The next result guarantees a large supply of presheaves with a compatible
equality.
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Theorem 26.8. Let P be a presheaf over a subsemilattice L of a frame Ω.
For x, y ∈ |P |, set

[equ] [[x = y]] =
∨
{p ∈ L : p ≤ Ex ∧ Ey and x|p = y|p},

where this join is computed in Ω. Then, for x, y ∈ |A| and p, q ∈ L
a) [[x = y]] is an equality in |P |, with which it becomes a Ω-set, called the Ω-
set associated to the presheaf P , still indicated by P . Furthermore, P is an
extensional Ω-set iff P is an extensional presheaf over L.

b) [[x|p = y|q]] = p ∧ q ∧ [[x = y]].

c) Ex|p = [[x|p = x]] = p ∧ Ex. If P is extensional, x|p is the unique t in

|P | such that Et = [[t = x]] = p ∧ Ex.

d) If P is extensional, then

(1) x|p = y|p iff p ≤ (Ex ∨ Ey) → [[x = y]] 2.

(2) If p ≤ Ex ∧ Ey, then x|p = y|p iff p ≤ [[x = y]].

(3) If [[x = y]] ∈ L, then x|[[x=y]]
= y|[[x=y]]

.

e) Let P and Q be presheaves over L and let f : |P | −→ |Q| be a map. Consider
the following conditions :

(1) f is a presheaf morphism. (2) f is a Ω-set morphism.

Then, (1) ⇒ (2) and they are equivalent if Q is extensional.

Proof. Throughout the proof, write

Exy = {p ∈ L : p ≤ Ex ∧ Ey and x|p = y|p},
where x, y ∈ |P |. Hence, [[x = y]] =

∨
Exy. For q ∈ L, let

q ∧ Exy = {q ∧ p : p ∈ Exy}.
a) It is clear that [[x = x]] = Ex and that [[x = y]] = [[y = x]]. For transitivity, if
p ∈ Exy and q ∈ Eyz, note that (p ∧ q) ≤ Ex ∧ Ez and

x|p∧q = (x|p)|q = (y|p)|q = y|p∧q,
that is, p ∧ q ∈ Exz. Hence,

{p ∧ q : p ∈ Exy and q ∈ Eyz} ⊆ Exz. (*)

Now, (*) and 8.4 immediately imply [[x = y]] ∧ [[y = z]] ≤ [[x = z]], as desired. It
is straightforward that P is an extensional Ω-set iff it is an extensional L-presheaf.

b) Write s = x|p and t = y|q; since Es = p ∧ Ex and Et = q ∧ Ey, if r ∈ Est,
then {

Er ≤ p ∧ q ∧ Ex ∧ Ey and

x|r = x|p∧r = (x|p)|r = s|r = t|r = (y|q)|r = y|q∧r = y|r,
wherefrom we conclude that r ∈ Exy. Consequently,

[[x|p = y|q]] ≤ p ∧ q ∧ [[x = y]].

2∨ and → are join and implication in Ω.
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To prove the reverse inequality, it is enough to verify, because Ω is a frame, that
if u ∈ Exy, then p ∧ q ∧ u ∈ Est. We have,

s|p∧q∧u = (x|p)|p∧q∧u = x|p∧q∧u = (x|u)|p∧q = (y|u)|p∧q = y|p∧q∧u
= (y|q)|p∧q∧u = t|p∧q∧u,

completing the proof of (b); item (c) follows from (b), as in 26.7.(a).

d) Suppose that p ≤ (Ex ∨ Ey) → [[x = y]], that is (by [→] in 6.1)

p ∧ (Ex ∨ Ey) ≤ [[x = y]] ≤ Ex ∧ Ey.

The above inequalities entail p ∧ Ex = p ∧ Ey = p ∧ Ex ∧ Ey and hence,

p ∧ Ex = Ex|p = p ∧ Ey = Ey|p = p ∧ [[x = y]].

Consider the set D = p ∧ Exy; Ω being a frame, we have∨
D = p ∧

∨
Exy = p ∧ [[x = y]] = p ∧ Ex = p ∧ Ey.

Since L is a subsemilattice of Ω, p ∧ Exy ⊆ L and p ∧ Ex ∈ L, it follows that
∨
D

exists in L and is equal to p ∧ Ex = p ∧ Ey. Because x|q = y|q, for all q ∈ Exy,

it follows that for all r = (p ∧ q) in D, we have

x|r = x|p∧q = (x|q)|p = (y|q)|p = y|p∧q = y|r,
and extensionality implies x|p = y|p. Conversely, suppose that x|p = y|p. By item

(b),

Ex|p = p ∧ Ex = p ∧ Ey = Ey|p = [[x|p = y|p]] = p ∧ [[x = y]].

Hence, p ∧ (Ex ∨ Ey) = p ∧ Ex = p ∧ [[x = y]] ≤ [[x = y]], as needed. Items
(2) and (3) in (d) follow straightforwardly from what has already been proven.

e) Let f : |P | −→ |Q| be a map and assume that f is the carrier of a presheaf
morphism. For x, y ∈ |P |, if p ∈ Exy, [pmor 2] implies that p ∈ Efx,fy; hence,
[[x = y]] ≤ [[fx = fy]]. Since extent is the same for a presheaf over L and for
the associated Ω-set, we conclude that f is the carrier of a morphism of Ω-sets.
The proof of the converse is analogous to that of 26.7.(c). �

Remark 26.9. If L is a subsemilattice of a frame and A is a L-presheaf, A will
always be considered as an Ω-set with the equality in 26.8 (the Ω-set associated
to A). In particular, every Ω-presheaf gives rise to a Ω-set, indicated by the same
symbol. Without explicit mention to the contrary, all L-set concepts used for a
L-presheaf A, refer to the equality in 26.8. 2

Example 26.10. All the examples in Chapter 25, except 25.3 and 25.6, can be
given a compatible structure of extensional presheaf, as follows (numbering refers
to the original example) :

25.4. For 〈 a, p 〉 ∈ |H̃| and q ∈ H, the rules

E〈 a, p 〉 = p and 〈 a, p 〉|q = 〈 a ∧ q, p ∧ q 〉,

make |H̃| a presheaf over H. Now suppose that 〈 a, p 〉 and 〈 b, p 〉 are sections in

H̃, such that there is pi ∈ H satisfying p =
∨
i∈I pi and

F. Miraglia. An Introduction to Partially Ordered Structures and Sheaves. Lógica no Avião.



Chapter 26. Presheaves over a Semilattice 304

〈 a, p 〉|pi
= 〈 a ∧ pi, p ∧ pi 〉 = 〈 b ∧ pi, p ∧ pi 〉.

Then, for all i ∈ I, a ∧ pi = b ∧ pi, that is, pi ≤ (a ↔ b). Hence, p ≤ (a ↔ b),

and so, a = a ∧ p = b ∧ p = b, showing that, as a presheaf, H̃ satisfies [ext].

25.5. For p, q ∈ L, set Ep = p and p|q = p ∧ q; extensionality is clear.

25.7. Let R be a commutative regular ring and let B(R) the BA of idempotents
in R. For 〈 a, e 〉 ∈ |cR| and f ∈ B(R), set

E〈 a, e 〉 = e and 〈 a, e 〉|f = 〈 af, ef 〉.

Then, R is a B(R)-presheaf. To see that it is extensional, assume that 〈 a, e 〉,
〈 b, e 〉 ∈ |R| are such that there are fi ∈ B(R), with∨

i∈I fi = e and fi(a− b) = 0, for all i ∈ I.

It follows from (I) in 25.7, that eabfi = 0, for all i ∈ I. Since B(R) is a Boolean
algebra, it is a [∧,

∨
]-lattice (8.7) and so,

eabe = eab ∧
∨
i∈I fi =

∨
i∈I eabfi = 0.

But then, again by (I) in 25.7, we get

a− b = eab(a− b) = eab(ae− be) = eabe(a− b) = 0,

as needed to show that R is an extensional presheaf.

25.8. For s ∈ |fA| and p ∈ L, set Es =
∨
a∈A s(a). Now define

s|p : A −→ L by s|p(a) = p ∧ s(a).

It is clear that spt(s|p) ⊆ spt(s), being therefore finite in A. These definitions make

fA into an extensional L-presheaf. The proof of extensionality is essentially the
same as that given in 25.8. The same technique will show that the constant Ω-set
A is a Ω-presheaf.

25.27. Recall that |A| = {x̂1, x̂2, >̂, ⊥̂, 〈 a, x3 〉, 〈 b, x3 〉}. Define

∗ Ex̂ = x, if x 6= x3, and E〈 a, x3 〉 = E〈 b, x3 〉 = x3;

∗ 〈α, p 〉|q =


〈α, p 〉 if p ≤ q

⊥̂ if p ∧ q = ⊥
x̂ if α = p = > and q 6= x3

〈 a, x3 〉 if α = p = > and q = x3,

yielding extent and restriction that verify the conditions in 26.1. Since > is the only
element of L with a non-trivial cover, and A(>) is a singleton, A is extensional. 2

To describe some of the usual categorical constructions in pSh(L), we intro-
duce a vector notation, complementing 25.13 :

26.11. Notation. Let A1, . . . , An be L-presheaves. If x ∈
∏n
i=1 |Ai| and

p ∈ L, set

∗ Ex =
∧n
i=1 Exi; ∗ x|p = 〈xi|p 〉.

If L is complete, this notation applies to any family of presheaves over L. 2
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26.12. Products. Let Ai, i ∈ I, be L-presheaves. Let

|
∏
i∈I Ai| = {x ∈

∏
i∈I |Ai| : ∀ i, j ∈ I, Exi = Exj}.

Define extent and restriction in
∏
i∈I Ai by

x 7−→ Ex and 〈x, p 〉 7−→ x|p,
where p ∈ L. Then,

∏
i∈I Ai is a L-presheaf, which is extensional iff the same is

true of each coordinate. There are maps

πi :
∏
i∈I Ai −→ Ai, πi(x) = xi,

which are morphisms of presheaves, called the projections on the ith coordinate.
The family 〈

∏
i∈IAi, {πi : i ∈ I} 〉 is the product of the Ai in pSh(L). 2

Lemma 26.13. If A1, . . . , An are Ω-presheaves then

E(Πn
i=1 An) =

∨
a∈Π|Ai| Ea =

∧n
i=1 EAi.

Proof. The second equality follows from 25.15.(b).(2). Set P =
∏
i∈I Ai.

Note that for a ∈
∏
i∈I |Ai|, 26.8.(c) yields

Ea = Ea|Ea and a|Ea ∈ |P |.
Thus, EP ≥

∨
a∈Π|Ai| Ea, and so equality follows from (1) and (2) in 25.15.(b). �

Example 26.14. We shall construct a sequence An of presheaves, such that

EAn = > but E
(∏

n≥1 An

)
= ⊥. Let B be the BA of clopens in the Cantor space

2N. As in Chapter 18, for n ≥ 1 and s ∈ 2n, Vs = {t ∈ 2N : t|n = s}. Moreover,

for each n ≥ 1,
⋃
s∈2n Vs = 2N, the top of the BA B. Let A be any B-presheaf

with EA = > = 2N. Define, for n ≥ 1

An =
∐
s∈2n A|Vs ,

with restriction as in 26.5. It is straightforward that EAn = 2N, for all n ≥ 1. On
the other hand, the domain of the product of the An contains only the section over
⊥ = ∅, because the intersection of any infinite collection of the Vs is the bottom
element of B. Thus, in this case∧

n≥1 EAn = > = 2N and E
(∏

n≥1 An

)
= ⊥ = ∅,

as asserted. If a ∈
∏
n≥1 |An|, Ea = ⊥, and so

∨
a∈Π|An| Ea = ⊥, showing

that the equality in 25.15.(b).(2) may fail. 2

26.15. Fibered product over a map. Let f : A −→ B be a morphism in
pSh(L). Define a L-presheaf A×f A by the rules :

∗ |A×f A| = {〈x, y 〉 ∈ A × A : fx = fy}
= {〈 t, z 〉 ∈ |A| × |A| : Ex = Et and ft = fz};

∗ Extent and restriction are induced by A × A.

A ×f A inherits extensionality from A. There are natural morphisms,
ρ1, ρ2 : A×f A −→ A, the restrictions of the coordinate projections of A × A
to A×f A. The triple 〈A×f A, ρ1, ρ2 〉 is the fibered product of A over f ; as
noted in 25.17, it is a pull-back in pSh(L) and f ◦ ρ1 = f ◦ ρ2. 2
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The next result should be compared with 25.23.

Lemma 26.16. If f : A −→ B is a morphism of L-presheaves, the following
are equivalent :

(1) f is an isomorphism, i.e., there is a morphism, g : B −→ A, such
that f ◦ g = IdB and g ◦ f = IdA;

(2) f is bijective.

Proof. It is enough to check that (2) ⇒ (1). Let g be the (set-theoretical)
inverse of f . Since

∀ 〈 a, b 〉 ∈ |A| × |B|, fa = b iff gb = a,

it is clear that Egb = Eb, ∀ b ∈ |B|. To show that g is a morphism of presheaves,
let b ∈ |B| and p ∈ L; then f((gx)|p) = fg(x)|p = x|p, and so (gx)|p = g(x|p), as

needed. �

Lemma 26.17. Let A
f−→ B be a morphism in pSh(L).

a) The following are equivalent :

(1) f is monic in pSh(L); (2) f is injective from |A| into |B|.
b) If A has a compatible structure of L-set (26.6), with which it is extensional,
then the conditions in (a) are equivalent to

(3) f is a regular monic (25.22).

Proof. The proof that (1) and (2) in (a) are equivalent is the same as in
25.21. The latter result and 26.8.(f) also yield (3)⇒ (1) and (2). For the converse,
note that if x, y ∈ |A|, then 26.8.(d).(3) entails

f(x|[[fx=fy]]
) = fx|[[fx=fy]]

= fy|[[fx=fy]]
= f(y|[[fx=fy]]

),

and so x|[[fx=fy]]
= y|[[fx=fy]]

. Hence, [[fx = fy]] = [[x = y]], as needed. �

Lemma 26.17 allows the following conclusions :

∗ For presheaves over Ω, a morphism is monic iff it is a regular monic;

∗ The notion of subobject in pSh(L) coincides with subset of the domain,
with induced restriction and extent. Write A ⊆ B if A is a subpresheaf of B.

26.18. Initial and Final object. The final object in pSh(L) is the presheaf
version of 1 in 25.5, described in 26.10. The initial object pSh(L) is the presheaf
corresponding to the empty L-set. 2

26.19. Equalizers. Let f , g : A −→ B be morphisms of presheaves. Define a
presheaf Eq(f, g), by setting

∗ |Eq(f, g)| = {x ∈ |A| : fx = gx};
∗ Extent and restriction are those induced by A.

There is a natural morphism, Eq(f, g)
ι−→ A, whose carrier is the canonical inclu-

sion. The pair 〈Eq(f, g), ι 〉 is the equalizer of 〈 f, g 〉 in pSh(L). Observe that if
A is extensional, so is Eq(f, g). 2
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26.20. Coproducts. Let Ai, i ∈ I, be a family of presheaves over L. Define
a L-presheaf

∐
i∈I Ai, by

∗ |
∐
i∈I Ai| =

⋃
i∈I |Ai| × {i}; ∗ E〈 a, i 〉 = Ea;

∗ 〈 a, i 〉|p = 〈 a|p, i 〉.

There are presheaf morphisms, a ∈Ai
αi7−→ 〈 a, i 〉, making 〈

∐
i∈I Ai, {αi : i ∈ I} 〉

the coproduct of the Ai in pSh(L). Note that the coproduct preserves extension-
ality. It is also clear that if L is complete, then

E
(∐

i∈I Ai
)

=
∨
i∈I EAi,

that is the support (26.1) of the coproduct is the join of the supports of the
component presheaves. 2

The notion of restriction density in Exercise 26.28.(d) allows extension of mor-
phisms, as follows :

Lemma 26.21. Let A be a L-presheaf and B a restriction dense subset of |A|.
Let C be a L-presheaf and B

f−→ |C| be a map such that for x, y ∈ B and p ∈ L
Efx = Ex and x|p = y|p ⇒ (fx)|p = (fy)|p.

Then, f has a unique extension to a presheaf morphism, f̃ : A −→C.

Proof. If a = b|Ea, set f̃(a) = (fb)|Ea. �

An important distinction between presheaves and general Ω-sets is that a dense
subset in each coordinate generates a dense subset of a finite product. The state-
ment and proof closely resemble that of 24.17.

Proposition 26.22. Let A1, . . . , An be Ω-presheaves and Di be dense subsets
of Ai, 1 ≤ i ≤ n. Then,

D = {d|Ed : d ∈
∏n
i=1 Di}

is dense in
∏n
i=1 Ai and for all x ∈

∏n
i=1 |Ai|, Ex =

∨
d∈

∏
Di

[[x = d]].

Proof. We prove only the last assertion; let A =
∏n
i=1 Ai. Since x|Ex ∈ |A|,

and Ex|Ex = Ex, the first part of the statement yields

Ex =
∨
c∈D [[x|Ex = c]] =

∨
d∈

∏
Di

[[x|Ex = d|Ed]]

=
∨
d∈

∏
Di

Ex ∧ Ed ∧ [[x = d]] =
∨
d∈

∏
Di

[[x = d]],

as needed. �
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Exercises

26.23. Let f : P −→ Q be a morphism of presheaves over a semilattice L.

a) If S ⊆ |P | and p ∈ L, let S|p = {s|p : s ∈ S}. Then, S is compatible over p iff

S|p is compatible 3.

b) If S ⊆ |P | has a gluing in P , then S is compatible.

c) If P is extensional and L is a [∧,
∨

]-semilattice, then gluings are unique (when-
ever they exist).

d) If t is a gluing of S in P and L is a [∧,
∨

]-semilattice, then t|p is a gluing of S|p
for all p ∈ L.

e) If S ⊆ |P | is compatible over p ∈ L, then f(S) = {fs : s ∈ S} is compatible
over p in Q.

f) If t is a gluing of S ⊆ |P | in P , then ft is a gluing of f(S) in Q. 2

26.24. A semilattice L may be considered as a category, whose objects are its
elements and whose arrows are given by

[x, y] =

{
∅ if x 6∈ y←

{〈x, y 〉} if x ≤ y.

The collection of contravariant functors from L to Set, with natural transforma-
tions as morphisms, is a category, pS(L). Then, there is a natural equivalence
between pS(L) and pSh(L). 2

26.25. With notation as in 26.5,

a) If C is a L-presheaf and |C| g−→ |A| is a map such that for 〈x, p 〉 ∈ |C| × L,

Egx = Ex and g(x|p) = (gx)|p,
then there is a unique morphism of L-presheaves, f : C −→ A|L, such that the

triangle below is commutative :

C - A|L

g rA

A

f

A
A
A
A
AU

�
�
�
�
��

A|L

A

?

- B

rA

f

B|L

rB

rf

?
-

b) If B is a R-presheaf and f : A −→ B is a morphism of R-presheaves, there is
a unique morphism of L-presheaves, rf : A|L −→ B|L such that the square above

is commutative.

c) Restriction is a covariant functor r : pSh(R) −→ pSh(L). 2

3Hence, for presheaves, local compatibility can be reduced to compatibility. This is not true
for L-sets (25.25, 25.26).
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The exercise that follows describes a way to extensionalize a presheaf, under
reasonable hypotheses on the base.

26.26. Let L be a [∧,
∨

]-semilattice and let A be a L-presheaf. Define a binary
relation Σ on |A| as follows :

s Σ t iff
Es = Et and ∃ α ⊆ L such that

∨
α = Es and

s|p = t|p, ∀ p ∈ α.

a) Σ is an equivalence relation in |A| and a congruence with respect to restriction,
i.e., for all s, t ∈ |A| and p ∈ L

s Σ t ⇒ s|p Σ t|p.
b) Let |Ae| = |A|/Σ = {se : s ∈ |A|} be the set of equivalence classes of |A| by Σ.
For s ∈ |A| and p ∈ L, define

Ese = Es and (se)|p = (s|p)e.
With this structure, Ae is an extensional L-presheaf, and s ∈ |A| 7−→ se ∈ |Ae| is
a morphism of L-presheaves, e : A −→ Ae, with the following universal property :

If A
f−→ B is a morphism of L-presheaves and B is extensional, there is a

unique morphism of L-presheaves, f̂ : Ae −→ B making the following diagram
commutative :

A - Ae

f f̂

B

e

A
A
A
A
AU

�
�
�
�
��

c) Extensionalization is a covariant functor from pSh(L) to the full subcategory
of extensional presheaves over L, left adjoint to the associated forgetful functor. 2

26.27. Let A be a presheaf over Ω, S ⊆ |A|, p ∈ Ω and t ∈ |A|. Then :

a) S is compatible over p in the presheaf sense (26.1.(c) iff it is compatible in the
Ω-set sense (25.26).

b) t is a gluing of S in the presheaf sense (26.1.(d)) iff it is a gluing of S in the
Ω-set sense (25.30). 2

26.28. Let A be a L-presheaf and D ⊆ |A|. D is ρ-dense in A iff for all
x ∈ |A|, there is {〈 di, pi 〉 ∈ D × L : i ∈ I} such that

(i) Ex =
∨
pi and (ii) ∀ i ∈ I, x|pi = (di)|pi .

Thus, D is ρ-dense in A if all sections in A are locally equal to restrictions of
sections in D.

a) If L is a frame, then D is ρ-dense in A iff D is dense in A 4.

4In the sense of 25.32.
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b) If L is a [∧,
∨

]-semilattice, ρ-denseness is transitive.

c) The constant L-presheaf C is ρ-dense in fC (25.8 in 26.10).

d) B ⊆ |A| is restriction dense if for all x ∈ |A|, there is b ∈ B with x = b|Ex.

Show that a restriction dense subset is ρ-dense in A.

e) A is flabby 5 if its set of global sections is restriction dense. If H is a HA, H̃
(25.4, 26.10) is a flabby presheaf over H. 2

26.29. Let L be a distributive lattice. A finitely complete L-set (25.34) has
a compatible structure of extensional presheaf over L (26.6). How are L-set and
presheaf morphisms related ? 2

5This type of presheaf is important in characterizing injectivity in categories of sheaves of mod-
ules; see Prop. 2.4.6, p. 98 in [37].
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CHAPTER 27

Sheaves and Complete Ω-sets

This chapter introduces the abstract version of sheaves. The discussion at the
end of Chapter 25 and Definition 23.8 lead to

Definition 27.1. Let Ω be a frame.

a) A Ω-set A is complete iff for all p ∈ Ω and S ⊆ |A|, if S is compatible over
p, then S has a unique gluing over p 1. A morphism of complete Ω-sets is a
morphism of the underlying Ω-sets.

b) A Ω-presheaf P is a sheaf if all compatible S ⊆ |P | can be uniquely glued in
P 2. A morphism of Ω-sheaves is a morphism of the underlying Ω-presheaves.

Clearly, complete Ω-sets and their morphism, as well as Ω-sheaves and their
morphisms, are categories.

Lemma 27.2. Complete Ω-sets and Ω-sheaves are extensional.

Proof. Let A be a complete Ω-set and s, t ∈ |A| satisfy Es = Et = [[s = t]].
Note that {s} is compatible over Es and that s satisfies (i) and (ii) in [glu Es]
(27.1). It is straightforward that t also satisfies [glu Es] for {s} and so uniqueness
entails s = t, as needed. The reasoning for Ω-sheaves is analogous. �

The concepts in 27.1 are equivalent :

Proposition 27.3. The categories of complete Ω-sets and of Ω-sheaves are
isomorphic.

Proof. Let A be a complete Ω-set. We must show that there are natural
extent and restriction maps in A, compatible with its equality (26.6), with which
it becomes a sheaf over Ω. For s ∈ |A|, set

Es = [[s = s]].

Now fix s ∈ |A| and p ∈ Ω. Since {s} is compatible over p, there is a unique t ∈ |A|
such that

Et = p ∧ Es = [[s = t]]. (*)

Define s|p = t; clearly, this restriction map satisfies [rest 2] in 26.1. Moreover,

∗ From (*) we get Es|Es = Es = [[s = s|Es]], and so extensionality (27.2)

entails s|Es = s, verifying [rest 1] in 26.1;

1Here compatibility is as in 25.26 and gluing as in 25.30.
2Here compatibility and gluing are as in 26.1, although 25.38 implies that it does not matter.
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∗ If p, q ∈ Ω, then

p ∧ q ∧ Es = Es|p∧q = q ∧ (p ∧ Es) = q ∧ Es|p = E(s|p)|q. (+)

The transitivity of equality and (*) yield

[[s|p∧q = (s|p)|q]] ≥ [[s|p∧q = s]] ∧ [[s = s|p]] ∧ [[s|p = (s|p)|q]]
= (p ∧ q ∧ Es) ∧ (p ∧ Es) ∧ (q ∧ Es|p)
= p ∧ q ∧ Es,

which, together with (+) and extensionality, entails s|p∧q = (s|p)|q, establishing

[rest 3] and showing that A is a Ω-presheaf.

Fact. For all s, t ∈ |A| and p, q ∈ Ω

a) [[s|p = t|q]]A = p ∧ q ∧ [[s = t]]A.

b) [[s = t]]A =
∨
{p ≤ Es ∧ Et : s|p = t|p}.

Proof. Here, [[∗ = ∗]]A is the original equality in A and not that defined in 26.8 3.
With that in mind, we omit A from the notation.

a) The transitive law of equality in A and (*) yield

[[s|p = t|q]] ≥ [[s|p = s]] ∧ [[s = t]] ∧ [[t = t|q]]
= p ∧ Es ∧ [[s = t]] ∧ q ∧ Et = p ∧ q ∧ [[s = t]]. (I)

On the other hand, we also have

[[s = t]] ≥ [[s = s|p]] ∧ [[s|p = t|q]] ∧ [[t = t|q]]
= Es|p ∧ [[s|p = t|q]] ∧ Et|q = [[s|p = t|q]]. (II)

It is clear that (I) and (II) imply the desired equality 4.

b) First note that extensionality and (*) yield s|[[s=t]] = t|[[s=t]]. Next, if s|p = t|p,
then

p ∧ Es = Es|p = Et|p = p ∧ Et = [[s|p = t|p]]
= p ∧ [[s = t]],

(++)

where the last equality comes from (a). If p ≤ Es ∧ Et, it follows from (++) that
p ≤ [[s = t]], completing the proof of the Fact.

By the Fact, the equality generated by the restriction on A, as in 26.8, is its
original equality. Hence,

∗ By 26.27, S ⊆ |A| is presheaf compatible iff it is Ω-set compatible; and presheaf
gluings correspond to Ω-set gluings. Hence, with the extent and restriction defined
above, A is a Ω-sheaf;

∗ By 26.8.(f), Ω-set morphisms correspond to presheaf morphism.

It is left to the reader to check that if A is a Ω-sheaf, then with the equality
defined in 26.8, A is a complete Ω-set. �

In view of Proposition 27.3, we set down

3That is exactly the crux of the matter.
4We have shown that (*) and the laws of equality entail 26.8.(b).
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Definition 27.4. If Ω is a frame, write Sh(Ω) for the isomorphic categories
of sheaves over Ω and complete Ω-sets.

Example 27.5. By 26.2 and 27.3, all sheaves over a topological space X are
examples of complete Ω(X)-sets. 2

Example 27.6. Let Ω be a frame and let A be a set. The constant Ω-set A
(25.9) is complete. To see this, let p ∈ Ω and suppose that S ⊆ |A| is compatible
over p. Thus, for s, t ∈ S

p ∧ Es ∧ Et = p ∧ [[s = t]], (I)

that is,

p ∧
∨
a,b∈A s(a) ∧ t(b) = p ∧

∨
a∈A s(a) ∧ t(a). (II)

Fact 1. For a 6= b in A, p ∧ s(a) ∧ t(b) = ⊥.

Proof. Relation (I) and the fact that the values of s and t in distinct points of A
are disjoint yields,

p ∧ s(a) ∧ t(b) = p ∧ s(a) ∧ t(b) ∧ Es ∧ Et
= p ∧ s(a) ∧ t(b) ∧ [[s = t]]

= p ∧ s(a) ∧ t(b) ∧
∨
c∈A s(c) ∧ t(c)

= p ∧ s(a) ∧ t(a) ∧ t(b) = ⊥,

as claimed. Define x : A −→ Ω as follows :

x(a) = p ∧
∨
s∈S s(a).

If a 6= b in A, then, Fact 1 entails

x(a) ∧ x(b) = p ∧
∨
s,t∈S s(a) ∧ t(b) = ⊥,

verifying that x ∈ |A|. Note that

Ex =
∨
a∈A x(a) =

∨
a∈A p ∧

∨
s∈S s(a) = p ∧

∨
s∈S Es.

Moreover, for s ∈ S,

p ∧ [[x = s]] = p ∧
∨
a∈A x(a) ∧ s(a)

= p ∧
∨
a∈A

(∨
t∈S t(a)

)
∧ s(a)

= p ∧
∨
a∈A s(a) = p ∧ Es,

verifying [glu p] in Definition 25.30. Since we already know that A is extensional,
the gluing of S over p is unique and A is a complete Ω-set. In particular, the final
object 1 and the initial object 0 (25.11) in Ωset are complete Ω-sets. 2

Example 27.7. If Ω is a frame, the Ω-set Ω̃ of 25.4 is complete. To see this,

let u ∈ Ω and suppose that S ⊆ |Ω̃| is a set of sections compatible over u. Hence,
for all 〈 a, p 〉, 〈 b, q 〉 ∈ S

u ∧ p ∧ q = u ∧ (a ↔ b) ∧ p ∧ q,
or equivalently, u ∧ p ∧ q ≤ (a ↔ b). Since a ≤ p and b ≤ q, 6.10.(a) yields

For all 〈 a, p 〉, 〈 b, q 〉 ∈ S, u ∧ q ∧ a = u ∧ p ∧ b. (I)

Define

x = u ∧
∨
〈a,p〉∈S a and w = u ∧

∨
〈a,p〉∈S p.

Clearly, x ≤ q. We shall verify that 〈x,w 〉 is the gluing of S over u, which will be

unique, because Ω̃ is extensional. Since the extent of 〈 a, p 〉 ∈ S is p, we have
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E〈x,w 〉 = w = u ∧
∨
s∈S Es.

verifying condition (i) for [glu u] in 25.30. Next, we must check that if 〈 a, p 〉 ∈ S,

u ∧ E〈 a, p 〉 = u ∧ [[〈 a, p 〉 = 〈x,w 〉]],
that is, keeping in mind that u ∧ p ≤ w,

u ∧ p = u ∧ p ∧ w ∧ (a ↔ x) = u ∧ p ∧ (a ↔ x).

Since this relation is equivalent to u ∧ p ≤ (a ↔ x), what must be shown reduces,
via 6.10.(a), to

u ∧ p ∧ a = u ∧ p ∧ x. (II)

From the definition of x and (I) comes

u ∧ p ∧ x = u ∧ p ∧
∨
〈b,q〉∈S b =

∨
〈b,q〉∈S u ∧ p ∧ b

=
∨
〈b,q〉∈S u ∧ q ∧ a ≤ a,

establishing that u ∧ p ∧ x ≤ u ∧ p ∧ a. Since u ∧ a ≤ x, the reverse inequality

is obvious and the proof of (II) and that Ω̃ is a sheaf over Ω is complete. 2

Lemma 27.8. If A
f−→ B is a morphism of sheaves, then f is an isomorphism

⇔ f is monic and epic.

Proof. It suffices to establish (⇐). Since A, B are sheaves, they are exten-
sional and have compatible restriction and equality. Hence, 26.17.(b) guarantees
that f is injective and

∀ x, y ∈ |A|, [[x = y]] = [[fx = fy]]. (I)

By 25.23, it remains to check that f is onto B. If s ∈ |B|, the fact that f is epic
entails, by 25.24,

Es =
∨
a∈|A| [[s = fa]].

Consider the set S = {a|[[s=fa]]
∈ |A| : a ∈ |A|}; note that

Ea|[[s=fa]]
= Ea ∧ [[s = fa]] = Efa ∧ [[s = fa]] = [[s = fa]].

Because [[s = fa]] ∧ [[s = fa′]] ≤ [[fa = fa′]] = [[a = a′]], (I) implies

[[s = fa]] ∧ [[s = fa′]] = [[s = fa]] [[s = fa′]] ∧ [[a = a′]]

= [[a|[s=fa]]
= a′|[[s=fa′]]]],

wherefrom we conclude that S is compatible in A. Since A is a sheaf, S has a
unique gluing, x, in A, verifying, for all a ∈ |A|,

(II)

{
(i) Ex = Efx =

∨
a∈|A| [[s = fa]] = Es;

(ii) [[s = fa]] = [[x = a|[[s=fa]]
]] = [[s = fa]] ∧ [[x = a]].

Since [[fx = s]] ≥ [[s = fa]] ∧ [[fx = fa]], taking joins with respect to a ∈ |A|,
yields, in view of (i) and (ii) in (II) above,

Ex = Es ≥ [[fx = s]] ≥
∨
a∈|A| [[s = fa]] ∧ [[fx = fa]]

=
∨
a∈|A| [[s = fa]] ∧ [[x = a]]

=
∨
a∈|A| [[s = fa]] = Es,

and fx = s, completing the proof. �

F. Miraglia. An Introduction to Partially Ordered Structures and Sheaves. Lógica no Avião.



Chapter 27. Sheaves and Complete Ω-sets 315

The main result of this section is the following

Theorem 27.9. Let A be a Ω-set. Then, there is a sheaf cA over Ω and a
morphism c : A −→ cA, satisfying the following properties :

(1) For a, b ∈ |A|, [[a = b]] = [[ca = cb]].

(2) For all s ∈ |cA|, Es =
∨
a∈A [[s = ca]].

(3) If B is a sheaf over Ω and g : A −→ B is a morphism, there is a unique
morphism ĝ : cA −→ B that makes the following diagram commutative :

A - cA

g ĝ

B

c

A
A
A
A
AU

�
�
�
�
��

The sheaf cA of 27.9 is the completion of A. This construction shows that
the forgetful functor from Sh(Ω) to Ωset has a left adjoint. The proof of 27.9
uses ideas due to D. Scott and first published in [15]. We start with

Definition 27.10. Let A be a L-set. A map s : |A| −→ L is a singleton in
A if for all a, b ∈ |A|

[sin 1] : s(a) ∧ s(b) ≤ [[a = b]];

[sin 2] : s(a) ∧ [[a = b]] ≤ s(b).

Write |cA| for the set of singletons in A. If L is a complete lattice, the extent of
s ∈ |cA| is Es =

∨
a∈|A| s(a).

Example 27.11. If A is a Ω-set and x ∈ |A|, then

cx : |A| −→ Ω, given by y 7−→ [[x = y]],

is, by 26.8.(a), a singleton in A, such that Ex = Ecx. 2

Lemma 27.12. Let A be L-set. a, b ∈ |A|, s ∈ |cA| and p ∈ L
a) s(a) ≤ Ea; s(a) ∧ [[a = b]] = s(b) ∧ [[a = b]].

b) If L is a HA, then [[a = b]] ≤ s(a) ↔ s(b), where ↔ is equivalence in L (6.9).

c) The map

p ∧ s : |A| −→ L, defined by [p ∧ s](a) = p ∧ s(a)

is a singleton in A. If L is a frame, then E(p ∧ s) = p ∧ Es.

Proof. The first relation in (a) comes from [sin 1] with a = b, while the
second follows easily from [sin 2] in 27.10, by symmetry; (b) is immediate from
(a). Item (c) is straightforward and left to the reader. �

Lemma 27.13. Let L be a frame, A
f−→ B a morphism of L-sets and s a

singleton in A
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a) If A is a complete L-set, there is a unique a ∈ |A| such that

For all x ∈ |A|, s(x) = [[a = x]].

In particular, Ea = Es = s(a).

b) The map sf : |B| −→ L defined by

sf (b) =
∨
a∈|A| s(a) ∧ [[fa = b]]

is a singleton in B, with Es = Esf . Moreover, notation as in 27.11, if a ∈ |A|,
then (ca)f = c(fa).

Proof. a) By 27.3, A has a restriction compatible with its equality, that is,
the formulas in 26.8 apply to the situation at hand 5.

Given s ∈ |cA|, let S = {c|s(c) : c ∈ |A|}. By 26.8.(b) (or (a) of the Fact in the

proof of 27.3) and [sin 1]

[[c|s(c) = b|s(b)]] = s(c) ∧ s(b) ∧ [[c = b]] = s(c) ∧ s(b)
= Ec|s(c) ∧ Eb|s(b),

showing that S is compatible. By completeness, there is a ∈ |A| such that (i) Ea =
∨
c∈|A| Ec|s(c) =

∨
c∈|A| s(c) = Es;

(ii) Ec|s(c) = s(c) = [[a = c|s(c)]] = s(c) ∧ [[a = c]].
(*)

It follows from (ii) in (*) that s(c) ≤ [[a = c]]. Thus, [sin 2] implies

s(c) = s(c) ∧ [[a = c]] ≤ s(a),

that, by taking joins over c ∈ |A|, entails, together with (i) in (*),

Ea =
∨
c∈|A| s(c) ≤ s(a),

and so, Ea = s(a). But then, another application of [sin 2] yields

[[a = c]] = Ea ∧ [[a = c]] = s(a) ∧ [[a = c]] ≤ s(c),

which in view of (ii) in (*) entails s(c) = [[a = c]], as desired.

b) For [sin 1], let b, b′ ∈ |B|. Since [[a = a′]] ≤ [[fa = fa′]], we get

sf (b) ∧ sf (b′) =
∨
a∈|A| s(a) ∧ [[fa = b]] ∧

∨
a′∈A′ s(a

′) ∧ [[fa′ = b′]]

=
∨
a,a′∈|A| s(a) ∧ s(a′) ∧ [[fa = b]] ∧ [[fa′ = b′]]

≤
∨
a,a′∈|A| [[a = a′]] ∧ [[fa = b]] ∧ [[fa′ = b′]]

≤
∨
a,a′∈|A| [[fa = fa′]] ∧ [[fa = b]] ∧ [[fa′ = b′]]

≤ [[b = b′]],

as desired. For [sin 2], we have

s(b) ∧ [[b = b′]] =
∨
a∈|A| s(a) ∧ [[fa = b]] ∧ [[b = b′]]

≤
∨
a∈|A| s(a) ∧ [[fa = b′]] = sf (b′),

and sf is indeed a singleton in B. Moreover, recalling 27.12.(a), we get

Esf =
∨
b∈|B| sf (b) =

∨
b∈|B|

∨
a∈|A| s(a) ∧ [[fa = b]]

=
∨
a∈|A| s(a) ∧

(∨
b∈|B| [[fa = b]]

)
=

∨
a∈|A| s(a) ∧ Efa

5In fact, all we need is the Fact in the proof of 27.3.

F. Miraglia. An Introduction to Partially Ordered Structures and Sheaves. Lógica no Avião.



Chapter 27. Sheaves and Complete Ω-sets 317

=
∨
a∈|A| s(a) ∧ Ea =

∨
a∈|A| s(a) = Es,

as desired. If a ∈ |A|, then for all b ∈ |B|
(ca)f (b) =

∨
x∈|A| ca(x) ∧ [[fx = b]] =

∨
x∈|A| [[a = x]] ∧ [[fx = b]]

≤
∨
a∈|A| [[fx = fa]] ∧ [[fx = b]] ≤ [[fa = b]]

= c(fa)(b),

showing that (ca)f (b) ≤ c(fa)(b). For the reverse inequality, we have

[[fa = b]] = Efa ∧ [[fa = b]] = Ea ∧ [[fa = b]]

=
∨
x∈|A| [[a = x]] ∧ [[fa = b]]

=
∨
x∈|A| [[a = x]] ∧ [[fa = fx]] ∧ [[fa = b]]

≤
∨
x∈|A| [[a = x]] ∧ [[fx = b]] = (ca)f (b),

concluding the proof. �

If the base algebra is a frame, cA is a sheaf :

Lemma 27.14. Let A be an Ω-set. For s, t ∈ |cA|, the prescription

[[s = t]] =
∨
a∈|A| s(a) ∧ t(a).

defines an extensional equality in |cA|, with which it is a sheaf.

Proof. Clearly, [[ = ]] verifies [= 1] in 25.1. For [= 2] we use the fact that t
is singleton and 8.4 to get

[[s = t]] ∧ [[t = z]] = [
∨
a∈|A| s(a) ∧ t(a)] ∧ [

∨
b∈|A| t(b) ∧ z(b)]

=
∨
a,b∈|A| s(a) ∧ t(a) ∧ t(b) ∧ z(b)

≤
∨
a,b∈|A| s(a) ∧ [[a = b]] ∧ z(a)

≤
∨
a,b∈|A| s(a) ∧ z(a) = [[s = z]],

as needed. If Es = Et = [[s = t]] and a ∈ |A|, then

s(a) = s(a) ∧ Es = s(a) ∧ [[s = t]] = s(a) ∧
∨
b∈|A| s(b) ∧ t(b)

=
∨
b∈|A| s(a) ∧ s(b) ∧ t(b) ≤

∨
b∈|B| [[a = b]] ∧ t(b) ≤ t(a).

The argument being symmetrical in s, t, we get s = t, proving extensionality. For
completeness, let S ⊆ |cA| be compatible over p ∈ Ω. By 25.26, this means that
for all s, s′ ∈ S

p ∧ Es ∧ Es′ = p ∧ [[s = s′]] = p ∧
∨
a∈|A| s(a) ∧ s′(a). (*)

Define t : |A| −→ Ω by

t(a) = p ∧
∨
s∈S s(a).

We shall prove that t is the (unique) gluing of S over p. First note that 7.7 and
the fact that Ω is a frame yields

Et =
∨
a∈|A|

∨
s∈S p ∧ s(a) = p ∧

∨
a∈|A|

∨
s∈S s(a)

= p ∧
∨
s∈S

∨
a∈A s(a) = p ∧

∨
s∈S Es,

verifying (i) in condition [glu p] of 27.1. To verify (ii) in [glu p], suppose that
s ∈ S. Then, (*) yields

p ∧ [[s = t]] = p ∧
∨
a∈A s(a) ∧ t(a)
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= p ∧
∨
a∈|A| s(a) ∧

∨
s′∈S p ∧ s′(a)

=
∨
a∈|A|

∨
s′∈S p ∧ s(a) ∧ s′(a)

=
∨
s′∈S p ∧

∨
a∈|A| s(a) ∧ s′(a)

=
∨
s′∈S p ∧ [[s = s′]] = p ∧ Es,

and cA is a complete Ω-set, as desired. �

Lemma 27.15. Notation as in 27.11, if A is an Ω-set, the map c : A −→ cA,
a 7−→ ca is a morphism of Ω-sets, verifying (1) and (2) in 27.9.

Proof. It has already been remarked that Eca = Ea, for all a ∈ |A|. If a, b
are in |A|, note that∨

c∈|A| [[a = c]] ∧ [[c = b]] = [[a = b]]. (*)

It is clear that [[a = b]] is below the left-hand side of (*); the reverse inequality
comes from the transitivity of equality ([= 2]). Hence, (*) and the definition of
equality in cA entail

[[ca = cb]] = [[a = b]],

proving in one stroke that c is a morphism and that it verifies (1) in 27.9. For s in
|cA|, items (a) and (c) in 27.12 yield∨
a∈|A| [[s = ca]] =

∨
a∈A

∨
b∈|A| s(b) ∧ [[a = b]]

=
∨
a∈A

∨
b∈|A| s(a) ∧ [[a = b]]

=
∨
a∈|A| s(a) ∧

(∨
b∈|A| [[a = b]]

)
=

∨
a∈|A| s(a) ∧ Ea =

∨
a∈|A| s(a) = Es,

establishing that c satisfies (2) in 27.9, as desired. �

Proof of Theorem 27.9 : 6 In view of 27.14 and 27.15, it only remains to check
that cA has the extension property (3). Let g : A −→ B be a morphism of Ω-sets,
with B a sheaf over Ω. If s ∈ |cA|, 27.13.(b) implies that sf is a singleton in B.
Hence, by 27.13.(a) there is a unique b ∈ |B| such that for all c ∈ |B|

sf (c) = [[b = c]]. (I)

Set ĝ(s) = the unique b ∈ |B| satisfying (I). By Lemma 27.13.(b), ĝ(ca) = fa,
for all a ∈ |A|. It is left to the reader to check that ĝ is a morphism of Ω-sets.
Uniqueness follows (2) and 25.33.(b), completing the proof. 2

We have constructed a functor

c : Ωset −→ Sh(Ω),

the completion functor that is left adjoint to the forgetful functor from Sh(Ω)
to Ωset. By 26.8, a presheaf over a frame Ω is a Ω-set and there is a natural
correspondence between presheaf morphisms and Ω-set morphisms. Hence,

Corollary 27.16. Let A be a presheaf over a frame Ω. Then, there is a sheaf
cA over Ω and a presheaf morphism c : A −→ cA satisfying properties (1), (2)
and (3) of 27.9. 2

6For an alternate proof, see 27.23.

F. Miraglia. An Introduction to Partially Ordered Structures and Sheaves. Lógica no Avião.



Chapter 27. Sheaves and Complete Ω-sets 319

Sheaves have important morphism extension properties. Generalizing 24.15.(c),
we state

Theorem 27.17. Let D ⊆ A be extensional Ω-sets, with D dense in A and
let f : D −→ B be a morphism of Ω-sets. If B is a sheaf over Ω, then f has a

unique extension, f̂ , to A. Furthermore,

(1) f̂ is a regular monic iff f is a regular monic 7;

(2) f̂ is epic iff f is epic.

Proof. Once the existence of f̂ is proven, uniqueness follows from 25.33. Be-
cause B is a sheaf, we know that it has compatible equality, extent and restriction.
Since D is dense in A, for each a ∈ |A| we have

Efa = Ea =
∨
d∈|D| [[a = d]]. (I)

Consider Sa = {(fd)|[[a=d]]
∈ |B| : d ∈ |D|}; note that for all d ∈ |D|,

E(fd)|[[a=d]]
= [[a = d]] ∧ Efd = [[a = d]] ∧ Ed = [[a = d]]. (II)

Moreover, for d, d′ ∈ D, we also have

[[a = d]] ∧ [[a = d′]] ≤ [[d = d′]] ≤ [[fd = fd′]]. (III)

Hence, (III) entails

[[(fd)|[[a=d]]
= (fd′)|[[a=d′]]

]] = [[fd = fd′]] ∧ [[a = d]] ∧ [[a = d′]]

= [[a = d]] ∧ [[a = d′]],

which, in view of (II), implies that S is compatible in B. Let f̂a be the unique
section in B that is the gluing of Sa. For d ∈ |D|, the element of largest extent

in Sd is (fd)|Ed = fd and so, f̂d = fd. Hence, if f̂ is a morphism, it will be the

required extension of f . It follows from (I) that Ef̂a = Ea, for all a ∈ |A|. For a,
b ∈ |A|, we make use of 25.31 and 25.35, to get

[[f̂a = f̂ b]] =
∨
d,d′∈ |D| [[(fd)|[[a=d]]

= (fd′)|[[b=d′]]]]
=

∨
d,d′∈ |D| [[fd = fd′]] ∧ [[a = d]] ∧ [[b = d′]]

≥
∨
d,d′∈ |D| [[d = d′]] ∧ [[a = d]] ∧ [[b = d′]]

=
∨
d,d′∈|D| [[a = b]] ∧ [[a = d]] ∧ [[b = d′]]

= [[a = b]] ∧
∨
d,d′∈|D| [[a = d]] ∧ [[b = d′]]

= [[a = b]] ∧
∨
d∈|D| [[a = d]] ∧

∨
d′∈|D| [[b = d′]]

= [[a = b]] ∧ Ea ∧ Eb = [[a = b]],

as needed to establish that f̂ is a morphism. The assertion in (1) is a consequence
25.21 and the fact that, if f is monic, the only inequality in the preceding compu-
tation can be replaced by an equality. Item (2) is clear. �

From 27.8 and 27.17 we get

Corollary 27.18. If A
f−→ B is a morphism of Ω-sets, then f is epic and

a regular monic ⇔ cf is an isomorphism.

7Regular monics are defined in 25.22.
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Proof. With notation as in 27.29 (including the displayed diagram), note
that cf is the the unique extension of (c ◦ f) to cA. Hence, if f is epic and a
regular monic, cf has, by 27.17, the same properties; the conclusion follows from
27.8, because completions are sheaves. �

It is frequent that in concrete situations we know the data of a sheaf only over
certain subsets of the base algebra; it is also important to establish conditions
under which the extension to a sheaf preserves the original data. A typical result of
this kind is Theorem 27.20, below. First, we introduce notions that are localizations
of completeness and finite completeness (27.1, 25.34) :

Definition 27.19. Let L be a semilattice, p ∈ L and A be a L-presheaf.

a) A is finitely complete (fc) over p if all compatible S ⊆f |A|, such that∨
s∈S Es = p, have a unique gluing in A, i.e., there is t ∈ |A| satisfying

(i) Et =
∨
s∈S Es and (ii) For all s ∈ S, s = t|Es.

b) A is complete over p if all compatible S ⊆ |A| such that p =
∨
s∈S Es, have

a unique gluing in A 8.

Theorem 27.20. Let Ω be a frame and L ⊆ Ω be a subsemilattice which is a
basis for Ω (7.1). If A is an extensional L-presheaf and p ∈ L is such that

(1) A is finitely complete over p and p is compact in Ω (2.43),

or

(2) A is complete over p,

then, c|A(p)
: A(p) −→ cA(p) is a bijection.

Proof. By 26.8, A is a Ω-set, whose equality is compatible with its extent
and restriction. By 26.8 and 25.21, condition (1) in 27.9 implies that c|A(p)

is an

injection of A(p) into cA(p). We prove that c|A(p)
is surjective whenever (1) holds,

leaving the other alternative to the reader.

Fix t ∈ cA(p); since L is a basis for Ω, for each a ∈ |A|, there is αa ⊆ L such
that [[ca = t]] =

∨
q∈αa q. Hence, 27.9.(2) entails

p = Et =
∨
a∈|A| [[ca = t]] =

∨
a∈|A|

∨
αa.

By compactness, there are a1, . . . , an ∈ |A| and βk ⊆f αak , 1 ≤ k ≤ n, such that

Et = p =
∨n
k=1

∨
βk.

Consider the finite subset of A given by

S =
⋃n
k=1 {ak|q : q ∈ βk}.

It is clear that ∨
s∈S Es =

∨n
k=1

∨
βk = Et.

To show that S is compatible, let q ∈ βi, r ∈ βk, i, k ∈ n. Recalling (1) in 27.9,
as well as the relations

q ≤ [[cai = t]] ≤ Eai and r ≤ [[cak = t]] ≤ Eak,

8That is, ∃ t ∈ |A|, verifying (i) and (ii) in item (a).
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we obtain

∗ Eak|q∧r = Eak ∧ q ∧ r = q ∧ r = q ∧ r ∧ Ea|i = Eai|q∧r.

∗ [[ai|q∧r = ak|q∧r]] = q ∧ r ∧ [[cai = cak]]

≥ q ∧ r ∧ [[cai = t]] ∧ [[cak = t]] = q ∧ r,
and the extensionality of A entails ai|q = ak|r. The finite completeness of A over

p yields a ∈ A that is the gluing of S in A. Since c is a presheaf morphism (27.16),
it is straightforward to verify that ca = t, completing the proof. �

As an illustration of Theorem 27.20, we present the structure sheaf of a com-
mutative ring with identity, generalizing Example 22.17 and Corollary 22.18.

Example 27.21. The structure sheaf of a commutative ring. We shall
employ the notation and results of Chapters 9 and 19, in particular the ring of
fractions construction, presented in section 9.3.

Let R be a commutative ring with identity. Write R∗ for the complement of
the ideal η of nilpotent elements in R. Recall that

∗ (a) is the ideal generated by a in R;

∗ Za = {P ∈ Spec(R) : a 6∈ P} is the basic compact open of the Zariski topology
corresponding to a.

∗ Let Sa =def {an : n ≥ 0}. Note that Sa is a proper multiplicative set iff a 6∈ η.

Since η is the intersection of all prime ideals in R, we have

Za = ∅ iff a ∈ η.

For a ∈ R∗, let Ra = RS−1
a ; recall that the elements of Ra are written x/an,

n ≥ 0 and x ∈ R, under the equivalence relation

x/an ≡ y/am iff ∃ k ≥ 0, ak(xam − yan) = 0,

with the usual definitions of addition and multiplication of fractions. If a, b ∈ R,
Propositions 19.5.(c) and 9.12.(c) yield

Za ⊆ Zb iff
√
a ⊆
√
b iff a ∈

√
b

iff ∃ n ≥ 0 such that an ∈ (b)
iff ∃ n ≥ 0 and u ∈ R, such that an = ub.

Therefore, if a, b ∈ R∗, then

(*) Za ⊆ Zb ⇒ ∃ n ≥ 0 and u ∈ R such that 1
b

= u
an

in Ra,

that is, b is invertible in Ra. By Proposition 9.36.(c), there is a unique ring homo-
morphism

ρba : Rb −→ Ra,

such that for all x ∈ R,

(**) ρba

(
x
bm

)
= x

(
1
b

)m
= xum

anm
,

with u as in (*). Moreover, if Za = Zb, i.e.,
√
a =

√
b, ρba is an isomorphism, by

which we identify Rb with Ra. With this convention,

Za ⊆ Zb ⊆ Zc ⇒ ρca = ρba ◦ ρcb and ρaa = IdRa .

In particular, for each a ∈ R∗ there is a canonical ring homomorphism
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ρ1a =def ρa : R −→ Ra, ρa(x) = x
1

.

Let X = Spec(R) be the Zariski spectrum of R, as in Chapter 19 and let

L(R) = L = {Za : a ∈ R∗} ∪ {∅}.
By 19.5.(a), L is a semilattice, a subsemilattice of the lattice Λ(X) of compact
opens in X (19.8). Let R be the L-presheaf determined the prescriptions :

(1) |R| =
⋃
r∈R∗ Rr × {Zr} ∪ {〈 ∗, ∅ 〉} 9;

(2) Define extent and restriction in R as follows :{
E〈 ξ, Zr 〉 = Zr; E〈 ∗, ∅ 〉 = ∅;

〈 ξ, Zr 〉|Zs
= 〈 ρr,rs(ξ), Zrs 〉; 〈 ξ, Zr 〉|∅ = 〈 ∗, ∅ 〉|∅ = 〈 ∗, ∅ 〉.

If r, s ∈ R∗, r and s are invertible in Rrs
10. Thus, (**) above yields, with ξ = x

rn
,

ρr,rs

(
x
rn

)
= xsn

rnsn
= x

rn
.

Since Zr ∩ Zs = Zrs (19.5.(a)), we may write restriction in R as

(***) 〈 ξ, Zr 〉|Zs
= 〈 ξ, Zrs 〉 = 〈 ξ, Zr ∩ Zs 〉,

while the restriction of any section of R to ∅ is equal to 〈 ∗, ∅ 〉. It follows readily
from these observations that R is a presheaf over L.

Fact 1. R is an extensional L-presheaf.

Proof. Suppose that 〈 ξ, Zr 〉, 〈 ζ, Zr 〉 are sections in R and D ⊆ L satisfies⋃
D = Zr and 〈 ξ, Zr 〉|d = 〈 ζ, Zr 〉|d, ∀ d ∈ D.

Since ξ, ζ ∈ Rr, one has

ξ = x
rn

and ζ = z
rn

.

We may assume that the exponent of r in both fractions are the same; otherwise,
just multiply one of them by a convenient power of r to arrive at such an expression.
Moreover, since Zr is compact in X, we may suppose that D is finite,

D = {Zai : 1 ≤ i ≤ p}.
For each 1 ≤ i ≤ p, our hypothesis is that

〈 ξ, Zr 〉|Zai
= 〈 ζ, Zr 〉|Zai

,

and so, (***) entails
x
rn

= z
rn

in Rai .

Thus, there is ki ≥ 0 such that

akii r
n(x − z) = 0.

Consequently, if m = max {ki : 1 ≤ i ≤ p}, we obtain

(1) For all 1 ≤ i ≤ p, ami r
n(x − z) = 0.

9Note that this is a disjoint union.
10 1
r

= s
rs

and 1
s

= r
rs

.
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It is clear that for all c ∈ R and all integers m ≥ 1, Zc = Zcm , because for all
prime ideals P in R, c 6∈ P ⇔ cm 6∈ P . Hence, the hypothesis that D covers Zr
amounts to

Zr =
⋃p
i=1 Zami ,

where m ≥ 1 is as in (1). By Corollary 19.9, the preceding equality means that r
is in the radical of the ideal generated by {ami : i ≤ p}, that is, there are k ≥ 1
and {ci : 1 ≤ i ≤ p} ⊆ R, such that

(2) rk =
∑p
i=1 cia

m
i .

If each of the equations in (1) is multiplied by ci and then summed over i ≤ p, (2)
yields ∑p

i=1 cia
m
i r

n(x − z) = rkrn(x − z) = 0,

establishing that ξ = ζ in Rr, as needed. 2

Fact 2. For all r ∈ R∗, R is finitely complete over Zr.

Proof. Let 〈 ξi, Zai 〉, 1 ≤ i ≤ p, be a finite collection of sections in R, that are
pairwise compatible and such that Zr =

⋃p
i=1 Zai . Write

ξi = xi
ani

,

where, once again, we may take the exponents of the ai to be the same. By (***),
compatibility of the ξi is equivalent to the following ring theoretic condition :

∃ q ≥ 0 such that ∀ i, j ≤ p, (aiaj)
q (anj xi − ani xj) = 0.

Setting m = q + n, the preceding equations can be written as

(3) ∀ i, j ≤ p, amj a
q
ixi − ami a

q
jxj = 0,

where m ≥ 1. The fact that {Zai} is a covering of Zr is expressed by equation (2)
in the proof of Fact 1. Let

x =
∑p
i=1 cia

q
ixi,

where the ci are as in (2) above. Then, (3) yields

aqjr
kxj = aqj(

∑p
i=1 cia

m
i )xj =

∑p
i=1 cia

q
ja
m
i xj =

∑p
i=1 cia

m
j a

q
ixi

= amj
∑p
i=1 cia

q
ixi = amj x,

and so, since m = q + n, aqj(r
kxj − anj x) = 0, proving that 〈x/rk, Zr 〉|Zaj

=

〈 ξj , Zaj 〉, 1 ≤ j ≤ p. Hence, 〈x/rk, Zr 〉 is the ‘gluing’ of the given compatible
family, completing the proof of Fact 2.

Since L is a basis of compact opens for the Zariski topology on X = Spec(R),
Theorem 27.20 applies to show that the completion of the L-presheaf R, cR, is
such that

For all r ∈ R∗, cR(Zr) = R(Zr) = Rr.

In particular, since X is compact, this applies to the global sections of R and cR
and we have

cR(X) = R(X) = R.

The sheaf cR is the structure sheaf of R, due to A. Grothendieck. These sheaves,
the affine schemes, are the basic building blocks of modern Algebraic Geometry
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([67], [25], [24]). A general scheme is a sheaf of rings that is locally affine. Refer-
ences for the very important theory of algebraic groups are [27] and [56]. 2

Example 27.21 yields

Theorem 27.22. A commutative ring with identity, R, is isomorphic to the
global sections of a sheaf of rings over Spec(R). Moreover, if a ∈ (R − η), the
sections of this sheaf over the compact open Za is the ring of fractions RS−1

a , where
Sa = {an : n ≥ 0}. 2

The last theme of this Chapter is the preservation of finite products of presheaves
by the functor c. It should be said that c does not, in general, preserve products
of Ω-sets or infinite products of Ω-presheaves (see Exercise 27.33). However, there
are conditions under which finite products are preserved. For instance, we have

Proposition 27.23. If A1, . . . , An are presheaves over Ω, then 11

c(
∏n
i=1 Ai) =

∏n
i=1 cAi.

Proof. It is enough to verify the statement for n = 2. Let A, B be presheaves
over Ω and

f : A × B −→ cA × cB, given by 〈 a, b 〉 7→ 〈 ca, cb 〉. 12

We prove that if T is a Ω-sheaf and g : A × B −→ T is a morphism, then there
is a unique ĝ : cA × cB −→ T , such that the following diagram commutes :

(D)

A × B - cA × cB

g ĝ

T

f

A
A
A
A
AU

�
�
�
�
��

The universal property (3) in 27.9 will then imply that c(A × B) is isomorphic to
cA × cB.

Let 〈x, y 〉 ∈ |cA × cB|; then Ex = Ey and (2) in 27.9 yields

Ex =
∨
a∈|A| [[x = ca]] and Ey =

∨
b∈|B| [[y = cb]],

and so taking meets we obtain

Ex = Ey =
∨
a∈A,b∈B [[x = ca]] ∧ [[y = cb]]. (I)

For a ∈ |A| and b ∈ |B|, set

p(a, b) = ([[x = ca]] ∧ [[y = cb]]).

Since Ea = Eca and Eb = Ecb, we have

Ea ∧ p(a, b) = Eca ∧ p(a, b) = p(a, b) = Eb ∧ p(a, b).
Hence, for 〈 a, b 〉 ∈ |A × B|,

Ea|p(a,b) = p(a, b) = Eb|p(a,b). (II)

11Equality, up to isomorphism, of course.
12Hence, f = c × c.
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Thus, Sxy = {〈 a|p(a,b), b|p(a,b) 〉 : a ∈ |A| and b ∈ |B|} ⊆ |A × B|. Moreover,

if a′ ∈ |A| and b′ ∈ |B|, the relations{
[[x = ca]] ∧ [[x = ca′]] ≤ [[ca = ca′]]; ([= 2] in 25.1);

[[a = a′]] = [[ca = ca′]], ((1) in 27.9),

entail, together with 26.8.(b),

[[a|p(a,b) = a′|p(a′,b′)]] = [[a = a′]] ∧ p(a, b) ∧ p(a′, b′) =

= [[ca = ca′]] ∧ [[x = ca]] ∧ [[y = cb]] ∧ [[x = ca′]] ∧ [[y = cb′]]

= p(a, b) ∧ p(a′, b′). (III)

Since the role of a and a′ may be played by b and b′, we also get

[[b|p(a,b) = b′|p(a′,b′)]] = [[b = b′]] ∧ p(a, b) ∧ p(a′, b′)
= p(a, b) ∧ p(a′, b′).

(IV)

(II), (III) and (IV) imply that Sxy is compatible in A × B. Indeed, we have

E〈 a|p(a,b), b|p(a,b) 〉 ∧ E〈 a
′
|p(a′,b′), b

′
|p(a′,b′) 〉 = p(a, b) ∧ p(a′, b′) =

= [[a|p(a,b) = a′|p(a′,b′)]] ∧ [[b|p(a,b) = b′|p(a′,b′)]]

= [[〈 a|p(a,b), b|p(a,b) 〉 = 〈 a′|p(a′,b′), b
′
|p(a′,b′) 〉]],

as claimed. Since g is a morphism, g(Sxy) = {gs : s ∈ Sxy} is compatible in T
(26.23.(e)). Thus, there is a unique ξ ∈ |T | that is the gluing of g(Sxy). Define

ĝ(x, y) = ξ.

Note that (I) implies that Eξ = Ex = Ey = E〈x, y 〉. It is left to the reader to
check that ĝ is a morphism of Ω-sets. For 〈 a, b 〉 ∈ |A × B|,

a|[[ca=ca]]
= a|Ea = a and b|[[cb=cb]] = b|Eb = b,

and so in case x = ca and y = cb, 〈 a, b 〉 is the gluing of Sca,cb in A × B. Hence,
ĝ(ca, cb) = f(a, b), and diagram (D) is commutative. Uniqueness of ĝ comes from
the denseness of the image of the completion map, the commutativity of diagram
(D) and 26.22. �

27.24. The category Sh(Ω). The following categorical constructs lead di-
rectly from sheaves to sheaves

∗ Products (26.12); ∗ Fibered product over a map (26.15);

∗ Equalizers (26.19); ∗ Initial and Final object (26.18);

∗ Coproducts (26.20);

To see that the coproduct of sheaves is a sheaf, just observe that two sections
in a coproduct are compatible iff they belong to the same component and are
compatible therein.

From the list above, we conclude that Sh(Ω) is a complete category. It is also
cocomplete, but to get coequalizers is slightly more delicate, as quotients (to be
discussed in Chapter 43) do not immediately furnish sheaves. However, the way
to correct that is exactly the same as that discussed in section 24.3 : take the
completion of the presheaf or Ω-set version of the construction. 2
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Definition 27.25. A Ω-presheaf A is locally flabby 13 if for all p ∈ Ω,
there is α ⊆ Ω such that

∗ p =
∨
α;

∗ For all q ∈ α, the restriction map from A(p) to A(q) is surjective.

Example 27.26. Let X = 2ω be the Cantor space, that is, the product of
ω copies of 2 = {0, 1}, with the product topology. X is a compact metric space,
whose distance function is given by

d(P , Q) =


1

1 + min {k ∈ ω : P (k) 6= Q(k)} if P 6= Q;

0 otherwise.

If P is a point in X, the map fP : X −→ R, defined by

fP (Q) = d(P , Q),

is continuous, being equal to zero only at P . Consequently, gP = 1
fP

is continuous

and unbounded in the open set U = X − {P}. This construction shows that the
sheaf of continuous functions on X, C(X), is locally flabby, although it is not
flabby. Indeed,

∗ Since X is Boolean, every open in X is the union of a (countable) family of
clopens;

∗ Any continuous real map defined on a clopen in X can be extended (in many
ways) to a continuous map on X. Hence, the restriction map from global sections
to any clopen is surjective;

∗ The above arguments show that C(X) is locally flabby. On the other hand, since
any continuous map on a compact is bounded, it is clear that gP ∈ C(U) cannot
be the restriction of a global section of C(X).

The reader should check that constant sheaves on X are also examples of
locally flabby, non-flabby, presheaves.

Exercise 27.34, below, describes an important property of locally flabby
presheaves, generalizing Proposition 24.49.(b) 2

Exercises

27.27. If Ω is a frame, then Sh(Ω) is closed under products (25.12), fibered
products (25.17), equalizers (25.18) and coproducts (25.19), constituting a com-
plete category. 2

27.28. Let 2 = {⊥, >} be the two-element BA. Generalizing 23.25, show that
the categories pSh(2), 2set and Sh(2) are all naturally isomorphic to Set. 2

27.29. a) With notation as in 27.13.(b), let A
f−→ B be a morphism of Ω-sets.

If s, t ∈ |cA|, then

Es = Esf and [[s = t]] ≤ [[sf = tf ]].

13Compare with 26.28.(e).
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Conclude that s ∈ |cA| 7→ sf ∈ |cB| is a morphism of Ω-sets, indicated by cf ,
making the following diagram commutative :

cA

A

?

- B

c

f

cB

c

cf

?
-

b) We have c(IdA) = IdcA and c(g ◦ f) = cf ◦ cg. 2

27.30. Let cR be the structure sheaf of the commutative ring with identity
R, as in 27.21. Let U =

⋃n
i=1 Zai be a compact open in Spec(R) and

MU =
⋂
{P c : P ∈ U}

be the saturated multiplicative set associated to U (9.27). Then,

cR(U) = RM−1
U ,

that is, the ring of sections of cR over U is the ring of fractions of R relative to
the saturated multiplicative set MU

14. 2

27.31. Notation as in 27.21, let P ∈ Spec(R) be a prime ideal in R. Let

νP = {Za ∈ L : P ∈ Za} = {Za : a 6∈ P}.
a) (νP )op is up-directed.

b) Let P = 〈Ra; {ρba : Za ⊆ Zb in νP } 〉 be the inductive system associated to
the opposite of the inclusion order in νP . Then, RP = lim→ P.

c) Construct a geometric sheaf of rings R over Spec(R) whose stalk at P ∈ Spec(R)
is RP and that is isomorphic to cR 15. 2

27.32. Let R be a commutative regular ring. Give a description, in terms of
its idempotents, of the structure sheaf of R. 2

27.33. a) If An are the presheaves of 26.14, then cAn = cA, for all n ≥ 1.

b) Construct Ω-sets A, B and a sequence of Ω-presheaves An, such that

c(A × B) 6= cA × cB and c
(∏

n≥1 An

)
6=
∏
n≥1 cAn. 2

27.34. Let A be a locally flabby presheaf over a frame Ω (27.25). If B is a
sheaf over Ω, the map

η ∈ [A,B] 7−→ η|A(>)
∈ B(>)A(>)

is a natural bijective correspondence between the morphisms from A to B and the
set of maps from A(>) to B(>). 2

14By 9.38.(b), this is consistent with cR(Za) = R(Za) = Ra.
15Example 22.17 gives an indication on how to proceed.
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CHAPTER 28

Strict Equality

If H is a Heyting algebra and A is a H-set, there is another type of equality
that can be defined in A, called strict equality, due to Dana Scott ([65], [15]).

Definition 28.1. If A is a H-set, define, for x, y ∈ |A|
[x ≡ y] = (Ex ∨ Ey) → [[x = y]],

called the strict equality between x and y in A.

The next Lemma rephrases familiar notions in terms of [· ≡ ·].

Lemma 28.2. If A is a H-set and x, y, z ∈ |A|, then

a) [[x = y]] ≤ [x ≡ y] = [y ≡ x].

b) [x ≡ y] ∧ [y ≡ z] ≤ [x ≡ z].

c) (Ex ∨ Ey) ∧ [x ≡ y] = Ex ∧ Ey ∧ [x ≡ y] = [[x = y]].

d) {x, y} is compatible in A iff (Ex ∧ Ey) ≤ [x ≡ y].

e) The following are equivalent :

(1) A is extensional (2) [x ≡ y] = > ⇒ x = y.

f) If B is a H-set and f : |A| −→ |B| is a map, the following are equivalent :

(1) f is a H-set morphism;

(2) For all x, y ∈ |A|,

{
(i) Efx = Ex;

(ii) [x ≡ y] ≤ [fx ≡ fy].

g) If A is an extensional H-presheaf, then for all p ∈ H,

x|p = y|p iff p ≤ [x ≡ y].

Proof. Item (a) is clear; for (b), 6.4.(b) (or [→] in 6.1) yields

[x ≡ y] ∧ [y ≡ z] ∧ (Ex ∨ Ez) ≤
≤ (Ex ∨ Ey ∨ Ez) ∧ [x ≡ y] ∧ [y ≡ z]

≤ [[x = y]] ∧ [[y = z]] ≤ [[x = z]],

and the adjunction [→] in 6.1 entails the desired conclusion.

c) We have

Ex ∧ Ey ∧ [x ≡ y] ≤ (Ex ∨ Ey) ∧ [x ≡ y] ≤ [[x = y]],

and the second equality follows from (a). The remaining statement and (d) are
clear.

328
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e) Assume that A is extensional and [x ≡ y] = >. By 6.4.(a), Ex ∨ Ey = [[x = y]]
and so x = y. Now suppose Ex = Ey = [[x = y]]. Clearly, [x ≡ y] = >,
and (2) entails x = y, as needed. Item (f) is left as an exercise. Regarding (g),
just observe that the proof of the corresponding result in 26.8.(d) does not use
completeness and thus holds true in any HA. �

Note that 〈A, [· ≡ ·] 〉 is a H-set in which all sections are global ([x ≡ x] = >).

In the case of the product of presheaves, one must exercise care in defining
strict equality for elements in the product of their domains.

28.3. Strict equality for vectors. Let Ai, i ∈ I, be a family of Ω-sets. For
x, y ∈

∏
i∈I |Ai|, define

[x ≡ y] = (Ex ∨ Ey) → [[x = y]].

Note that [x ≡ y] is not the meet of the strict equality of the components of x
and y. In fact, we have

[x ≡ y] = [x|Ex ≡ y|Ey],

where the strict equality on the right-hand side is that of
∏
i∈I Ai. 2

28.4. The H-set skA. Let k : H −→ L be a semilattice morphism, which
will remain fixed until further notice. If A is a H-set, define a H-set, skA, by the
following prescriptions :

a) |skA| = {〈x, p 〉 ∈ |A| × L : Ex ≤ p and k(Ex) = k(p)};
b) [[〈x, p 〉 = 〈 y, q 〉]] = p ∧ q ∧ [x ≡ y].

Note that E〈x, p 〉 = p ∧ [x ≡ x] = p ∧ > = p. It is straightforward from 28.2
that skA is a H-set. For x ∈ |A|, set skx = 〈x,Ex 〉 ∈ |skA|. 2

Proposition 28.5. Let h : H −→ L be a semilattice morphism and A an
extensional H-set. With notation as above,

a) skA is extensional and sk is a monic in H-set. If k is injective, then sk is an
isomorphism, by which we may identify A and skA.

b) If f : A −→ B is a morphism of H-sets, the map

skf : |skA| −→ |skB|, given by skf(〈x, p 〉) = 〈 fx, p 〉,
is the carrier of a morphism of H-sets, skf , making the following diagram com-
mutative :

B

A

?

- skA

f

sk

skB

skf

sk

?
-

Moreover, sk(IdA) = IdskA and sk(g ◦ f) = skg ◦ skf .
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c) If A is a H-presheaf, whose restriction is compatible with its equality (26.6),
then, the rule

〈x, p 〉|q = 〈x|q, p ∧ q 〉

yields a restriction in skA, compatible with its equality and with which it is a
H-presheaf.

d) If H is a frame, k is a [∧,
∨

]-morphism and A is a H-sheaf, then skA is a sheaf
over H.

Proof. a) Assume that E〈x, p 〉 = E〈 y, q 〉 = p ∧ q ∧ [x ≡ y]. Then,
p = q = p ∧ [x ≡ y], that is

Ex ∨ Ey ≤ p ≤ [x ≡ y]

and so, 28.2.(c) yields

(Ex ∨ Ey) = (Ex ∨ Ey) ∧ [x ≡ y] = [[x = y]],

and the extensionality of A forces x = y, as desired. For a, b ∈ |A|, 28.2.(c) entails

[[ska = skb]] = [[〈 a,Ea 〉 = 〈 b, Eb 〉]] = Ea ∧ Eb ∧ [a ≡ b]

= [[a = b]],

and sk is a monic by 25.21. If k is injective, then |skA| = {〈x,Ex 〉 : x ∈ |A|},
and it is clear that sk is an isomorphism.

b) It is obvious that skf preserves extent. For 〈x, p 〉, 〈 y, q 〉 ∈ |skA|, item (2) in
28.2.(e) entails

[[skf(〈x, p 〉) = skf(〈 y, q 〉)]] = [[〈 fx, p 〉 = 〈 fy, q 〉]]
= q ∧ p ∧ [fx ≡ fy]

≥ p ∧ q ∧ [x ≡ y]

= [[〈x, p 〉 = 〈 y, q 〉]],
and skf is a morphism of H-sets. The commutativity of the displayed diagram is
clear. The remaining assertion in (b) is left to the reader.

c) We check only that restriction and equality are compatible, omitting other
details. For 〈x, p 〉, 〈 y, q 〉 ∈ |skA|, r, r′ ∈ H, first observe that

r ∧ r′ ∧ ((Ex ∧ r) ∨ (Ey ∧ r′) = r ∧ r′ ∧ (Ex ∨ Ey). (1)

Hence, (1) and 6.4.(i) furnish

[[〈x|r, p∧ r 〉 = 〈 y|r′ , q ∧ r
′ 〉]] = p ∧ q ∧ r ∧ r′ ∧ [x|r ≡ y|r′ ]

= p ∧ q ∧ r ∧ r′ ∧ (((Ex ∧ r) ∨ (Ey ∧ r′)) → [[x|r = y|r′ ]])
= p ∧ q ∧ r ∧ r′ ∧ (((r ∧ r′) ∧ (Ex ∨ Ey)) → (r ∧ r′ ∧ [[x = y]]))

= p ∧ q ∧ r ∧ r′ ∧ ((Ex ∨ Ey) → [[x = y]])

= r ∧ r′ ∧ [[〈x, p 〉 = 〈 y, q 〉]],
establishing the compatibility of restriction and equality in skA.

d) Let 〈xi, pi 〉, i ∈ I, be a compatible family of sections in skA. This means that
for all i, j ∈ I,

pi ∧ pj = [[〈xi, pi 〉 = 〈xj , pj 〉]] = pi ∧ pj ∧ [xi ≡ xj ].

Hence, as in item (a), from
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(C) Exi ∧ Exj ≤ pi ∧ pj ≤ [xi ≡ xj ],

we conclude that Exi ∧ Exj = [[xi = xj ]], i.e., the xi are compatible; let x be
their gluing in A. We have, for i ∈ I,

(G) Ex =
∨
i ∈ I Exi and Exi = [[x = xi]].

Let q =
∨
i∈I pi; we shall verify that 〈x, q 〉 is the gluing of the originally given

family in skA. Since h is a [∧,
∨

]-morphism, the first equation in (G) entails

k(q) =
∨
i∈I k(pi) =

∨
i∈I k(Exi) = k(Ex),

and so 〈x, q 〉 ∈ |skA|, with the required extent. To end the proof we establish

Fact. For i ∈ I, pi ∧ Ex ≤ Exi.

Proof. We shall prove a bit more. Fix i, j ∈ I. Formula (C) above guarantees that

pi ∧ Exj = pi ∧ Exj ∧ [xi ≡ xj ].

Since pi ∧ Exj ≤ (Exj ∨ Exi), 6.4.(i) and Modus Ponens (6.4.(b)) yield

pi ∧ Exj ∧ [xi ≡ xj ] = pi ∧ Exj ∧ ((Exi ∨ Exj) → [[xi = xj ]])

= pi ∧ Exj ∧ ((pi ∧ Exj) → [[xi = xj ]])

≤ [[xi = xj ]] ≤ Exi,

establishing the Fact.

If i ∈ I, the Fact above, the second equation in (G), together with items (a)
and (i) in 6.4, imply

[[〈x, q 〉 = 〈xi, pi 〉]] = q ∧ pi ∧ [x ≡ xi] = pi ∧ (Ex → [[x = xi]])

= pi ∧ ((pi ∧ Ex) → Exi) = pi ∧ >
= pi = E〈xi, pi 〉,

verifying that 〈x, q 〉 is the gluing of the 〈xi, pi 〉 in skA. �

The preceding construction has furnished endo-functors, all indicated by the
same symbol,

sk : Hset −→ Hset, sk : pSh(H) −→ pSh(H),

and when H is a frame and k is a [∧,
∨

]-morphism,

sk : Sh(H) −→ Sh(H),

called the s-functors associated to k.

Exercises

28.6. Let k : H −→ L be a semilattice morphism and A, B be extensional
H-sets.

a) The map β : |sk(A × B)| −→ |skA × skB|, defined by

〈 〈 a, b 〉, p 〉 7−→ 〈 〈 a, p 〉, 〈 b, p 〉 〉
is a H-set isomorphism from sk(A × B) onto skA × skB.

b) The functor sk preserves non-empty products, equalizers and monics. 2
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Part 6

Change of Base



In applications of sheaf theory to Algebraic Geometry, Algebraic Topology and
the Theory of Complex Analytic Spaces, being able to move, along a continuous
function, from the category of sheaves over one space to the category of sheaves
over another space is an essential part of the methods that have been developed
in the last 50 years. Even a cursory glance at the classical way to define image
and inverse image shows that the “stalk at a point” is used frequently. Since our
base algebras might not have points at all, we shall here introduce another way to
arrive at the concepts of image and inverse image along a map.

For sheaves (or presheaves) over a topological space with values in an Abelian
category, there are other functors which are also central, e.g., images with proper
support. The functors image, inverse image, image with proper supports and their
derived functors constitute the basis of important methods, with applications in
all of the above mentioned theories. For more information on these topics, the
reader is referred to [37] and [32].

The first chapter discusses the definition of morphisms between objects with
different bases. We then present the construction of image and inverse image,
along a semilattice morphism, of ∗-sets and presheaves. The following table sum-
marizes the pertinent constructions and associated functors, where h : L −→ R is
a semilattice morphism.

Construction Functor Reference

Image of a L-set εh Chapter 30

Base Extension for Presheaves eh Chapter 31

Essential Image of a Presheaf along h ηh 32.1, 32.2

Image of a L-presheaf along h dh Chapter 32

Inverse image of R-presheaf along h ih Chapter 33

The sixth chapter of this part is devoted to the notions of localization, fibers
and stalks, generalizing well-known concepts in the topological setting.

The final chapter, regularization, gives an useful description of the inverse
image of the image of an object along a semilattice morphism.

In all that follows, semilattices have ⊥ and >.



CHAPTER 29

Introduction

The following definition sets down the concept of morphism between objects
with (possibly) different base algebras. In 29.3, we register the classical concept of
morphism of presheaves over distinct topological spaces, while 29.4 indicates why
it is a special case of the abstract version below.

Definition 29.1. Let L, R be semilattices.

a) If A is a L-set and B is a R-set, a morphism from A to B consists of a pair

of maps 〈 f, h 〉, L h−→ R and |A| f−→ |B|, such that

∗ h is a semilattice morphism;

∗ For all x, y ∈ |A|,

{
[mor 1] : EBfx = h(EAx);

[mor 2] : [[fx = fy]]B ≥ h([[x = y]]A).

Let [A,B]h be the set of morphisms of the form 〈 f, h 〉 from A to B. When h =
IdL, we omit the subscript corresponding to h.

b) If P is a L-presheaf and Q is a R-presheaf, a morphism from P to Q is a pair
of maps, 〈 f, h 〉, h : L −→ R and f : |P | −→ |Q|, such that

∗ h is a semilattice morphism;

∗ For all 〈x, p 〉 ∈ |P | × L,

{
[pmor 1] : Efx = h(Ex);

[pmor 2] : f(x|p) = (fx)|h(p)
.

As for ∗-sets, write [A,B]h for the set of morphisms of the form 〈 f, h 〉 from A to
B, omitting the subscript h when it is IdL.

When h = IdL, we get back the notions of morphism of L-sets or of L-
presheaves as in 25.10 and 26.1.(f), respectively. As usual, write

〈 f, h 〉 : A −→ B

to indicate that 〈 f, h 〉 is a morphism from A to B (be they ∗-sets or ∗-presheaves).

If 〈 g, k 〉 : B −→ C is a morphism from the R-set B to the T -set C, then
composition of 〈 f, h 〉 and 〈 g, k 〉 is defined as

〈 g, k 〉 ◦ 〈 f, h 〉 = 〈 g ◦ f, k ◦ h 〉.

334



Chapter 29. Introduction 335

L

A - B
f

R
h
- - T

- C
g

k

Note that the identity of A is 〈 IdA, IdL 〉. With this concept of morphism, we
obtain a category, SLset, whose objects are extensional L-sets, L a semilattice.

Similarly, if 〈 f, h 〉 : A −→ B and 〈 g, k 〉 : B −→ C are morphisms from
the L-presheaf A to the R-presheaf B, and from B to the T -presheaf C, then
composition of 〈 f, h 〉 and 〈 g, k 〉 is defined as

〈 g, k 〉 ◦ 〈 f, h 〉 = 〈 g ◦ f, k ◦ h 〉,
as for L-sets. As before, the identity of A is 〈 IdA, IdL 〉. pSh is the category whose
objects are presheaves over some semilattice, with morphisms as above.

Example 29.2. This example shows that a homomorphism of commutative
rings with identity, f : A −→ B, induces a morphism between the presheaves
associated to A and B, as in Example 27.21, whose notation will be used here.
Recall from 27.21 that

∗ R∗ = R − η, the complement of the ideal of nilpotent elements in R;

∗ L(A) = {Za : a ∈ A∗} ∪ {∅} and L(B) = {Zb : b ∈ B∗} ∪ {∅},
are the semilattices of basic compact opens in Spec(A) and Spec(B), respectively;

∗ A and B are the presheaves over L(A) and L(B), respectively, constructed
therein, whose domains are given by{

|A| =
⋃
a∈A∗ Aa × {Za} ∪ {〈 ∗, ∅ 〉}

|B| =
⋃
b∈B∗ Bb × {Zb} ∪ {〈 ∗, ∅ 〉},

with extent and restriction given by{
E〈 ξ, Za 〉 = Za;

〈 ξ, Za 〉|Zc
= 〈 ξ, Zac 〉 = 〈 ξ, Za ∩ Zc 〉,

with a similar formulas holding for B. For ξ = x/an ∈ Aa = AS−1
a , write

fξ =
fx

(fa)n
∈ BS−1

fa . (1)

By Proposition 19.5.(f), f induces a continuous map

fZ : Spec(B) −→ Spec(A), Q 7→ f−1(Q),

such that for all a ∈ A,

f−1
Z (Za) = Zfa.

Thus, f∗Z = f−1
Z restricts to a semilattice morphism L(A)

h−→ L(B), Za 7−→ Zfa.
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Define γ : |A| −→ |B| by

γ(〈 ξ, Za 〉) = 〈 fξ, Zfa 〉.
By (1) above the value of γ is indeed in |B|. Since h(Za) = Zfa, γ satisfies [pmor 1]
in 29.1.(b). If 〈 ξ, Za 〉 ∈ |A| and Zc ∈ L(A), we have

γ(〈 ξ, Za 〉|Zc
) = γ(〈 ξ, Zac 〉) = 〈 fξ, Zf(ac) 〉 = 〈 fξ, Zfafc 〉

= γ(〈 ξ, Za 〉)|Zfc = γ(〈 ξ, Za 〉)|h(Zc)
,

verifying [pmor 2]. Hence, 〈 γ, h 〉 is a morphism from A to B, as desired. The reader
will have noticed that γ is simply the “gluing” of the natural ring homomorphisms
from AS−1

a to BS−1
fa of Lemma 9.42.(b), a ∈ A. 2

The classical concept of morphism of presheaves over distinct topological spaces
follows. It has already appeared − without a formal definition −, in Propositions
20.9 and 24.64.

Definition 29.3. Let A, B be presheaves over the topological spaces X and
Y , respectively. A morphism from A to B consists of a pair 〈 η, f 〉 such that

∗ f : Y −→ X is a continuous map;

∗ η = {ηU : U ∈ Ω(X)}, where ηU : A(U) −→ B(f−1(U)) is a map such that if
V ≤ U in Ω(X), the following diagram is commutative :

A(V )

A(U)

?

- B(f−1(U))

·|V

ηU

B(f−1(V ))

·|f−1(V )

ηV

?
-

Write 〈 η, f 〉 : A −→ B for a morphism from A to B. If we have morphisms,

A
〈η,f〉−→ B

〈µ,g〉−→ C,

their composition is 〈µ ◦ η, f ◦ g 〉. The identity of A is 〈 IdA, IdX 〉1. Write pSht
for the category of presheaves over some topological space.

The connection between the classical notion of morphism and that in 29.1 is
described in

Lemma 29.4. Let A, B be extensional presheaves over the spaces X, Y , re-
spectively. The following conditions are equivalent :

(1) 〈 η, f 〉 is a morphism from A to B;

(2) 〈 η, f∗ 〉 is a morphism from the Ω(X)-presheaf A to the Ω(Y )-presheaf B,
according to 29.1.(b);

(3) 〈 η, f∗ 〉 is a morphism from the Ω(X)-set A to the Ω(Y )-set B, according
to 29.1.(a).

1Pointing in the appropriate directions.
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Proof. It is clear that (1) and (2) are equivalent; for (2)⇔ (3), the argument
is the same as that used to show the equivalence in item (f) of Proposition 26.8. �

Definition 29.5. Let A be a L-set and B a R-set. A morphism in SLset,
〈 f, h 〉 : A −→ B, is a retract if it has a right inverse, that is, there is a morphism
〈 g, k 〉 : B −→ A in SLset such that

〈 f, h 〉 ◦ 〈 g, k 〉 = 〈 IdB , IdR 〉.
Analogously, one defines a retract in pSh.

Lemma 29.6. Suppose L, R are frames, h : L −→ R is a frame-morphism.
If 〈 f, h 〉 : A −→ B is a retract in SLset and A is a sheaf over L, then B is a
sheaf over R.

Proof. Let 〈 g, k 〉 : B −→ A be a morphism such that 〈 f ◦ g, h ◦ k 〉 =
〈 IdB , IdR 〉. For p ∈ R, suppose S ⊆ |B| is compatible over p. By 29.8,
gS = {gs : s ∈ S} is compatible over g(p) (in |A|), and for all s, s′ ∈ S,

Egs = k(Es) and k(p ∧ Es ∧ Es′) = k(p) ∧ [[gs = gs′]].

Let t be a gluing of gS over k(p) in |A|. Then,{
k(p) ∧ Et =

∨
s∈S k(p) ∧ k(Es);

∀ s ∈ S, k(p) ∧ [[t = gs]] = k(p) ∧ Egs = k(p ∧ Es).
Consequently, since h preserves joins, we obtain

p ∧ Eft = h(k(p) ∧ Et) = h
(
k(p) ∧

∨
s∈S k(Es)

)
= h(k(p)) ∧

∨
s∈S h(k(Es)) = p ∧

∨
s∈S Es,

as well as, for each s ∈ S,

p ∧ [[ft = s]] = h(k(p)) ∧ [[ft = fgs]] ≥ h(k(p)) ∧ h([[t = gs]])

= h(k(p) ∧ [[t = gs]]) = h(k(p ∧ Es)) = p ∧ Es,
and so ft is the gluing of S over p in |B|. �

Corollary 29.7. If f : A −→ B is a retract of presheaves over a frame,
then Imf = B is a sheaf, whenever the same is true of A.

To understand the categorical content of direct and inverse image, fix a semi-
lattice morphism h : L −→ R. If A is a L-set, consider the category of A-algebras
over h 2, whose objects are diagrams

I = (A
〈f,h〉−→ B),

with B a R-set. If J = (A
〈g,h〉−→ C) is an object of this type, a morphism,

α : I −→ J , consists of a morphism of R-sets, α : B −→ C, such that the di-
agram below-left is commutative :

2Analogous to 16.6; sometimes called a comma category.
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A - B

〈 g, h 〉 〈α, IdR 〉

C

〈 f, h 〉

A
A
A
A
AU

�
�
�
�
��

A - A′

〈 f, h 〉 〈 g, h 〉

B

〈β, IdL 〉

A
A
A
A
AU

�
�
�
�
��

Dually, if B is a R-set, consider the category of B-bundles over h, whose objects
are diagrams

D = (A
〈f,h〉−→ B),

withA a L-set. If E = (A′
〈g,h〉−→ B) is an object of this type, a morphism, β : D −→ E ,

is a morphism of L-sets, β : A −→ A′, such that the diagram above-right is com-
mutative. It is clear that these constructions can be rephrased for presheaves and
sheaves.

An initial object in the category of A-algebras over h deserves to be considered
as the direct image of A over h. Analogously, a final object in the category of
B-bundles over h ought to be the inverse image of B over h.

It is a general fact that “arrows pointing in the right direction” induce natural
constructions. Since equality in L-sets is a map |A| −→ L, a semilattice morphism
h : L −→ R makes |A| the domain of a R-set, a good start to obtain the image of
A along h. On the other hand, R-presheaves may be considered as contravariant
functors (26.24)

P : L −→ Set.

Hence, a semilattice morphism h : L −→ R induces, by composition, a contravari-
ant functor

L
h−→ R

P−→ Set,

describing the basic idea to get at the inverse image of P along h. It will not come
as surprise that direct image of L-sets and inverse image of presheaves are easier
to handle than direct image of presheaves and inverse image of L-sets.

The spatial context, that is, the classical setting of sheaves over topological
spaces is important, and not just because it is the origin of the theory presented
here. A continuous map, f : X −→ Y , induces (see 4.6) a dual pair

f∗ : Ω(Y ) −→ Ω(X) and f∗ : Ω(X) −→ Ω(Y ),

such that f∗ is a frame morphism, g is a
∧

-morphism and the pair 〈 f∗, f∗ 〉 satisfies
the adjunction [adj] in Theorem 7.8 (or (*) in 4.6). We shall, therefore, also discuss
the special properties that arise in the presence of such adjoint pairs between our
base algebras.
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Exercises

29.8. a) If 〈 f, h 〉 : A −→ B is a morphisms in LSset or pSh, and S ⊆ |A|
is compatible over p, then

fS = {fs : s ∈ S} ⊆ |B|
is compatible over h(p).

b) If L
h−→ R is a [∧,

∨
]-morphism, a morphism 〈 f, h 〉 : A −→ B in SLset or

pSh preserves gluings of compatible families. 2
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CHAPTER 30

Image of a L-set

Let A be L-set and L
h−→ R be a semilattice morphism. We can transport the

L-equality in |A| along h, to get an R-equality on |A|, given by

[[x = y]]AR = h([[x = y]]A).

Write AR for the R-set so defined. In general, AR is not extensional, even if A is
extensional. We now describe a different procedure, which furnishes an extensional
change of base.

30.1. Let h : L −→ R be a semilattice morphism and let A be a L-set. Define
a binary relation θA on |A|, by

x θA y iff h(EAx) = h([[x = y]]A) = h(EAy). (I)

It is readily verified that θA is an equivalence relation on |A|; let

∗ |εhA| be the set of θA-equivalence classes on |A|;

∗ εAh : |A| −→ |εhA| be the canonical quotient map. Whenever A is clear from
context, we omit the superscript A from the notation. 2

Remark 30.2. If h is injective and A is extensional, θA is the identity. Hence,
in this case, εhA = AR. Furthermore, for all p ∈ L, εh|A(p)

is a bijection between

A(p) and εhA(h(p)). 2

Proposition 30.3. Let h : L −→ R be a semilattice morphism and let A be
a L-set.

a) For x, y ∈ |A|, the map

〈 εhx, εhy 〉 7−→ h([[x = y]]A)

defines an extensional equality on |εhA|, with which it is a R-set. Furthermore,
〈 εh, h 〉 : A −→ εhA is a morphism in SLset, such that for all x, y ∈ |A|

E(εhx) = h(Ex) and [[εhx = εhy]] = h([[x = y]]).

b) If B an extensional R-set and 〈 f, h 〉 a morphism from A to B, then there

is a unique morphism f̂ : Ah −→ B in Rset such that the following diagram
commutes :

340
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A - εhA

〈 f, h 〉 〈 f̂ , IdP 〉

B

〈 εh, h 〉

A
A
A
A
AU

�
�
�
�
��

Hence, for all L-sets A and extensional R-sets B, the map

α ∈ [εhA,B] 7−→ 〈α, IdR 〉 ◦ 〈 εh, h 〉 ∈ [A,B]h
is a natural bijective correspondence.

Proof. a) For x, y, t, z ∈ |A|, suppose εhx = εht and εhy = εhz. Then, the
transitive law of equality in A yields

[[x = y]]A ∧ [[x = t]]A ∧ [[y = z]]A ≤ [[t = z]]A,

and so the definition of θA in 30.1.(I) entails

h([[t = z]]A) ≥ h([[x = y]]A) ∧ h([[x = t]]A) ∧ h([[y = z]]A)

= h([[x = y]]A) ∧ h(EAx) ∧ h(EAy)

= h(EAx ∧ EAy ∧ [[x = y]]A) = h([[x = y]]A).

Since the argument is symmetric in the pairs x, t and y, z, we conclude that
h([[x = y]]A) = h([[t = z]]A), that is, this value is independent of representatives.
It is now straightforward that

〈 εhx, εhy 〉 7−→ h([[x = y]])

defines an equality on εhA, satisfying the equations displayed in the statement of
(a). These equations and the definition of the equivalence relation θA immediately
imply that εhA is an extensional R-set.

b) We first check that if εhx = εhy, then fx = fy. Recalling that

εhx = εhy iff h(EAx) = h(EAy) = h([[x = y]]A),

we obtain

[[fx = fy]] ≥ h([[x = y]]A) = h(EAx) = EBfx = h(EAy)

= EBfy,

and the extensionality of B entails fx = fy. Define, for x ∈ |A|
f̂(εhx) = fx.

It is straightforward that f̂ is the unique morphism making the displayed diagram
commutative. �

Definition 30.4. The R-set εhA of 30.3 is the extensional image of A
along h.

30.5. εh is a covariant functor. Let f : A −→ B be a morphism of L-sets.
If x, y ∈ |A| satisfy x θA y (30.1.(I)), then

h(EBfx) = h(EAx) = h([[x = y]]A) = h(EAy) = h(EBfy),
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which entails, since h is increasing and [[x = y]]A ≤ [[fx = fy]]B , that fx θB fy.
Consequently, the map

εhf : |εhA| −→ |εhB|, given by εhf(εAh x) = εBh (fx),

is well defined. Note that

[[εhfx = εhfy]] = [[εBh (fx) = εBh (fy)]] = h([[fx = fy]]),

for all x, y ∈ |A|; hence, 30.3.(a) yields :

(i) E(εhf(εAh x)) = E(εBh fx) = h(EBfx) = h(EAx) = E(εAh x);

(ii) [[εhf(εAh x) = εhf(εAh y)]] = [[εBh fx = εBh fy]] = h([[fx = fy]]B)

≥ h([[x = y]]A) = [[εAh x = εAh y]].

Thus, εhf is a morphism of R-sets and the following diagram is commutative :

B

A

?

- εhA

f

εh

εhB

εhf

εh

?
-

It is straightforward that

εh(f ◦ g) = εhf ◦ εhg and εh(IdA) = IdεhA.

Hence, h induces a covariant functor, εh : Lset −→ Rset, the (extensional)
change of base functor along h. 2

Lemma 30.6. If L
h−→ R is a semilattice morphism, the functor εh preserves

non-empty finite products. If h is surjective, then εh preserves final objects.

Proof. We give a sketch, leaving details to the reader. If A, B are L-sets,
the map

εh〈x, y 〉 ∈ |εh(A × B)| 7−→ 〈 εhx, εhy 〉 ∈ |εhA × εhB|
is an isomorphism. Recalling 25.5, it is easy to see that |εh1| = Imh, with
equality induced by R. Hence, if h is surjective, εh preserves final objects. �

Remark 30.7. In case h = IdL, εh is the extensionalization functor,
written ε, from L-sets to the category of extensional L-sets. Generalizing 23.21,
its properties can be read off the statement of 30.3; for future reference, we include
the Corollary that follows. 2

Corollary 30.8. Let L be a semilattice.

a) If A is L-set, the binary relation on |A|
x R y iff Ex = Ey = [[x = y]]

is an equivalence relation on |A|. Write εx for the equivalence class of x with
respect to R and |εA| = {εx : x ∈ |A|}.
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b) For x, y ∈ |A|, set

[[εx = εy]] = [[x = y]].

This defines an extensional equality on |εA|, such that Eεx = Ex, for all x ∈ |A|.
c) The map ε : A −→ εA, x 7→ εx is a L-set morphism, with the following universal
property :

If B is an extensional L-set and f : A −→ B is a morphism of L-sets, there

is a unique morphism of L-sets, f̂ : εA −→ B, making the diagram below-left
commutative :

A - εA

f f̂

B

ε

A
A
A
A
AU

�
�
�
�
�� B

A

?

- εA

f

ε

εB

εf

ε

?
-

d) If A
f−→ B is a morphism of L-sets, the map

εf : |εA| −→ |εB|, defined by εx 7→ εfx,

is the unique morphism of L-sets making the diagram above-right commutative. 2

The composition of εh with the completion functor in 27.9 yields

Corollary 30.9. Let L
h−→ Ω be a semilattice morphism, with Ω a frame.

If A is a L-set, then there is a sheaf chA over Ω and a morphism

〈 ch, h 〉 : A −→ chA,

verifying the following conditions :

(1) For all a, b ∈ |A|, [[cha = chb]] = h([[a = b]]);

(2) For all s ∈ |cA|, Es =
∨
a∈|A| [[cha = s]];

(3) If C is a sheaf over Ω and 〈 g, h 〉 : A −→ C is a morphism, there is a
unique morphism ĝ : chA −→ C in Sh(Ω) such that the following diagram is
commutative :

A - chA

〈 g, h 〉 〈 ĝ, IdΩ 〉

C

〈 ch, h 〉

A
A
A
A
AU

�
�
�
�
��

2

The sheaf chA is the completion of A along h. When h = IdΩ, we get back
the completion cA of Theorem 27.9; furthermore,
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〈 ch, h 〉 = 〈 c, IdΩ 〉 ◦ 〈 εh, h 〉,
with c the completion map of 27.9. Since every [∧,

∨
]-semilattice can be regularly

embedded in a frame (25.29), we get

Corollary 30.10. If L is a [∧,
∨

]-semilattice and A is a L-set, there is a
regular embedding, h : L −→ Ω, a sheaf chA over Ω together with a morphism,
ch : A −→ chA, such that, if L is identified with h(L), conditions (1), (2) and (3)
in 27.9 are verified 1.

In particular, if H is a HA, then any H-set gives rise to a sheaf over H∗, the
frame completion of H (14.4). Exercise 30.14 shows that this completion deserves
to be considered the completion of the H-set under consideration.

The functor ch may also be used to define image in the category of sheaves :

Definition 30.11. If L is a frame, h : L −→ Ω is a semilattice morphism
and A is a sheaf over L, the sheaf chA is the image of A along h in the category
of Sh(Ω).

We now show that image along a semilattice morphism preserves composition.
This result has many applications, considerably simplifying the computation of
the transfer of objects along maps between the base algebras.

Proposition 30.12. Let L
f−→ R

g−→ T be semilattice morphisms. Then,

a) ε(g ◦ f) = εg ◦ εf 2.

b) If L, R, T are frames, then c(g ◦ f) = cg ◦ cf .

c) If T = L and g ◦ f = IdL, εg ◦ εg and cg ◦ cf are the identity functors in the
extensional subcategory of Lset and in Sh(L), respectively.

Proof. a) We prove (a), leaving (b) as an exercise. Let A be a L-set and
〈α, gf 〉 : A −→ B be a morphism in pSh into the extensional T -set B.

Fact. The map εfa ∈ |εfA|
β7−→ αa ∈ |B| is the carrier of the unique morphism,

〈β, g 〉 : εfA −→ B, making the following triangle commutative :

A - εfA

〈α, gf 〉 〈β, g 〉

B

〈 εf , f 〉

A
A
A
A
AU

�
�
�
�
��

Proof. If a, b ∈ |A| are such that εfa = εfb, then

f(Ea) = f(Eb) = f([[a = b]])

1With ch in place of c, of course.
2I.e., these functors are naturally isomorphic; the same comment applies to (b).
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and so gf(Ea) = gf(Eb) = gf([[a = b]]). Since 〈α, gf 〉 is a morphism, we obtain

(*) [[αa = αb]] ≥ gf([[a = b]]) = gf(Ea) = EB(αa)

= gf(Eb) = EB(αb).

The extensionality of B entails αa = αb, as needed to establish that β is well-
defined. Since [[εfa = εfb]] = f([[a = b]]), the inequality and equalities in (*)
imply that 〈β, g 〉 is a morphism in SLset. Clearly, the displayed triangle is com-
mutative, ending the proof of the Fact.

By the universal property of image along g in 30.3.(b), there is a unique mor-

phism of T -sets, β̂ : εgεfA −→ B, making the diagram below-left commutative :

εfA - εgεfA

〈β, g 〉 〈 β̂, IdT 〉

B

〈 εg, g 〉

A
A
A
A
AU

�
�
�
�
��

A - εfεgA

〈α, gf 〉 〈 γ, IdT 〉

B

〈 εf ◦ εg, gf 〉

A
A
A
A
AU

�
�
�
�
��

Consider the morphism 〈 εg ◦ εf , gf 〉 : A −→ εgεfA; by what has been proven, if
B is an extensional T -set and 〈α, gf 〉 : A −→ B is a morphism, there is a unique
morphism of T -sets, γ, such that the triangle above-right commutative. Since the
morphism

〈 εg ◦ f , gf 〉 : A −→ εg ◦ fA

has precisely that same universal property, there is a unique isomorphism of T -sets,

σA : εgεfA −→ ε(g ◦ f)A,

such that the following diagram is commutative :

A - εgεfA

〈 εg ◦ f , gf 〉 σA

ε(g ◦ f)A

〈 εf ◦ εg, gf 〉

A
A
A
A
AU

�
�
�
�
��

The family σ = {σA : A is a L-set} provides a natural isomorphism between the
functors εg ◦ εf and εg ◦ f , as needed.

For (c), if g ◦ f = IdL, then εg ◦ f = εIdL = ε, the extensionalization functor
of 30.7. Hence, when restricted to extensional L-sets, ε is the identity functor, as
claimed. �
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Remark 30.13. Let X
f−→ Y be a continuous map of topological spaces. If

A is a sheaf over Y , the completion of εf∗A, that is, cf∗A (30.9), is called the
inverse image of A along f , written f∗A.

This distinction in terminology might seem confusing, but both have strong
arguments to their side. In the spatial case, the main parameter is f and we are
bringing a sheaf over Y “back” along f to a sheaf over X. In our setting, the main
parameter is f∗ and A is brought “forward” to a sheaf over X. Hence, image along
f∗, which is our viewpoint, corresponds to inverse image along f , which is the
spatial viewpoint.

It should be remarked that our rendering of the subject is (considerably) more
general than the classical construction. Even for topological spaces, there are semi-
lattice morphisms h : Ω(Y ) −→ Ω(X) that are not represented by continuous maps,
i.e., h is distinct from f∗, for all continuous f : X −→ Y . 2

Exercises

30.14. Let H be a HA and let A be a H-set. Consider the category A whose
objects are diagrams

〈α, k 〉 : A −→ B,

where B is a sheaf over a frame D and k is a [∧,
∨

]-morphism from L to D.
The morphisms in A are the usual ones for algebras, i.e., 〈β, g 〉 : B −→ B′,
where g : D −→ D′ is a frame-morphism, such that the following diagram is
commutative :

A - B

〈α′, k′ 〉 〈β, g 〉

B′

〈α, k 〉

A
A
A
A
AU

�
�
�
�
��

If A∗ is the completion of A over the regular embedding H
∗−→ H∗, then 〈A∗, H∗ 〉

is an initial object in A. 2

30.15. With notation as in 28.5, let k : H −→ L be a semilattice morphism
and let A be a H-set.

a) The map γk : |skA| −→ |εkA|, defined by

γk(〈x, p 〉) = εkx

determines a morphism 〈 γk, k 〉 : skA −→ εkA, making the following diagram
commutative :
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A - skA

〈 εk, k 〉 〈 γk, k 〉

εkA

sk

A
A
A
A
AU

�
�
�
�
��

b) For all 〈x, p 〉, 〈 y, q 〉 ∈ |skA|,
k([[〈x, p 〉 = 〈 y, q 〉]]) = k([[x = y]]) = [[εkx = εky]].

c) The map

βA : εkskA −→ εkA, given by εk(〈x, p 〉) 7−→ εkx

is an isomorphism. 2
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CHAPTER 31

Base Extension

By 26.5 and 26.25, whenever L ⊆ R, a R-presheaf may be restricted to L,
originating a functor, r : pSh(R) −→ pSh(L). This Chapter is devoted to the
inverse operation. Section 16.4 and Chapter 17 are references for the colimits
employed below.

31.1. We return to the context of Chapter 23. Let L be a semilattice, consi-
dered a category as in Example 16.4. Let C be a category that has colimits for all
diagrams over up-directed posets and fix a covariant functor 1

A : Lop −→ C.
We write the values of A at p ∈ L as A(p) and if p ≤ q ∈ L,

x ∈ A(q) 7−→ x|p ∈ A(p)

for the morphism corresponding to the pair p ≤ q. For p ≤ q ≤ r and x ∈ A(r),
the functoriality of A entails

x|r = x and x|p = (x|q)|p.
These equalities imply that a down-directed subset F of L gives rise to an inductive
system in C, A(F ), given by :

A(F ) = 〈A(q); {∗|p : p ≤ q in F} 〉.

Note that A(F ) is an inductive system over the up-directed subset F op of L. Write

AF = lim→p∈F
A(p) = lim→ A(F )

for the colimit of A(F ). Recall that AF comes equipped with C-morphisms

fFp : A(p) −→ AF , p ∈ F ,

making the following diagram commutative, for p ≤ q in F :

A(q) - A(p)

fFq fFp

AF

∗|p

A
A
A
A
AU

�
�
�
�
��

1That is, a L-presheaf with values in C.
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It is clear that if F has a least element p, then AF = A(p) and that the morphism
fFq is the restriction from A(q) to A(p).

If G is another down-directed subset of L, with F ⊆ G, then for all p ∈ F ,
there is a map fGp : A(p) −→ AG, making the diagram below-left commutative,
where p ≤ q in F :

A(q) - A(p)

fGq fGp

AG

∗|p

A
A
A
A
AU

�
�
�
�
��

A(p) - AF

fGp αFG

AG

fFp

A
A
A
A
AU

�
�
�
�
��

Since AF = lim→ A(F ), there is a unique C-morphism,

αFG : AF −→ AG,

making the diagram above right commutative, for all p ∈ F . We call αFG the
restriction from AF to AG.

A final comment : if F is empty, AF is also empty. Thus, if G is a down-directed
subset of L, the restriction map αFG is the empty map from AF to AG. 2

By Exercise 26.24, the category of L-presheaves is isomorphic to that of covari-
ant functors from Lop to Set, with natural transformations as morphisms. We may
therefore apply the general scheme described in 31.1 to the extension problem.

31.2. Let A be a L-presheaf and suppose that R is a semilattice, containing
L as a subsemilattice. For each u ∈ R, set

G(u) = {p ∈ L : u ≤ p}.
Clearly, G(u) is down-directed and, in fact, closed under meets. Let eA(u) be the
colimit of the system associated to G(u) and A, which comes equipped with maps
fpu : A(p) −→ eA(u), making the diagram below-left commutative :

A(q) - A(p)

fqu fpu

eA(u)

∗|p

A
A
A
A
AU

�
�
�
�
��

A(p) - eA(u)

fpv αuv

eA(v)

fpu

A
A
A
A
AU

�
�
�
�
��

Note that if v ≤ u in R, then G(u) ⊆ G(v), and 31.1 guarantees that there
is a unique map, αuv : eA(u) −→ eA(v), such that the diagram above-right is
commutative, for all p ∈ G(u). It is straightforward to verify that if r ≤ v ≤ u in
R, then

(*) αuu = IdeA(u) and αur = αuv ◦ αvr.
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Moreover, if p ∈ L, then p = min G(p) and we have :

(**)

{
(i) eA(p) = A(p); (ii) ∀ q ∈ G(p), αqp = ∗|p;

(iii) If p ∈ G(r), then αpr = fpr.

We now define a R-presheaf, eA, as follows :

(eA)


a) |eA| =

∐
u∈R eA(u);

b) EeA(s) = u iff s ∈ eA(u);

c) For s ∈ |eA| and v ∈ R, s|v = αEs,Es∧v(s).

2

Proposition 31.3. Notation as in 31.2, let A be a L-presheaf and R a semi-
lattice containing L as a subsemilattice. Then,

a) eA is a R-presheaf.

b) The map e : |A| −→ |eA| defined by

a ∈ |A| 7−→ ea ∈ eA(Ea) = A(Ea)

is an injection, such that for all 〈x, p 〉 ∈ |A| × L

Eex = Ex and e(x|p) = (ex)|p.

Moreover, for all s ∈ |eA|, there is p ∈ G(Es) and x ∈ A(p) such that s = x|Es
2.

c) If L is complete and A is extensional, then eA is extensional.

d) If B is a R-presheaf and |A| g−→ |B| is a map such that for all 〈x, p 〉 ∈ |A| × L

Egx = Ex and g(x|p) = (gx)|p,

then there is a unique morphism of R-presheaves, f : eA −→ B, such that the
diagram below-left is commutative :

A - eA

g f

B

e

A
A
A
A
AU

�
�
�
�
��

A - (eA)|L

e reA

eA

ρA

A
A
A
A
AU

�
�
�
�
��

e) There is a natural isomorphism, ρA : A −→ (eA)|L, making the diagram

above-right is commutative 3.

Proof. a) That eA is a R-presheaf follows easily from the equalities in (*)
of 31.2. For instance, if x ∈ |eA| and u, v ∈ R, then

(x|u)|v = x|u∧v
is an immediate consequence of the second equation in 31.2.(*).

2Thus, the image of e is restriction dense in eA; see 26.28.(d).
3Notation as in 26.5 and 26.25.
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b) Clearly, e has the stated properties. Fix s ∈ eA(u); since eA(u) = lim→p∈G(u)
A(p),

there is p ∈ G(u) and x ∈ A(p), such that fpu(x) = s. But (eA) in 31.2 then entails
x|u = s in eA 4.

c) Assume that A is extensional and L is complete. Let s, t ∈ eA(u) be sections
such that there is α ⊆ R satisfying∨

α = u and s|v = t|v, for all v ∈ α.

By item (b), there are p, q ∈ G(u), x ∈ A(p) and y ∈ A(q), such that x|u = s and

y|u = t. Since G(u) is down-directed, we may as well assume that p = q (otherwise,

substitute both for p ∧ q). For v ∈ α, we have

x|v = x|u∧v = (x|u)|v = s|v = t|v = y|v.
Since eA(v) = lim→r∈G(v)

A(r), there is qv ∈ G(v) such that x|qv = y|qv . Because

v ≤ u ≤ p, we may assume that qv ≤ p (otherwise, replace qv by its meet with p).
It is clear that

u ≤ q =def

∨
v∈α qv ∈ L.

Consider x′ = x|q, y
′ = y|q ∈ A(q); since s = x|u and t = y|u, we also have s = x′|u

and t = y′|u. Now observe that for all v ∈ α,

x′|qv = (x|q)|qv = x|q∧qv = x|qv = y|qv = y′|qv ,

and the extensionality of A entails x′ = y′. Thus, s = x′|u = y′|u = t, establishing

the extensionality of eA.

d) For u ∈ R and p ∈ G(u), since Egx = Ex, define

gpu : A(p) −→ B(u), by x ∈ A(p) 7−→ (gx)|u ∈ B(u).

Since g commutes with the restrictions by elements in L, the diagram below left
is commutative, where q ≤ p, both in G(u) :

A(p) - A(q)

gpu gqu

B(u)

∗|p

A
A
A
A
AU

�
�
�
�
��

A(p) - eA(u)

gpu fu

B(u)

fpu

A
A
A
A
AU

�
�
�
�
��

Since eA(u) = lim→p∈G(u)
A(p), there is a unique fu : eA(u) −→ B(u), such that the

diagram above-right is commutative, for all p inG(u). The family f = {fu : u ∈ R}
determines the required morphism of R-presheaves. Details are left to the reader.

4We are, of course, identifying A with its image by the injection e.

F. Miraglia. An Introduction to Partially Ordered Structures and Sheaves. Lógica no Avião.



Chapter 31. Base Extension 352

d) By 23.26.(a) (and (b) in the present result), there is a unique morphism of
L-presheaves, ρA : A −→ (eA)|L, such that the diagram in the statement is com-

mutative. Since for all p ∈ L we have

(eA)|L(p) = eA(p) = A(p),

it is clear that ρA is a bijection when restricted to A(p). Hence, ρA is an isomor-
phism between A and (eA)|L. �

Definition 31.4. The R-presheaf eA of 31.3 is the extension of A to R.

Example 31.5. Let g : C −→ D be a non-injective map of sets. Fix a, b in
C, such that g(a) = g(b). Let

L = [0, 1/2) ∪ (1/2, 1] ⊆ [0, 1] = R,

the unit real interval. Both L and R have their natural orders. Note that R is a
frame and L is a [∧,

∨
]-sublattice of R. Define a L-presheaf A as follows :

(i) |A| =
⋃
p∈[0,1/2) D × {p} ∪

⋃
p∈(1/2,1] C × {p};

(ii) E〈x, p 〉 = p;

(iii) 〈x, p 〉|q =

{
〈 g(x), p 〉 if p ∈ [0, 1/2) and q ∈ (1/2, 1]

〈x, p ∧ q 〉 otherwise.

A is extensional for the simple reason that no element of (1/2, 1] is the join of
elements in [0, 1/2). If p ≤ q in L, the restriction maps of A are given by

ρqp =


IdC if p, q ∈ (1/2, 1]

IdD if p, q ∈ [0, 1/2)

g if p ∈ [0, 1/2) and q ∈ (1/2, 1].

Consequently, eA(1/2) = lim→p>1/2
A(p) = C; further, for p < 1/2, the restric-

tion map from eA(1/2) to A(p) is g. Hence, for all p ∈ [0, 1/2),

a|p = b|p,

although a 6= b in eA(1/2). This shows that the hypothesis of completeness of L
in 31.3.(c) is necessary. 2

31.6. Base extension is a covariant functor. Let L ⊆ R be semilattices
and f : A −→ B be a morphism of L-presheaves. It is straightforward that the
composition

A
f−→ B

e−→ eB

verifies the conditions in item (d) of 31.3, and so there is a unique morphism of
R-presheaves, ef : eA −→ eB, making the following diagram commutative :
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B

A

?

- eA

f

e

eB

ef

e

?
-

The proof of 31.3.(d) will yield a concrete description of ef on the elements of |eA|.
It is straightforward that

e(IdA) = IdeA and e(g ◦ f) = eg ◦ ef ,

and so base extension is a covariant functor, e : pSh(L) −→ pSh(R). It has been
noted (26.25) that restriction is also a covariant functor, r : pSh(R) −→ pSh(L).
The next result establishes the adjointness of these functors. 2

Proposition 31.7. Let L ⊆ R be semilattices, A be a L-presheaf and B a
R-presheaf.

a) There is a natural morphism of R-presheaves, jB : e(B|L) −→ B, making the

following diagram commutative :

B|L - e(B|L)

rB jB

B

e

A
A
A
A
AU

�
�
�
�
��

b) Extension is left adjoint to restriction, that is, there a bijective correspondence,
natural in A and B,

kAB : [eA, B] ≈ [A, B|L],

defined by g 7−→ rg ◦ ρA, whose inverse is given by f 7−→ jB ◦ ef 5.

Proof. The existence and naturality of jB follows from the universal prop-
erty of the morphism e : B|L −→ e(B|L) in 31.3.(d). Item (b) is a straightforward

consequence of the universal properties of extension and restriction (26.25). �

Example 31.8. Let M be the sheaf of 23.11, whose base algebra is the
complete Boolean algebra 2I . Recall that for all u ⊆ I,

M(u) =
∏
i∈u Mi,

and the restriction maps are the projections that forget the coordinates outside
the larger domain.

5ρA as in 31.3.(e).
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Let βI be the Stone-Čech compactification of the discrete set I (21.6). Since
βI is the Stone space of 2I , Stone duality yields a lattice injection

2I −→ Ω(βI),

which identifies each u ⊆ I with the compact clopen Su
6. We may, therefore,

consider 2I as a sublattice of Ω(βI). To determine the extension of M to Ω(βI),
recall that by 21.2.(b), βI is extremally disconnected, that is, the closure of every
open set is clopen. Hence, if U ∈ Ω(βI), there is a unique u ∈ 2I , with U = Su.
Hence, if v ⊆ I, elementary topology and Stone duality yield

U ⊆ Sv iff Su ⊆ Sv iff u ⊆ v.

Whence, in the notation of 31.2,

G(U) = {v ⊆ I : u ⊆ v}.
and so

eM(U) = lim→v∈G(U)
M(v) = M(u) =

∏
i∈u Mi,

with restriction maps induced by M. In particular,

eM(βI) =
∏
i∈I Mi = M(I).

Let T = {tk : k ∈ K} be a compatible set of sections in |eM|. For each k ∈ K,
there is uk ⊆ I and sk ∈ A(uk) such that

Etk = Suk and sk = tk.

Since M is a sheaf, the sk have a unique gluing in M, s, whose extent is
v =

⋃
k∈K uk. By 19.7.(d).(2), we have

U =def

⋃
k∈K Etk ⊆

⋃
k∈K Suk ⊆

⋃
k∈K Suk = Sv.

Thus, if u ⊆ I is such that U = Su, then Su ⊆ Sv, that is, u ⊆ v. Then, s|u is the

unique gluing of the tk in eM. We have shown that eM is a sheaf over βI. Thus,
a sheaf over the discrete space I has given rise, by base extension, to a sheaf over
the non-discrete space βI.

Finally, if s, t ∈ |eM|, then

[[s = t]]eM = Es ∧ Et ∧ S[[s=t]],

where, in the second member of the above equation, the index [[s = t]] is the
equality of these terms as elements of |M|. 2

We now describe how restriction (26.5, 26.25) and extension behave on cat-
egories of sheaves. By 31.11.(a), extension does not, in general, preserve com-
pleteness (but see Exercise 31.14). If L ⊆ R are frames, to construct a functor,
ce : Sh(L) −→ Sh(R), we follow the extension functor e of 31.3 by completion
over R, obtaining the complete extension functor. Hence, we have functors

r : Sh(R) −→ Sh(L) and ce : Sh(L) −→ Sh(R),

which are still adjoint, as in 31.7.

6Su is the set of ultrafilters F in 2I such that u ∈ F .
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Corollary 31.9. If L ⊆ R are frames, then complete extension is left ad-
joint to restriction, i.e., if A is a L-sheaf and B is a R-sheaf, there is a bijective
correspondence, natural in A and B,

[ceA, B] ≈ [A, B|L],

which is induced, as in 31.7, by natural isomorphisms

ρA : A ≈ (ceA)|L and jB : ce(B|L) −→ B.

Proof. Left to the reader. �

Exercises

31.10. Prove 31.3.(d) making use of 26.21 and of the fact that A is restriction
dense in eA. 2

31.11. Let L be a semilattice with ⊥ and >. Let 2 = {⊥,>} ⊆ L; clearly, 2
is a complete subsemilattice of L.

a) Show that if A is a set (i.e., a 2-presheaf, 26.3), then the extension of A to L is
the constant A presheaf on L (26.4).

b) If B is a L-presheaf, then B|L can be naturally identified with the set of global

sections of B over L.

c) “Global section” is a functor from pSh(L) to Set = pSh(2), right adjoint to
the constant presheaf functor. 2

31.12. Let L be a distributive lattice and let A be a L-presheaf. With 31.8 as
a model, study the extension of A to the Stone space, S(L), of L. Show that if U
is a compact open in S(L), there is p ∈ L, such that eA(U) = A(p). 2

31.13. If L is a subsemilattice of R and A is a flabby presheaf over R (26.28.(e)),
then A|L is a flabby L-presheaf. 2

31.14. If L ⊆ R are frames, then B ∈ Sh(R) ⇒ B|L ∈ Sh(L). 2
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CHAPTER 32

Image of a Presheaf

As a preliminary to the construction in the title, we discuss the essential image
of a presheaf along h.

32.1. Let L
h−→ R be a semilattice morphism and let A be a L-presheaf. Set

A = {〈 a, q 〉 ∈ |A| × (Imh) : h(Ea) = q}.
Define a binary relation ϑA on A, as follows :

〈 a, q 〉 ϑA 〈 b, q′ 〉 iff q = q′ and ∃ u ∈ h−1(q) such that a|u = b|u.

ϑA is an equivalence relation on A. For instance, if 〈 a, q 〉 ϑA 〈 b, q′ 〉 and 〈 b, q′ 〉
ϑA 〈 c, q′′ 〉, then q = q′ = q′′; moreover, there are u, v ∈ L such that

h(u) = h(v) = q, a|u = b|u and b|v = c|v.

Hence, (u ∧ v) ∈ h−1(q), a|u∧v = c|u∧v, and so 〈 a, q 〉 ϑA 〈 c, q′′ 〉. If r ∈ Imh and

v, w ∈ h−1(r), then for all 〈 a, q 〉 ∈ A,

(ϑ)

 (i) 〈 a|v, q ∧ r 〉 ∈ A;

(ii) 〈 a|v, q ∧ r 〉 ϑA 〈 a|w, q ∧ r 〉 ϑA 〈 a|v∧w, q ∧ r 〉.

For (i), we have Ea|v = Ea ∧ v, and therefore h(Ea ∧ v) = q ∧ r. For (ii), let

u = Ea ∧ v ∧ w. Then, h(u) = q ∧ r and we get

(a|v)|u = a|Ea∧v∧w = a|v∧w = (a|w)|u,

as needed. Let |ηhA| be the set of equivalence classes of A by ϑA :

|ηhA| = {〈 a, q 〉/ϑA : 〈 a, q 〉 ∈ A}.
To avoid overloading notation, and whenever no confusion is possible, write 〈 a, q 〉
(or 〈 a, h(Ea) 〉) both for the element of A and for its class in |ηhA|. Define a
structure of Imh-presheaf on |ηhA| by the following prescriptions :

[ηh 1] : E〈 a, q 〉 = q;

[ηh 2] : For r ∈ Imh, 〈 a, q 〉|r = 〈 a|v, q ∧ r 〉, where v ∈ h−1(r).

By (ii) in (ϑ) above, [ηh 2] is independent of the element v in h−1(r). It is straight-
forward that the maps defined by [ηh 1] and [ηh 2] endow |ηAh| with the structure
of Imh-presheaf, written ηhA. For instance,

∗ 〈 a, q 〉|q = 〈 a|Ea, q 〉 = 〈 a, q 〉, verifying [rest 1] in 26.1;

∗ If r, r′ ∈ Imh and v, v′ ∈ L satisfy h(v) = r, h(v′) = r′, then
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(〈 a, q 〉|r)|r′ = (〈 a|v, q ∧ r 〉)|r′ = 〈 (a|v)|v′ , q ∧ r ∧ r
′ 〉

= 〈 a|v∧v′ , q ∧ r ∧ r
′ 〉 = 〈 a, q 〉|r∧r′ ,

verifying [rest 3] in 26.1. 2

Definition 32.2. The (Imh)-presheaf ηhA constructed in 32.1 is the essen-
tial image of A along h.

The basic properties of essential image are described in

Proposition 32.3. Let L
h−→ R be a semilattice morphism and let A be a

L-presheaf. With notation as above,

a) ηhA is a (Imh)-presheaf and the map 1

ηAh : |A| −→ |ηhA|, given by ηAh (a) = 〈 a, h(Ea) 〉,
makes the pair 〈 ηAh , h 〉 a morphism from A to ηhA in pSh.

b) If B is a R-presheaf and 〈 f, h 〉 : A −→ B is a morphism in pSh, there is a

unique map, f̂ : |ηhA| −→ |B|, satisfying the following properties :

(1) For all 〈 a, q 〉 ∈ |ηhA| and r ∈ Imh,

Ef̂(〈 a, q 〉) = q and f̂(〈 a, q 〉|r) = f̂(〈 a, q 〉|r,

that is, f̂ is a morphism of (Imh)-presheaves.

(2) The following diagram commutes :

A - ηhA

〈 f, h 〉 〈 f̂ , IdImh 〉

B

〈 ηh, h 〉

A
A
A
A
AU

�
�
�
�
��

Proof. a) For v ∈ L and a ∈ |A|,
ηh(a|v) = 〈 a|v, h(Ea ∧ v) 〉 = 〈 a, h(Ea) 〉|h(v)

= ηh(a)|h(v)
,

as needed to show that 〈 ηh, h 〉 is a morphism in pSh.

b) Note that if a, b ∈ |A| and ηh(a) = ηh(b), then f(a) = f(b). Indeed, the
hypothesis means that 〈 a, h(Ea) 〉 ϑA 〈 b, h(Eb) 〉, that is,

h(Ea) = h(Eb) and ∃ u ∈ L, with h(u) = Ea and a|u = b|u.

Hence, since Efa = h(Ea), we get

f(a|u) = (fa)|h(u)
= fa|h(Ea)

= f(a),

with similar relations for b, as desired. Set f̂(ηha) = f(a), to get the unique map
with the properties in the statement. �

1In fact, 〈 a, h(Ea) 〉/ϑA; but the reader should keep in mind our standing notational convention.

Moreover, as was the case of image for L-sets, we omit the mention of A in the map ηh when it
is clear from context.
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If h is surjective, then ηhA ∈ pSh(R). In the general case, to obtain the image
of A along h, we follow ηh by base extension from Imh to R; 31.3 and 32.3 yield

Corollary 32.4. Let L
h−→ R be a semilattice morphism and let A be a

L-presheaf.

a) There is a R-presheaf, dhA, and a morphism 〈 dh, h 〉 : A −→ dhA, such that if
B is a R-presheaf and 〈 f, h 〉 : A −→ B is a morphism, there is a unique morphism
of R-presheaves, g : dhA −→ B, making the triangle below-left is commutative.

A - dhA

〈 f, h 〉 〈 g, IdR 〉

B

〈 dhA, h 〉

A
A
A
A
AU

�
�
�
�
��

A - chA

〈 f, h 〉 g

B

〈 ch, h 〉

A
A
A
A
AU

�
�
�
�
��

b) If R is a frame, there is a sheaf chA over R and a morphism

〈 ch, h 〉 : A −→ chA,

such that if B is a R-sheaf 〈 f, h 〉 : A −→ B is a morphism, there is a unique
g : chA −→ B, making the triangle above-right commutative.

Proof. a) Define dhA = e(ηhA) and dh = e ◦ ηh; the existence and unique-
ness of g comes from 32.3.(b) and 31.3.(d). For (b), just follow the preceding
construction by completion over R. Details are left to the reader. �

Definition 32.5. a) The diagram 〈 dh, h 〉 : A −→ dhA of Corollary 32.4.(a)
is the image of A along h.

b) 〈 ch, h 〉 : A −→ chA in 32.4.(b) is the completion of A along h.

Remark 32.6. The constructions ηh, dh and ch are functors. We discuss
the case of dh, the others being analogous. If f : A −→ A′ is a morphism of L-
presheaves, composition with 〈 dh, h 〉 : A′ −→ dhA

′ yields a morphism from A to
dhA

′. The universal property in 32.4 yields a unique morphism of R-presheaves,
dhf : dhA −→ dhA

′, such that the following square is commutative :

A′

A

?

- dhA

f

〈 dh, h 〉

dhA
′

dhf

〈 dh, h 〉

?
-

dhf is obtained by base extension of the morphism ηhf : ηhA −→ ηhB, given
explicitly as

(*) ηhf(〈 a, h(Ea) 〉) = 〈 fa, h(Ea) 〉.
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For ease of reading, let k stand for ηhf . Let 〈 a, q 〉, 〈 b, q′ 〉 be sections in ηhA, such
that for some r ∈ R 〈 a, q 〉|r = 〈 b, q′ 〉|r. We may as well suppose that r ≤ q ∧ q′.
Since

dhA(r) = lim→w∈G(r)
ηhA(w)

there is p ∈ L such that r ≤ h(p) ≤ q ∧ q′ and 〈 a, q 〉|h(p)
= 〈 b, q′ 〉|h(p)

. But

then,

k(〈 a, q 〉)|r = (k(〈 a, q 〉)|h(p)
)|r = k(〈 a|p, h(p) 〉)|r

= k(〈 b|p, h(p) 〉)|r = (k(〈 b, q′ 〉)|h(p)
)|r = k(〈 b, q′ 〉)|r,

verifying the hypothesis of 26.21. Hence, k = ηhf has a unique extension to mor-
phism from dhA to dhB. 2

There is an important situation in which restriction and equality coexist in
harmony : presheaves over a frame (26.8). It will be shown that in this case image
as a Ω-set coincides with image as a Ω-presheaf. The results in 26.8 will be used
without explicit reference.

Proposition 32.7. Let h : Ω −→ R be a semilattice morphism. If A is a
Ω-presheaf, then for all x, y ∈ |A| and p, q ∈ L,

a) εh(x) = εh(y) and h(p) = h(q) ⇒ εh(x|p) = εh(y|q).

b) Let coker h = {p ∈ Ω : h(p) = >} 2; then, for p ∈ coker h, εh(x) = εh(x|p)
c) The maps

εhx ∈ |εhA| 7→ h(Ex) and 〈 εhx, r 〉 ∈ |εhA| × Imh 7→ εh(x|p)

where p ∈ h−1(r), define the structure of a (Imh)-presheaf on |εhA|, compatible
with its equality. Moreover, 〈 εh, h 〉 is a morphism from A to εhA.

d) For p ≤ q in Ω, let ρqp : A(q) −→ A(p) be the restriction, x 7→ x|p. For

r ∈ Imh, the system

〈A(q); {ρqp : p ≤ q and p, q ∈ h−1(r)} 〉
is inductive over the left-directed subset h−1(r) of Ω. If A is extensional then

εhA(r) = lim→p∈h−1(r)
A(p).

Proof. a) If εh(x) = εh(y) then

h(Ex) = h(Ey) = h([[x = y]]). (I)

Consequently, since Ex|p = p ∧ Ex and Ey|q = q ∧ Ey, we get

h(Ex ∧ p) = h(Ex) ∧ h(p) = h(Ey) ∧ h(q) = h(Ey ∧ q). (II)

Furthermore, by 26.8.(b) we have

h([[x|p = y|q]]) = h(p ∧ q ∧ [[x = y]]) = h(p) ∧ h([[x = y]]),

2Similar to 4.9.(d); clearly, if it is non-empty, coker h is a filter in Ω.
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and it is clear from (I) and (II) that x|p θA y|q, i.e., εh(x) = εh(y). Item (b) is an

immediate consequence of (a), because h(Ex ∧ p) = h(Ex).

c) By item (a), the definition of the restriction map in the statement is independent
of representatives. Moreover, by 30.3.(a), E(εhx) = h(Ex), x ∈ |A|. It is now
straightforward that εhA is a presheaf over the semilattice Imh and that 〈 εh, h 〉
is a morphism in pSh.

d) Since h is a semilattice morphism, it is clear that

p, q ∈ h−1(r) ⇒ p ∧ q ∈ h−1(r),

and h−1(r) is down-directed (or left-directed) in Ω. For p ∈ h−1(r), let

fp : A(p) −→ εhA(r), be given by fp(x) = εhx.

Hence, fp = (εh)|A(p)
. We shall verify that

I = 〈 εhA(r); {fp : p ∈ h−1(r)} 〉
is the inductive limit of the system in the statement. First, observe that I is a dual
cone over the base diagram, that is, for p ≤ q in h−1(r), the following diagram is
commutative :

A(q) - A(p)

fq fp

εhA(r)

ρqp

A
A
A
A
AU

�
�
�
�
��

Indeed, the equation fp ◦ fqp = fq follows easily from the fact, proven in (c), that
〈 εh, h 〉 is a morphism from the Ω-presheaf A to the Imh-presheaf εhA. To finish
the proof, it suffices to check that for p, q ∈ h−1(r), x ∈ A(p) and y ∈ A(q),

fp(x) = fqy iff ∃ u ∈ h−1(r), such that u ≤ p, q and x|u = y|u.

By the definition of εhA,

εhx = εhy iff h(Ex) = h(Ey) = h([[x = y]]),

and so [[x = y]] ∈ h−1(r). Since A is extensional, x|[[x=y]]
= y|[[x=y]]

, as needed.

Conversely, if there is u ≤ p ∧ q with h(u) = r and x|u = y|u, the definition of the

equality in A yields u ≤ [[x = y]]. Thus,

r = h(u) ≤ h([[x = y]]) ≤ h(Ex) = h(Ey) ≤ r,

establishing that εhx = εhy and ending the proof. �

We now have

Lemma 32.8. Let h : L −→ R be a semilattice morphism and let A be an
extensional Ω-presheaf.

a) For a, b ∈ |A|, a θA b iff 〈 a, h(Ea) 〉 ϑA 〈 b, h(Eb) 〉.
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b) The map βA : |εhA| −→ |ηhA|, defined by εha 7→ 〈 a, h(Ea) 〉/ϑA, is an iso-
morphism of (Imh)-presheaves. Moreover, if f : A −→ A′ is a morphism of L-
presheaves, the following diagram is commutative :

ηhA

εhA

?

- εhA
′

βA

εhf

ηhA
′

βA′

ηhf

?
-

Proof. a) If a θA b then h(Ea) = h(Eb) = h([[a = b]]). Since A is extensional,

a|[[a=b]]
= b|[[a=b]]

,

and so 〈 a, h(Ea) 〉 ϑA 〈 b, h(Eb) 〉. Conversely, if this relation holds, h(Ea) = h(Eb)
and there is p ≤ (Ea ∧ Eb) such that h(p) = h(Ea) and a|p = b|p. It follows that

p ≤ [[a = b]], wherefrom we conclude that

h(Ea) ≥ h([[a = b]]) ≥ h(p) = h(Ea),

showing that a θA b.

b) It follows immediately from (a) that βA is well-defined and bijective. It remains
to check that for all p ∈ Ω,

βA((εha)|h(p)
) = [βA(εha)]|h(p)

.

By 30.3.(c), we get

βA((εha)|h(p)
) = βA(εh(a|p)) = 〈 a|p, h(Ea∧ p) 〉

= 〈 a|p, h(Ea)∧h(p) 〉 = 〈 a, h(Ea) 〉|h(p)
= [βA(εha)]|h(p)

,

as desired. For a ∈ |A|, the explicit formula (*) for ηh in 32.6 and the definition
of εhf in 30.5 yield

βA′(εhf(εha)) = βA′(εh(fa)) = 〈 fa, h(Efa) 〉 = ηhf(〈 a, h(Ea) 〉)
= ηhf(βA(εha)),

and the displayed diagram is commutative, ending the proof. �

Remark 32.9. Let h : L −→ R be a semilattice morphism and let A be a
L-presheaf with a compatible structure of L-set. By 31.3.(b), εhA is restriction
dense in dhA. If R is a frame, it follows from 26.28.(a) and (e) that εh is dense
in dhA. Thus, both have the same completion over R, namely the R-sheaf chA of
30.9 and 30.11. Thus, εhA contains essentially the same information as dhA and
chA. 2

Example 32.10. If L ⊆ R are semilattices, write ι for the canonical injection
of L into R. Then, image along ι is precisely base extension from L to R, that is,
in the notation of 31.3, dι = e. 2

Example 32.11. Let Ω be a frame and p ∈ Ω. Consider the map
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h : Ω −→ p← given by h(u) = p ∧ u.

The ideal p← is a frame and h is a surjective [
∧

,
∨

]-morphism. If X is a topological
space and U is an open set in X, then h corresponds to the dual of the canonical
continuous injection of U into X 3.

I. If A is an extensional presheaf over Ω, then εhA is an extensional presheaf over
p←. To describe the sections of εhA, let q ≤ p. Then,

h−1(q) = {u ∈ Ω : u ∧ p = q}
and so q = min h−1(q). Consequently, 32.7.(d) yields

εhA(q) = lim→u∈h−1(q)
A(u) = A(q).

Hence, image along h “forgets” the part of A that is outside p. Note that for all
s, t ∈ |A|,

[[εhs = εht]] = p ∧ [[s = t]].

Thus, if Es, Et ∈ p←, εhs = εht iff s = t, whence εh is injective when
restricted to the subset

⋃
q≤p A(q) of |A|.

II. By 7.8, h has a right adjoint ρ : p← −→ Ω, determined by the adjunction

For all 〈u, q 〉 ∈ Ω × (p←), u ∧ p ≤ q iff u ≤ ρ(q).

Thus, [→] in 6.1 implies that for all q ≤ p, ρ(q) = (p → q).

Since h is surjective, by 7.9.(a), ρ is injective. Recalling that for all q ∈ p←

(p → ⊥) = ¬ p ≤ (p → q) ≤ (p → p) = >,

we get min(Imρ) = ¬ p, max(Imρ) = > and Imρ ⊆ (¬ p)→. In general, the
latter containment is strict : for instance, in the algebra of opens of (0, 1) ⊆ R, if
p = (0, 1/2) ∪ (1/2, 1), then ¬ p = ∅, but p is not of the form (p → q), q ≤ p.

If B is an extensional p←-set, then ερB is the Ω-set defined by

(i) |ερB| = |B|;
(ii) For s, t ∈ |B|, [[s = t]]ερB = p → ([[s = t]]B) ≥ ¬ p.
Thus, a section of extent q ≤ p in B, is considered as a section of extent (p → q)
in the Ω-set ερB. In particular,

∗ A global section in B (of extent p) is a global section (of extent >) in ερB;

∗ The unique section over ⊥ in B, yields the unique section of extent ¬ p in ερB.

Thus, image along g “spreads out” B over Ω, without producing sections of extent
strictly less than ¬ p.

Now suppose that B is an extensional presheaf over p←. Then, by 32.7, ερB is
a presheaf over Imρ. If q ≤ r ≤ p, the restriction map of B is transferred directly
to ερB, that is, if s ∈ ερB(ρ(r)), then

s|ρ(q) = s|q,
regarded as an element of ερB(ρ(q)). We take the opportunity to comment on the
extension of ερB to the Ω-presheaf dρB, discussed in 31.3. For u ∈ Ω,

3That is, h = ι∗, where ι : U ↪→ X.
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G(u) = {q ∈ p← : u ≤ (p → q)} = {q ∈ p← : u ∧ p ≤ q}
= {q ≤ p : h(u) ≤ q}.

and dρB(u) = lim→q∈G(u)
B(q). Since for all u ∈ Ω, G(u) = G(p ∧ u) and

(p ∧ u) ∈ p←, it follows that 4

dρB(u) = dρB(p ∧ u) = lim→p∧u≤q≤p
B(q) = B(p ∧ u).

This fits well with the preceding results because if u = (p → q), then

p ∧ u = p ∧ (p → q) = p ∧ q = q,

whence dρB(p → q) = B(q). If v ≤ u in Ω, the restriction map from dρB(u) to
dρB(v) is induced by B, i.e., if s ∈ dρB(u) = B(p ∧ u), then s|v in |dρB| is s|p∧v
in |B|. Therefore,

∗ (dρB)|p is a copy of B, that is, for all r, q ≤ p,

dρB(q) = B(q) and ·|q is the restriction map of B;

∗ If u ≤ ¬ p, then dρB(u) = B(⊥) and the restriction maps into dρB(u) are the
only possible ones, taking all elements to ∗;
∗ If s ∈ dρB(u) and t ∈ dρB(v), then

[[s = t]]dρB = u ∧ v ∧ ρ([[s = t]]B),

the verification of which is left to the reader.

∗ εhερB = B.

III. By 7.8, h has a left adjoint, λ : p← −→ Ω, determined by the adjunction

For all 〈x, q 〉 ∈ p← × Ω, λ(x) ≤ q iff x ≤ h(q) = p ∧ q.
Hence, λ is the natural inclusion x ∈ p← 7−→ x ∈ Ω.

If D is an extensional p←-set then ελD is the extensional Ω-set, whose domain
is that of D and whose equality is [[∗ = ∗]]D, considered as an element of Ω. In this
case, ελA may be identified with A, equality included.

If D is a p←-presheaf, as observed in 32.10, dλ is base extension from p← to
Ω. To describe the sections of dλD = eD, let u ∈ Ω. Then,

G(u) = {q ∈ p← : u ≤ q} =

{
u← if u ∈ p←

∅ otherwise.

Therefore,

eD(u) =

{
D(u) if u ≤ p

∅ otherwise,

with restriction induced by D. Therefore, eD is a copy of D over the elements in
p←, with empty set of sections over all elements of Ω outside p←. If A is a presheaf
over Ω, the reader can check that the preceding description and the results in (I)
above entail

4Or put differently, since u ≤ (p → (p ∧ u)), p ∧ u = min(G(u)) ∈ p←.
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dλεhA = edhA = A|p.
The examples above are a special − although important −, instances of 30.12

and 33.9. 2

The description of the base extension along the natural embedding p← ↪→ Ω
in 32.11.(III) yields

Corollary 32.12. Let Ω be frame and p ∈ Ω. If A is a sheaf over p←, then
eA is a sheaf over Ω, such that for u ∈ Ω

eA(u) =

{
A(u) if u ≤ p

∅ otherwise.
2

Exercises

32.13. Let L
h−→ R be a semilattice morphism, A be a L-presheaf and r ∈

Imh.

a) h−1(r) is a down-directed subset of L.

b) For u ≤ v in h−1(r), let ρuv : A(u) −→ A(v) be the restriction map of A. The
system 〈A(u); {ρuv : v ≤ u in h−1(r)} 〉 is inductive and

ηhA(r) = lim→u∈h−1(r)
A(u). 2

32.14. Show that Proposition 30.12 holds for the image functor, that is, if

L
f−→ R

g−→ T are semilattice morphisms, then dg ◦ f = dg ◦ df . 2

32.15. 5 Let h : Ω −→ R be a surjective semilattice morphism and let C(R) be
the category whose objects are extensional R-presheaves with compatible structure
of R-set and arrows R-set morphisms. By 32.7.(c), εh is a functor from pSh(Ω)
to C(R). Prove that this functor preserves all finite limits. 2

5This exercise complements 30.6.
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CHAPTER 33

Inverse Image of a Presheaf

Let h : L −→ R be a semilattice morphism. If B is a R-presheaf, set

(i) |ihB| =
∐
p∈L B(h(p)) =

⋃
p∈L B(h(p)) × {p};

(ii) EηhB〈 s, p 〉 = p; (iii) 〈 s, p 〉|q = 〈 s|h(q)
, p ∧ q 〉.

The properties [rest 1] − [rest 3] in 26.1 are readily verified. For instance

〈 s, p 〉|p = 〈 s|h(p)
, p 〉 = 〈 s, p 〉,

because s ∈ B(h(p)) and B is a R-presheaf. Similarly, for p, q, r ∈ L,

(〈 s, p 〉|q)|r = 〈 (s|h(q)
)|h(r)

, p∧ q ∧ r 〉 = 〈 s|h(q)∧h(r)
, p∧ q ∧ r 〉

= 〈 s|h(q∧r), p∧ q ∧ r 〉 = 〈 s, p 〉|q∧r.

Definition 33.1. The presheaf ihB is the inverse image of B along h.

Remark 33.2. As was the case in 30.13, for sheaves over topological spaces,
classical nomenclature is dual to ours. If f : X −→ Y is a continuous map and A
is a sheaf over X, inverse image along f∗ is called image along f , written f∗A.
The arguments for this and for our usage are the same as in 30.13. Additional
arguments will emerge in 33.9. A clue to what is happening is already in 33.11. 2

Proposition 33.3. Let h : L −→ R be a semilattice morphism and B a
R-presheaf.

a) ihB is extensional whenever h is a [∧,
∨

]-morphism and B is extensional.

b) The map

ih : |ihB| −→ |B|, given by 〈 s, p 〉 7→ s,

makes 〈 ih, h 〉 a morphism from ihB to B in pSh (29.1.(b)), with the following
universal property :

If A is a L-presheaf and 〈 f, h 〉 : A −→ B is a morphism in pSh, there is a
unique morphism of L-presheaves, g : A −→ ihB, making the following diagram
commutative :

365
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A - ihB

〈 f, h 〉 〈 ih, h 〉

B

〈 g, IdL 〉

A
A
A
A
AAU

�
�
�
�
���

c) If L and R are frames, h is a frame morphism and B is a sheaf, then ihB is a
sheaf over L.

Proof. a) For 〈 s, p 〉, 〈 t, p 〉 ∈ |ihB|, suppose that there is α ⊆ L is such that∨
α = p and 〈 s|t(q), q 〉 = 〈 t|h(q)

, q 〉, for all q ∈ α.

Since h preserves joins, we have
∨
q∈α h(q) = h(p) and s|h(q)

= t|h(q)
, for all

q ∈ α. Since EBs = EBt = h(p), the extensionality of B implies that s = t and
so 〈 s, p 〉 = 〈 t, p 〉, as needed.

b) Clearly, 〈 ih, h 〉 is a morphism in pSh. If 〈 f, h 〉 : A −→ B is a morphism in
pSh, then for all x ∈ |A|, we have EBfx = h(EAx). Hence, 〈 fx,EAx 〉 ∈ |ihB|,
and the map

g : |A| −→ |ihB|, given by by x 7−→ 〈 fx,EAx 〉
is well-defined. If p ∈ L and x ∈ |A|, we have

g(x|p) = 〈 f(x|p), p ∧ EAx 〉 = 〈 (fx)|h(p)
, p ∧ EAx 〉 = 〈 fx,EAx 〉|p

= (gx)|p,

and g is a morphism of L-presheaves. Uniqueness is clear.

c) Let {〈xi, pi 〉 : i ∈ I} be a compatible set of sections in ihB, i.e., for all i, j ∈ I
〈xi, pi 〉|pj

= 〈xi|h(pj)
, pi ∧ pj 〉 = 〈xj |h(pj)

, pi ∧ pj 〉 = 〈xj , pj 〉|pi
.

Consequently, xi|h(pj)
= xj |h(pi)

; since EBxi = h(pi), the collection xi, i ∈ I,

is compatible in B. Let x be the unique gluing of the xi in B. Since h preserves
joins, it follows that

EBx =
∨
i∈I h(pi) = h(

∨
i∈I pi),

and so 〈x, q 〉, with q =
∨
i∈I pi, is an element in the domain of ihB. It is easily

established that 〈x, q 〉 is a gluing of the 〈xi, pi 〉 in ihB. Uniqueness of 〈x, q 〉 is a
consequence of item (a), ending the proof. �

Illustrating the interplay between direct and inverse image we have
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Proposition 33.4. Consider the commutative square below left,

P

L

?

- R

α

h

Q

β

ĥ

?
- cαA

A

?

- B

〈 cα, α 〉

〈 f, h 〉

cβB

〈 cβ , β 〉

〈 f̂ , ĥ 〉

?
-

where L, R are semilattices, P , Q are frames, h, α, β are semilattice morphisms

and ĥ is a frame-morphism. Suppose 〈 f, h 〉 : A −→ B is a morphism in pSh.

Then, there is a unique morphism, 〈 f̂ , ĥ 〉 : cαA −→ cβB, making the diagram
above-right commutative.

Proof. Recall that cαA is the completion of A along α, as in 30.9. Write
γ = β ◦ h : L −→ Q and f0 = cβ ◦ f . Then, 〈 f0, γ 〉 is a morphism in pSh from
A to cβB. Hence, 32.4 yields a unique morphism, f1 : dγA −→ cβB, such that the
following triangle is commutative :

A - dγA

〈 f0, γ 〉 f1

cβB

〈 dγ , γ 〉

A
A
A
A
AU

�
�
�
�
��

Since γ = ĥ ◦ α, it follows from Exercise 32.14 that dγA = dĥ(dαA) and

so we have a morphism 〈 dĥ, ĥ 〉 : dαA −→ dγA, which upon composition with f1,

yields a morphism 〈 f2, ĥ 〉 : dαA −→ cβB. By 33.3.(b), there is a unique morphism
f3 : dαA −→ iĥcβB, such that the triangle below-left is commutative :

dαA - iĥcβB

〈 f2, ĥ 〉 〈 iĥ, ĥ 〉

cβB

f3

A
A
A
A
AU

�
�
�
�
��

A - cαA

〈 f4, α 〉 f5

iĥcβB

〈 cα, α 〉

A
A
A
A
AU

�
�
�
�
��

Hence, with f4 = f3 ◦ dα, we obtain a morphism in pSh, 〈 f4, α 〉 : A −→ iĥcβB.
Since, iĥcβB is a sheaf over P (33.3.(c)), Corollary 32.4.(b) yields a unique mor-
phism f5 : cαA −→ iĥcβB, such that the triangle above-right is commutative.

Composing f5 with 〈 iĥ, ĥ 〉 one obtains the morphism 〈 f̂ , ĥ 〉 : cαA −→ cβB with
the desired properties. �
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Proposition 33.4 and Examples 27.21 and 29.2 yield

Corollary 33.5. A homomorphism of commutative rings with identity,
f : A −→ B, induces a morphism of their structure sheaves (or affine schemes)

〈 f, f∗Z 〉 : cA −→ cB
such that for all a ∈ R the restriction of f to the ring RS−1

a of sections of cR over
Za is given by f(〈x/an, Za 〉) = 〈 fx/(fa)n, Zfa 〉.

Proof. With notation as in 29.2, we have a commutative square

ΩA

L(A)

?

- L(B)

can.

h

ΩB

can.

f∗Z

?
-

where ΩA, ΩB are the frames of opens in Spec(A) and Spec(B), and can. are the
inclusions 1. Now apply 33.4 to 〈 γ, h 〉 : A −→ B of 29.2 to complete the proof. �

Corollary 33.5 and Theorem 27.22 show that there is a natural covariant func-
tor from the category of commutative rings with identity into Sht, whose image
are the affine schemes.

Example 33.6. If L ⊆ R are semilattices and ι is the injection of L into R,
then inverse image along ι is precisely restriction to L, that is, ηιB = B|L. This,

Example 32.10 and Proposition 31.7 suggest the development that follows. 2

Theorem 33.7. Let h : L −→ R be a semilattice morphism, A be a L-presheaf
and B be a R-presheaf.

a) There are unique morphism of L and R presheaves, respectively,

fA : A −→ ihdhA and bB : dhihB −→ B,

natural in A and B, making the following diagrams commutative :

A - ihdhA

〈 dh, h 〉 〈 ih, h 〉

dhA

〈 fA, IdL 〉

A
A
A
A
AU

�
�
�
�
��

ihB - dhihB

〈 ih, h 〉 〈 bB , IdR 〉

B

〈 dh, h 〉

A
A
A
A
AU

�
�
�
�
��

If L and R are frames and A, B are sheaves, then

(i) fA is a morphism from A to ihchA;

1Recall that h is the restriction of f∗Z to L(A).
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(ii) bB has a unique extension to a morphism from chihB to B, still denoted by
the same symbol.

b) Image along h is left adjoint to inverse image along h, that is, there is a bijective
correspondence, natural in A and B,

[dhA, B] ≈ [A, ihB],

given by α 7→ ihα ◦ fA, whose inverse is β 7→ bB ◦ dhβ.

c) If L and R are frames and h is a frame morphism, the functor
ch : Sh(L) −→ Sh(R) is left adjoint to ih : Sh(R) −→ Sh(L) and the nat-
ural bijective correspondence in (b) is valid for sheaves, with ch in place of dh and
fA, bB interpreted as in (a).(i) and (a).(ii), respectively.

Proof. The hard work has all been done. For (a), existence and uniqueness of
fA and bB follows from 33.3.(b) and 32.4. For instance, since 〈 dh, h 〉 is a morphism
from A to dhA, 33.3.(b) yields a unique morphism of L-presheaves, fA, making
commutative the diagram displayed on the left. Similarly, applying 32.4 to the
morphism 〈 ih, h 〉 yields bB .

Since dhA may be considered a subpresheaf of chA, we get ihdhA ⊆ ihchA, as
needed for (a).(i). The result in (a).(ii) is a consequence of unique extension of a
morphism to the completion of a presheaf (27.9.(3) or 30.9.(3)).

Items (b) and (c) are straightforward consequences of (a) and the uniqueness
of morphisms making certain diagrams commute. Details are left to the reader. �

Remark 33.8. In the proof of 33.7, there is no explicit formula for the mor-
phisms fA and bB , because the proof does not depend on this information. However,
in certain situations it may be useful to have such formulas. In the setting of 33.7,
let A is a L-presheaf. Then, the map

a ∈ |A| 7−→ 〈 ηha,Ea 〉 ∈ |ihηhA| ⊆ |ihdhA|,
is a morphism of L-presheaves, making the left-displayed diagram in the statement
of 33.7 commutative. By uniqueness, it must be fA.

Now let B be a R-presheaf, p ∈ L and s ∈ |B|, with Es = h(p). Consider the
map α defined by

〈 〈 s, p 〉, h(p) 〉 ∈ |ηhihB| 7−→ s ∈ |B|.
To show that α is well-defined, assume that 〈 〈 s, p 〉, h(p) 〉 ϑηhB 〈 〈 t, q 〉, h(q) 〉.
Then, h(p) = h(q) and there is u ≤ p such that h(u) = h(p) and

〈 s, p 〉|u = 〈 t, q 〉|u;

whence, s|h(u)
= t|h(u)

. Since Es = h(u) = h(p) = Et, we obtain s = t, as needed.

Clearly, α preserves extent. If q ∈ Imh, since ηh commutes with restriction to q,
we have, for r ∈ h−1(q),

α(ηh(〈 s, p 〉)|h(r)
) = α(ηh(〈 s, p 〉|r)) = α(ηh(〈 s|h(r)

, p∧ r 〉) = s|q,

and α preserves restriction by all q ∈ Imh. It is clear that α makes the right-
displayed diagram in the statement of 33.7 commutative, with dh replaced by ηh.
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By 31.3.(d), α has a unique extension to a morphism from dhihB to B. This
extension makes the right-displayed diagram in the statement of 33.7 commute,
and so is the required morphism bB . 2

In the spatial setting, if f : X −→ Y is a continuous map, then f∗ is a frame
morphism, with right adjoint f∗. We now consider an abstract counterpart of this
situation, already previewed in 32.11.

As shown by (a) and (d) in 33.3, inverse image has pleasant preservation
properties when h is a [∧,

∨
]-morphism. Additionally, 7.8 guarantees that h has

a right adjoint, g : R −→ L, that is, g is a
∧

-morphism such that

[adj] For all 〈u, v 〉 ∈ L × R, hu ≤ v ⇔ u ≤ gv.

When L and R are frames, there is a connection between the inverse image along
h and the image along g, for extensional presheaves :

Theorem 33.9. Let h : L −→ R be a frame morphism, with right adjoint g.
Let A, B be an extensional presheaves over L and R, respectively. Then,

a) For all 〈 s, p 〉, 〈 t, q 〉 ∈ |ihB|
[[〈 s, p 〉 = 〈 t, q 〉]] = g([[s = t]]B) ∧ p ∧ q.

b) There is an injective L-set morphism, natural in B,

ιB : εgB −→ ihB, given by εgs 7−→ 〈 s|hg(Es)
, g(Es) 〉,

whose image is restriction dense 2 in ihB. Furthermore, if p ∈ Img and x ∈ |εgB|,
then ιB(x|p) = ιB(x)|p.

c) If B is a R-sheaf, ιB has a unique extension to a natural isomorphism from
cgB to ihB, that in turn induces a natural isomorphism between the functors cg
and ih.

d) The functor ch is left adjoint to cg.

e) If h is surjective, then

(1) chihB ≈ chcgB ≈ B;

(2) The map 〈 ih, h 〉 : ihεhA −→ εhA is a retract (29.5).

f) If h is injective, then ihchA ≈ cgchA ≈ A.

Proof. a) Since E〈 s, p 〉 = p in ihB, while EBs = h(p), we have

[[〈 s, p 〉 = 〈 t, q 〉]] =
∨
{u ≤ p ∧ q : 〈 s, p 〉|u = 〈 t, q 〉|u}

=
∨
{u ≤ p ∧ q : 〈 s|h(u)

, u 〉 = 〈 t|h(u)
, u 〉}

=
∨
{u ≤ p ∧ q : s|h(u)

= t|h(u)
}

=
∨
{u ≤ p ∧ q : h(u) ≤ [[s = t]]B},

where the last step in the above equalities follows from extensionality and 26.8.(d).(2).
Since h preserves arbitrary joins, it follows that

2Defined in 26.28.(d).
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h([[〈 s, p 〉 = 〈 t, q 〉]]) ≤ [[s = t]]B ,

and the adjointness relation [adj], E〈 s, p 〉 = p and E〈 t, q 〉 = q, entail

[[〈 s, p 〉 = 〈 t, q 〉]] ≤ g([[s = t]]B) ∧ p ∧ q.
Let w = g([[s = t]]B) ∧ p ∧ q; clearly, h(w) ≤ h(p ∧ q) = h(p) ∧ h(q). By 7.8.(a),
we have

For all v ∈ R and p ∈ L, hg(v) ≤ v and p ≤ gh(p), (*)

Thus,

h(w) = h(g([[s = t]]B) ∧ p ∧ q) = h(g([[s = t]]B)) ∧ h(p) ∧ h(q)

≤ [[s = t]]B ∧ h(p) ∧ h(q) = [[s = t]]B ,

and so s|h(w)
= t|h(w)

in B. Hence,

〈 s, p 〉|w = 〈 s|h(w)
, w 〉 = 〈 t|h(w)

, w 〉 = 〈 t, q 〉|w,

showing that w ≤ [[〈 s, p 〉 = 〈 t, q 〉]], as needed.

b) For s ∈ |B|, (*) entails h(g(Es)) ≤ Es and so 〈 s|hg(Es), g(Es) 〉 is in |ihA|. To

show that ιB is well-defined, let t ∈ |B| verify εgs = εgt; then

g(Es) = g(Et) = g([[s = t]])

and so h(g([[s = t]])) ≤ [[s = t]] ((*), again), which entails s|hg(Es) = t|hg(Et), as

needed. Clearly,

EιBεgs = g(Es) = Eεgs.

Furthermore, item (a) yields

[[ιBεgs = ιBεgt]] = [[〈 s|hg(Es), g(Es) 〉 = 〈 t|hg(Et)
, g(Et) 〉]]

= g([[s|hg(Es) = 〈 t|hg(Et) 〉]]) ∧ g(Es) ∧ g(Et)

= g([[s = t]]) ∧ g(Es) ∧ g(Et)

= g([[s = t]]) = [[εgs = εgt]],

and ιB is, by 25.21, a monic morphism from εGB into ihB. For 〈 s, p 〉 ∈ |ihB|, we
have, because of Es = h(p) and hgh = h (7.8.(b)),

ξ =def ιBεgs = 〈 s|hg(Es)
, g(Es) 〉 = 〈 s|hgh(p)

, gh(p) 〉
= 〈 s|h(p)

, gh(p) 〉 = 〈 s, gh(p) 〉,

and so, since p ≤ gh(p), it follows that

ξ|p = 〈 s|h(p)
, p ∧ gh(p) 〉 = 〈 s, p 〉.

Hence, the image of ιB is restriction dense (26.28.(d)) in ihB. Similar techniques
will establish the remaining statements in (b).

c) By 27.17, ιB has a unique monic extension, γB , to cgB, the completion of εgB
over L. Since the image of ιB is restriction dense in ihB, it is clear that γB is onto
|ihB|, and hence an isomorphism. Just as in the proof of 30.12, the family

γ = {γB : B is a R-sheaf}
is a natural isomorphism between the functors cg and ih. Hence, sheaf-theoretical
inverse image by h comes to the same thing as sheaf-theoretical image by its adjoint
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g. This also establishes (d). For (e), observe that if h is surjective, 7.9 guarantees
that h ◦ g = IdR and (1) is an immediate consequence of (b) and 30.12.(c). For
(2), consider the morphism

〈 ι(εhA) ◦ εg, g 〉 : εhA −→ ihεhA,

where ι∗ is defined in item (b). Since h ◦ g = IdR, it remains to check that
(ih ◦ ι(εhA) ◦ εg) is the identity in εhA. The definitions of ι∗ in item (b) and of ih
in 33.3.(b) yield, for x ∈ |A|,

ih(ι(εhA)(εg(εhx))) = ih

(
〈 (εhx)|hg(Ex)

, g(Eεhx) 〉
)

= ih(〈 εhx, g(Eεhx) 〉) = εhx,

as needed. Item (f) is similar to (e).(1), ending the proof. �

The reader will have noticed that Propositions 30.12 and Theorem 33.9 ap-
ply to the spatial situation, in fact generalizing it considerably. All the classical
relations involving image and inverse image along a continuous map are straight-
forward consequences of the results presented above.

Example 33.10. Let h : Ω −→ 2 = {⊥, >} be a pure state in Ω (12.14), i.e.,
a surjective frame morphism; h has a right adjoint g (7.8), given by

g(>) = > and g(⊥) =
∨
{p ∈ Ω : h(p) = ⊥}.

Since F = coker h = {q ∈ Ω : h(q) = >} is a completely prime filter in Ω (12.1),
the join of all elements outside F is outside F , constituting the value of g at ⊥.
Write

qF = g(⊥) =
∨
{p ∈ Ω : p 6∈ F}.

In the spatial setting, if X is a topological space and x is point in X, the
(completely prime) filter of open neighborhoods of x in X induces a pure state px
in Ω(X), given by

px(U) = > iff u ∈ νx.

The right adjoint of px takes ⊥ to (X − {x}), the largest open in X to which
x does not belong. If B is a set (i.e., a 2-sheaf), inverse image of B along h is,
by 33.3.(c), a sheaf over Ω, which by 33.9.(c), is the same as the completion of
εgB. We discuss both constructions, to illustrate the relations between them. One
should keep in mind that, as a 2-sheaf, the domain of B is B ∪ {∗}, where ∗ 6∈ B,
with equality given by

[[x = y]] =

{
> if x = y in B,

⊥ otherwise.

In particular, [[∗ = ∗]] = [[x = ∗]] = ⊥.

The Ω-set εgB has sections only over g(⊥) = qF and g(>) = >, as follows :

εGB(>) = B and εGB(qF ) = {∗}.
Moreover, since εg is injective and B is extensional, we may identify εGx with
x ∈ |B| (30.2). Thus, for x, y ∈ |εgB|,
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(I) [[x = y]]εgB = g([[x = y]]) =

{
> if x = y in B;

qF otherwise.

The definition in the first paragraph of this Chapter yields, since B(⊥) = {∗},
|ihB| =

⋃
p∈Ω B(h(p)) × {p}

=
⋃
p∈F B × {p} ∪

⋃
p≤qF {∗} × {p}.

ihB is a sheaf over Ω, the skyscraper sheaf over Ω, centered at F and
generated by B.

Note that εgB is indeed restriction dense in ihB and so the latter is the former’s
completion. In view of 33.9.(a) and (I) above, equality in ihB is given by

[[〈x, p 〉 = 〈 y, q 〉]] = p ∧ q ∧ g([[x = y]])

=

{
p ∧ q if x = y in B,

p ∧ q ∧ qF otherwise.

It is instructive to go back to the spatial setting and to verify, directly, that ihB
is a sheaf. 2

Exercises

33.11. In the setting of 32.11, show that if B is a p←-presheaf, then dgB can
be naturally identified with ihB

3. 2

33.12. Let h : L −→ R be a semilattice morphism and B a flabby R-presheaf
(26.28.(e)). Then, ihB is a flabby L-presheaf. 2

33.13. If L
h−→ R

k−→ T are semilattice morphisms, then ik◦h = ih ◦ ik. 2

3So inverse image along h is image along g.
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CHAPTER 34

Localization, Fibers and Stalks

As an application of the image functor, we present the notions of localization,
fiber and stalk.

Definition 34.1. Let L be a distributive lattice and F a proper filter in L.
Let πF : L −→ L/F be the natural quotient map. If A is a L-set, write

A/F =def επFA

for the extensional image of A along πF (30.4). The L/F -set A/F is the local-
ization of A at F ; its set of global sections is the fiber of A at F , written AF .
The morphism

〈 εF , πF 〉 =def 〈 επF , πF 〉 : A −→ A/F

is the localization morphism of A at F . Whenever context allows, write x/F
for εFx, x ∈ |A|. If u ∈ F and s ∈ A(u), then εF s is a global section of A/F 1,
written sF and called the germ of s at F 2.

If f : A −→ B is a morphism of L-sets, write

f/F : A/F −→ B/F ,

for the morphism επF f (the localization of f at F ) and fF for the map induced by
f/F on global sections (the fiber map induced by f at F ).

Remark 34.2. Recall that for a ∈ L, a/F stands for the equivalence class of
a by the congruence generated by F . By a standard abuse of notation, we have

a/F = π−1
F (a/F ) and a/F = πF (a).

We collect here some of the formulas that describe explicitly the concepts
introduced above. Let f : A −→ B be a morphism of L-sets and F a (proper)
filter in L. For all x, y ∈ |A| :

(1)

{
[[x/F = y/F ]] = πF ([[x = y]]) = [[x = y]]/F ;

E(x/F ) = πF (Ex) = (Ex)/F ;

(2) f/F (x/F ) = (fx)/F ;

(3) [[f/F (x/F ) = f/F (y/F )]] = πF ([[fx = fy]]) = [[fx = fy]]/F .

(4) If Ex ∈ F , then fF (xF ) = f/F (x/F ) = (fx)/F = (fx)F , i.e., the
germ of a section at F is taken to the germ of fx at F .

1Recall that u ∈ F iff πF (u) = >.
2By analogy with the classical construction; see 34.10.
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(5) If A is a L-presheaf, then A/F is a presheaf over L/F (32.7.(c)).

These observations will be used forthwith, without explicit reference. 2

Proposition 34.3. Let L be a distributive lattice. If A is a L-set and F is a
proper filter in L, then for all x, y ∈ |A|
a) If (Ex ∨ Ey) ∈ F , then x/F = y/F iff [[x = y]] ∈ F .

b) x/F ∈ AF iff Ex ∈ F . If Ex, Ey ∈ F , xF = yF iff [[x = y]] ∈ F .

c) If L is a Heyting algebra, x/F = y/F iff [x ≡ y] ∈ F 3.

Proof. Recall (4.9) that for p, q ∈ L
πF p = πF q iff ∃ u ∈ F such that u ∧ p = u ∧ q. (*)

Since the equivalence relation θA defining |A/F | is given by

πF (Ex) = πF (Ey) = πF ([[x = y]]),

(*) and the fact that a filter is closed under meets yield

(**) x/F = y/F iff

{
∃ u ∈ F such that

u ∧ Ex = u ∧ Ey = u ∧ [[x = y]].

a) If (Ex ∨ Ey) ∈ F and x/F = y/F , there is u ∈ F verifying the conditions in
the right-hand side of (**). Hence,

(Ex ∨ Ey) ∧ u = (Ex ∧ u) ∨ (Ey ∧ u) = Ex ∨ u = u ∧ [[x = y]]

≤ [[x = y]],

and so [[x = y]] ∈ F . The converse is clear.

b) Since E(x/F ) = πF (Ex) and F = π−1
F (>), it follows that x/F is a global section

of A/F iff Ex ∈ F . The remainder of (b) is an immediate consequence of (a).

c) If L is a HA and x/F = y/F , then (**) entails that for some u ∈ F
u ∧ (Ex ∨ Ey) = u ∧ [[x = y]] ≤ [[x = y]].

The adjunction [→] in 6.1 implies u ≤ [x ≡ y], and [x ≡ y] ∈ F . For the converse,
28.2.(c) entails that, with u = [x ≡ y], the conditions in the right-hand side of
(**) are satisfied, whence x/F = y/F . �

For Ω-presheaves, the fiber construction is closer to its classical counterpart.
From Propositions 34.3, 32.7 and 26.8 we obtain :

Corollary 34.4. If A is an extensional Ω-presheaf, then for all x, y ∈ |A|
a) The following conditions are equivalent :

(1) x/F = y/F ; (2) [x ≡ y] ∈ F ; (3) ∃ p ∈ F with x|p = y|p.

b) E(x/F ) = > iff Ex ∈ F . If Ex, Ey ∈ F , then

xF = yF iff ∃ p ∈ F ∩ (Ex ∧ Ey)← such that x|p = y|p.

In particular, if p, Ex ∈ F , then (x|p)F = xF .

3For the definition of strict equality, [· ≡ ·], and its basic properties see 28.1 and 28.2.
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c) For p ≤ q, let ρqp : A(q) −→ A(p) be the restriction map x 7→ x|p. For r ∈ Ω,

let Dr = {q ∈ L : q ≤ r and q/F = r/F}. The system

〈A(q); {ρqp : p ≤ q with p, q in Dr} 〉
is an inductive system of sets and maps such that A/F (r/F ) = lim→q∈Dr

A(q).

In particular, AF = lim→p∈F
A(p) i.e., the fiber of A at F is the inductive limit

of the sections with extent in F , by the restriction maps of A 4.

d) If B ⊆ |A| is restriction dense in A (26.28.(d)), then

AF = {bF : b ∈ B and Eb ∈ F}.
If A is flabby (26.28.(e)), then AF = {sF : s ∈ A(>)}.

Proof. We comment only on the first assertions in (c) and (d). By 30.3.(d),
we have A/F (r/F ) = lim→q∈r/F

A(q). Since Dr is cofinal in r/F , the desired

conclusion follows from 17.15.(a). For (d), if p ∈ F and s ∈ A(p), there is x ∈ B
such that x|Es = s. By 34.3.(b), sF = xF . �

Regarding completeness, we state

Lemma 34.5. Let F be a proper filter in the distributive lattice L. If A is a
finitely complete L-set (25.34), then A/F is finitely complete over L/F .

Proof. By Exercise 26.29, A has a compatible structure of L-presheaf.
Hence, A/F is a L/F -presheaf ((5) in 34.2) and to show that it is fc it is enough
to check that a finite compatible subset has a gluing.

Let T = {s/F : s ∈ S} be compatible in A/F , with S ⊆f |A|. This means that
for s, s′ ∈ S,

πF (Es ∧ Es′) = πF ([[s = s′]]).

Relation (**) in the proof of 34.3 implies that for 〈 s, s′ 〉 ∈ S × S, there is
u(s, s′) ∈ F , such that

(I) Es ∧ Es′ ∧ u(s, s′) = u(s, s′) ∧ [[s = s′]].

Since S is finite, u =
∧
s,s′∈S u(s, s′) ∈ F . Hence, (I) entails

∀ s, s′ ∈ S, Es ∧ Es′ ∧ u = u ∧ [[s = s′]],

i.e., the finite set {s|u : s ∈ S} is compatible in A. Since A is fc, there is t ∈ |A|,
such that  Et =

∨
s∈S Es|u = u ∧

∨
s∈S Es;

Es|u = [[t = s|u]] = u ∧ [[t = s]] = u ∧ Es.

Applying πF to these equations and recalling that u ∈ F , we obtain 5

E(t/F ) =
∨
s∈S E(s/F ) and ∀ s ∈ S, E(s/F ) = [[t/F = s/F ]],

whence t/F is the gluing of T in A/F , as needed. �

4Generalizing the classical case of “stalks at a point in a topological space”.
5The joins are finite and πF is a lattice morphism.
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Example 34.6. Let A be a H-set (H a HA) and let D be the filter of dense
elements in H (6.19). We know that H/D is a BA, isomorphic to the BA Reg(H)
of regular elements in H (6.21). The localization at D furnishes a H/D-set, A/D,
whose set of global sections, AD, is the fiber of A at D. If x, y ∈ |A| then it follows
from 34.3.(c) and 6.8.(j) that

x/D = y/D iff ¬¬ [x ≡ y] ∈ D iff ¬¬ (Ex ∨ Ey) = ¬¬ [[x = y]].

In particular, if Ex, Ey ∈ D, then xF = yF iff ¬¬ [[x = y]] = >.

If A is a H-presheaf and p ∈ H, recall (6.19.(a)) that

D(p) = {q ∈ H : p ≤ q ≤ ¬¬ p}
is the set of elements dense in p. Hence, 34.4.(c) entails

AD(p/D) = lim→q∈D(p)
A(q).

In particular, AD = lim→d∈D
A(d).

If A is finitely complete over H, 34.5 guarantees that A/D is finitely complete
over H/D. We shall prove latter that if H is a frame and A is a sheaf over H, then
A/D is a sheaf over H/D (35.9).

Given the well-known connection between intuitionistic logic and Heyting alge-
bras, on one hand, and classical logic and Boolean algebras, on the other, localiza-
tion at D associates to the intuitionistic structure A, a “classical” structure, A/D.
We shall explore this further, when discussing the regularization functor associated
to πD in 35.7. The reader might also consult [11] to see how this construction is
connected to the notion of ultrasheaf of first-order structures. 2

We now describe the concept of stalk.

Definition 34.7. Let L be a semilattice with > and 2 = {⊥,>} be the 2-
element Boolean algebra. Let h : L −→ 2 is a surjective semilattice morphism.
If A is a L-set, the image of A along h is the stalk of A at h, written Ah. If
f : A −→ B is a morphism of L-set, write fh for the morphism εhf : Ah −→ Bh,
called the stalk morphism induced by f at g. If s ∈ |A|, with h(Es) = >,
write sh ∈ Ah for the germ of s at h.

Since the categories 2set, Sh(2), pSh(2) and Set are isomorphic, the stalk
construction is a covariant functor from Lset to Set.

The next result shows that when L is a distributive lattice, stalk at h is nat-
urally isomorphic to fiber at the cokernel of h.

Lemma 34.8. Let L be a distributive lattice and h : L −→ 2 a surjective
semilattice morphism. Let A be a L-set and write F for coker h 6.

a) There is a unique semilattice morphism, g : L/F −→ 2, making the following
diagram commutative, where πF is canonical quotient morphism from L to L/F :

6coker h = {p ∈ L : h(p) = >} is the cokernel of h; it is a proper filter in L.
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L - L/F

h g

2

πF

A
A
A
A
AU

�
�
�
�
��

b) For all s ∈ |A| such that Es ∈ F , the map αA given by

sF ∈ AF 7−→ εgsF ∈ Ah
is an isomorphism, which induces a natural identification between the functors fiber
at F and stalk at h.

c) If L is a frame, h is a frame morphism and D ⊆ |A| is dense in A, then

AF = {sF : s ∈ D and Es ∈ F}.

Proof. a) For a ∈ L, define

g(a/F ) = h(a).

To see that g is well-defined, assume that a/F = b/F . Then, there is v ∈ F such
that a ∧ v = b ∧ v. Hence, h(a ∧ v) = h(a) ∧ h(v) = h(a) ∧ > = h(a), and so
h(a) = h(b), as needed. We also have

g(a/F ∧ b/F ) = g((a ∧ b)/F ) = h(a ∧ b) = h(a) ∧ h(b)

= g(a/F ) ∧ g(b/F ),

showing that g is a semilattice morphism; clearly, g is unique and surjective.

b) By 30.12.(a), we have εh = εg ◦ επ, and so αA is indeed well-defined. Moreover,
it is surjective, because εh is onto Ah. To check that it is injective, assume that
εgsF = εgtF ; then,

> = EεgsF = g(EsF ) = g(πF (Es)) = h(Es),

verifying that Es ∈ F . Similarly, we get Et ∈ F . Next, equality in Ah yields

> = [[εgsF = εgtF ]] = g([[sF = tF ]]) = g(πF ([[s = t]])) = h([[s = t]]),

and [[s = t]] ∈ F . By 34.3.(b), sF = tF , as desired. It is straightforward that if
f : A −→ B is a morphism of L-sets, the following square is commutative :

Ah

AF

?

- BF

αA

fF

Bh

αB

fh

?
-

Hence, α = {αA : A is a L-set} is a natural isomorphism between the functors
fiber at F and stalk at h.
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c) If h preserves joins, then F is completely prime, that is,∨
i∈I pi ∈ F ⇒ ∃ i ∈ I with pi ∈ F .

To see this, suppose p =
∨
i∈I pi exists in L. Then,

> = h(p) = h(
∨
i∈I pi) =

∨
i∈i h(pi).

It is immediate that the h(pi) cannot all be equal to ⊥. For x ∈ |A|, with Ex ∈ F ,
we may write

Ex =
∨
d∈D [[x = d]],

and so there is d ∈ D such that [[x = d]] ∈ F . But then, Ed ∈ F and 34.3.(b)
entails sF = dF , ending the proof. �

Example 34.9. Let Ω be a frame and F a point (or completely prime filter)
in Ω (12.1). The point F originates a pure state (12.14)

pF : Ω −→ 2, given by pF (p) = > iff a ∈ F .

However, 2 may be very far from the quotient Ω/F .

If A is a Ω-set, the stalk of A at pF is the image of A by pF . By Lemma 34.8,
it is isomorphic to the fiber of A at F , but it will be important in applications to
Logic to know that there is a frame morphism involved in the construction of AF .
The isomorphism in 34.8 justifies the usage of “stalk” both for the fiber of A at F
and its image under pF . In Example 33.10 it was shown that inverse image along
pF corresponds to the construction known as the “skyscraper” sheaf.

To exemplify the concept in the spatial setting, let X be a topological space
and x a point in X. Let f be the unique continuous map from {∅} into X, that
takes ∅ to x. Then, f∗ : Ω(X) −→ 2 is precisely the pure state associated to the
completely prime filter νx, of open neighborhoods of x in X. Hence, in classical
notation (30.13, 33.2)

∗ If A is a sheaf over X, f∗A is the stalk of A at the point x;

∗ If B is a set (i.e., a 2-sheaf), f∗B is the skyscraper sheaf on X, centered at x
and generated by B. 2

Example 34.10. Let X be a topological space, A be Ω(X)-set and x ∈ X.
Localizing A at the completely prime filter νx, yields an extensional (Ω(X)/νx)-
set, A/νx, whose set of global sections is written Ax (the stalk of A at x); the
elements of Ax are written sx. If s, t are sections in A such that Es, Et are open
neighborhoods of x, then

sx = tx iff [[s = t]] ∈ νx.

If f , g are sections of the sheaf C(X,Y ) of 23.5, with Ef , Eg ∈ νx, then

fx = gx iff ∃ u ≤ Ef ∩ Eg such that f|u = g|u,

corresponding to the classical notion of stalk at x : f and g have the same germ
at x iff they coincide in an open neighborhood of x. Note that in the context
of Ω(X)-sets, there is more to this construction than just the stalk, even in the
classical setting, for we can consider the whole localization at x as a (Ω(X)/νx)-set
in its own right. 2
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Since a L-set is dense in its completion, 34.8.(c), 34.9 and 34.10 yield

Corollary 34.11. If F is a point in the frame Ω, then for all Ω-sets A

AF = (cA)F ,

where cA is the completion of A. In particular, if A is a presheaf over a topological
space X, the stalk of A and that of its completion are the same at all x ∈ X. 2

Example 34.12. Let L be a distributive lattice with ⊥ and >. Let U be a
maximal filter in L. If a ∈ L, then

a/U = >/U or a/U = ⊥/U .

To see this, note that if U ∪ {a} has the fip 7, then a ∈ U , by maximality; otherwise,
a is equivalent to ⊥ modulo U . Hence, the quotient L/U may be identified with
2 = {⊥, >}, and U originates a surjective lattice morphism

πU : L −→ 2, given by πU (a) = > iff a ∈ U .

There are many familiar constructions that are instances of “stalk at U”. As
an example, consider the sheaf M of 23.11 and 31.8; M is a flabby sheaf over L,
that is, every section is the restriction of a global section in M (26.28.(e)).

Let U be an ultrafilter in L (i.e., an ultrafilter on I). By 34.4.(d), to compute
the stalk of M at U it is enough to determine the germs of global section at U .
For s, t ∈ M(I) =

∏
i∈I Mi,

sU = tU iff [[s = t]] ∈ U iff {i ∈ I : s(i) = t(i)} ∈ U .

Thus, MU is the ultraproduct of the family Mi by the ultrafilter U . When U is
a principal ultrafilter generated by i ∈ I,

U = {u ⊆ I : i ∈ u},
then MU can be canonically identified with Mi.

In 31.8 we described the extension ofM to a β I-sheaf, eM. Now, an ultrafilter
on I is a point in the topological space βI. Furthermore, for every U ∈ Ω(βI),
eM(U) =M(u), where u is the unique element of 2I such that U = Su. It follows
that the stalk of eM at a point U of βI is still the ultraproduct of the Mi at U .

If instead of an ultrafilter U on I, we had considered a filter F on I, then
the fiber of M at F is the reduced product of the Mi by F , another important
construct in Model Theory. 2

Certain properties between Ω-presheaves are faithfully reflected by fiber and
localization, as is the case for commutative rings 8. An example is Proposition
34.13, proven below. Recall that S(L) is the Stone space of the distributive lattice
L (19.2); the definition of frame with enough points appears in 12.6.

Proposition 34.13. Let f , g : A −→ B be morphisms of extensional Ω-
presheaves.

a) The following are equivalent :

(1) f = g; (2) ∀ F ∈ S(Ω), f/F = g/F ; (3) ∀ F ∈ S(Ω), fF = gF .

7The finite intersection property; see 3.13.(c).
8That is the reason for adopting the term here.
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If Ω is a frame with enough points, these conditions are equivalent to

(4) For all points P in Ω, fP = gP .

b) The following are equivalent :

(1) f is monic in pSh(Ω);

(2) For all F ∈ S(L), f/F is monic in pSh(Ω/F );

(3) For all F ∈ S(L), fF is injective.

If Ω is a frame with enough points, these conditions are equivalent to

(4) For all points P in Ω, fP is injective

c) If Ω is a frame with enough points, the following are equivalent :

(1) f is epic in pSh(Ω); (2) For all points P in Ω, fP is surjective.

Proof. a) It is enough to show that (3) ⇒ (1) and, in case Ω has enough
points, that (4) ⇒ (1).

(3) ⇒ (1) : For x ∈ |A|, fx 6= gx implies [[fx = gx]] < Ex; by Corollary 4.26.(a),

there is a prime filter F in L such that Ex ∈ F , but [[fx = gx]] 6∈ F . Consequently,
fF (xF ) 6= gF (xF ), contradicting (3).

(4) ⇒ (1) : The argument is the same as above, except that since Ω has enough

points, there is a point P in Ω such that Ex ∈ P , with [[fx = gx]] 6∈ P .

b) (1) ⇒ (2) : Let F be a prime filter in Ω and x, y ∈ |A|. By 26.17.(b), (1) is
equivalent to

[[x = y]] = [[fx = fy]].

Consequently, recalling the pertinent definitions in 30.5, we have

[[x/F = y/F ]] = πF ([[x = y]]) = πF ([[fx = fy]]) = [[(fx)/F = (fy)/F ]]

= [[f/F (x/F ) = f/F (y/F )]],

and the desired conclusion follows from the extensionality of A/F and 25.21. The
entailment (2) ⇒ (3) is an immediate consequence of 26.17.(a).

(3) ⇒ (1) : Assume, to get a contradiction, that [[x = y]] < [[fx = fy]], where

x, y ∈ |A|. By 4.26.(a), there is a prime filter F in L such that

[[fx = fy]] ∈ F and [[x = y]] 6∈ F .

Then, Ex ∧ Ey = Efx ∧ Efy ∈ F and Proposition 34.3.(b) yields xF 6= yF and
(fx)F = (fy)F , proving that fF is not injective, the desired contradiction. If Ω
has enough points, the reasoning is analogous, replacing prime filters by points.

c) (1) ⇒ (2) : If bF ∈ AF , then Eb ∈ F (34.3.(b)). By 25.24, we get

Eb =
∨
a∈|A| [[b = fa]],

and so, F being a point in Ω, we conclude that for some a ∈ |A|, [[b = fa]] ∈ F .
An application of 34.3.(b) yields

fF (a/F ) = (fa)F = bF ,

establishing that fF is surjective 9.

9Note that (1) ⇒ (2) is true for all Ω.
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(2) ⇒ (1) : Suppose, to get a contradiction, that∨
a∈|A| [[b = fa]] < Eb.

Because Ω has enough points, Lemma 12.3 implies that there is a point F in Ω
such that Eb ∈ F and [[b = fa]] 6∈ F , for all a ∈ |A|. It follows from 34.3.(a) that
bF is distinct from (fa)F , for all a ∈ |A|, contradicting (2). �

In the remainder of this Chapter we describe how stalk, fiber and localization
behave with respect to image and inverse image along a semilattice morphism.

Our first observation is a version, for semilattice morphisms, of the fundamen-
tal theorem for lattice morphisms (3.8, 4.13), analogous to 34.8.

Lemma 34.14. Let h : L −→ R be a semilattice morphism, with L, R distribu-
tive lattices with ⊥, >. Let F be a proper filter in R and assume that G = h−1(F )
is not empty in L.

a) G is a (not necessarily proper) filter in L.

b) There is a unique semilattice morphism, jF : L/G −→ R/F , such that :

(1) For all p ∈ L, jF (p/G) = > iff h(p) ∈ F ;

(2) πF ◦ h = jF ◦ πG.

L/G

L

?

- R

πG

h

R/F

πF

jF

?
-

Proof. Item (a) is straightforward because h is increasing and preserves
finite meets. For (b), define, for p ∈ L,

jF (p/G) = h(p)/F .

If p/G = q/G, then there is u ∈ G such that p ∧ u = q ∧ u; thus,

h(p ∧ u) = h(p) ∧ h(u) = h(q) ∧ h(u),

and h(p)/F = h(q)/F , showing that jF is well-defined. It is clear that jF is a
semilattice morphism, satisfying the stated conditions. �

Theorem 34.15. Let h : L −→ R a semilattice morphism where L, R are
distributive lattices with ⊥, >. Let F be a filter in R, such that G = h−1(F ) 6= ∅.
If A is a L-set, then with notation as in 34.14,

a) (εhA)/F = εjF (A/G). b) (εhA)F ≈ AG.

Proof. Item (a) is an immediate consequence of 30.12.(a) and item (2) in
34.14.(b). For (b), we verify that εjF induces an isomorphism on global sections.
To start off, εjF is the following map on global sections, where x ∈ |A| :

εjF : AG −→ (εhA)F , given by xG 7−→ (εhx)F ,
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that is, it sends the germ of x at G, to the germ of εhx at F . Clearly, εjF is
surjective. If x, y ∈ |A| are such that (εhx)F = (εhy)F in the fiber of εhA at F ,
34.3.(b) entails{

h(Ex) = Eεhx ∈ F ; h(Ey) = Eεhy ∈ F ;

h([[x = y]]) = [[εhx = εhy]] ∈ F .
These relations imply Ex, Ey, [[x = y]] ∈ G, i.e., xG = yG, showing that εjF is
also injective and completing the proof. �

Remark 34.16. If G in 34.15 is empty, then the fiber of εhA at F is also
empty, for there is no x ∈ |A| for which Eεhx ∈ F . If the fiber at the empty set
is defined to be empty, then item (b) will hold in a trivial way. 2

All the classical relations between fibers and stalks along change of base are
consequences of 34.15. We register a sample of these as illustration.

Corollary 34.17. a) Let L, R be frames and h : L −→ R be a frame-
morphism. If F is a point in R, then

(1) G = h−1(F ) is a point in L.

(2) For all L-sets A, (cA)G ≈ AG ≈ (εhA)F ≈ (chA)F .

b) If f : X −→ Y is a continuous map of topological spaces and B is a presheaf
over Y , then, for all x ∈ X, (f∗B)x ≈ Bfx. 2

Corollary 34.18. Let h : L −→ R be a semilattice morphism of distributive
lattices with ⊥, >. Assume that h has a right adjoint g and let K be a proper filter
in L.

a) If B is a R-presheaf and K is a proper filter in L, then

(ihB)K ≈ (εgB)K ≈ B(g−1K).

b) If h is surjective, F is a proper filter in R and A is a L-presheaf, then

(ihεhA)(h−1F ) ≈ (εhA)F .

c) If h is injective, F is a proper filter in L and B is a R-presheaf, then

(chihB)(g−1F ) ≈ (cgB)F ≈ (εgB)F .

Proof. a) Since gh ≥ IdL, it follows that

u ∈ K ⇒ ghu ∈ K.

Hence, g−1(K) 6= ∅ and 34.15 entails (εgB)K ≈ Bg−1K . The other isomorphism
is a consequence of the fact that εgB is restriction dense in ihB (33.9.(b)) and
34.4.(d).

b) Since h ◦ g = IdR, we have g−1(h−1(F )) = F . Hence, item (a) applies to yield

(ihεhA)h−1F ≈ (εhA)(g−1h−1F ) = (εhA)F ,

as needed. Item (c) is analogous and left to the reader. �
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Exercises

34.19. Let A be a commutative ring with identity and cA be the structure
sheaf of A over Spec(A), as in 27.21.

a) For P ∈ Spec(A), let NP = {Za : a 6∈ P} be the set of basic open neighborhoods
of P in Spec(A). Then, with Sa = {an : n ≥ 0},

P = 〈AS−1
a ; {ρba : Za ⊆ Zb in NP } 〉

is an inductive system of rings over the up-directed poset Nop
P , with lim→ P = AP ,

the localization of A at P (9.41).

b) Determine the stalk of cA at the point P ∈ Spec(A).

c) If A is a regular ring (19.19), then for all P ∈ Spec(A), AP is (isomorphic to)
the residue field A/P . 2

34.20. Let A be an extensional presheaf over the topological space X. Show
that there is a geometrical sheaf over X, cA, together with a presheaf morphism,
c : A −→ cA, which satisfies the conditions in Theorem 27.9 10. 2

34.21. Let Ω be a frame with enough points (12.6).

a) If A ⊆ B are sheaves over Ω, the following are equivalent :

(1) A = B; (2) For all points F in Ω, AF = BF .

b) Let f : A −→ B be a morphism of sheaves over Ω. The following are equivalent :

(1) f is an isomorphism; (2) For all points F in Ω, fF is a bijection. 2

34.22. State and prove a result similar to 34.18, with semilattice morphism
onto 2 (34.7) in place of filters. 2

34.23. Let R be a commutative ring with identity and let R be the structure
sheaf of R over X = Spec(R) as in 27.21 and 27.22. Let ι : Xc −→ X be the
identity map, where Xc is Spec(R) endowed with the constructible topology (as in
Theorem 20.10). Describe the inverse image ofR along ι, establishing, in particular
that for all P ∈ X, the stalk of ι∗R at P is the localization RP . 2

10This is the classical version of completion.
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CHAPTER 35

Regularization Functors

In this Chapter it will be shown that if k : L −→ R is a semilattice morphism
with a right adjoint, there is a functor

kr : Lset −→ Lset,

such that for all L-sets A, with a compatible structure of presheaf (26.6), krA is
naturally isomorphic to ikεkA. We shall assume the reader familiar with the image
and inverse image constructions, discussed in the preceding Chapters.

35.1. The L-set krA. Assume that k : L −→ R has a right adjoint, that is,
there is a semilattice morphism, g : R −→ L, such that

[adj] For all 〈 p, r 〉 ∈ L × R, kp ≤ r iff p ≤ gr.

As usual in this situation (7.8), we have

(*)

{
(i) ∀ 〈 p, r 〉 ∈ L × R, p ≤ gk(p) and kg(r) ≤ r;

(ii) kgk = k and gkg = g.

Let

|A| = {〈x, p 〉 ∈ |A| × H : Ex ≤ p and k(Ex) = k(p)}.
For 〈x, p 〉, 〈 y, q 〉 ∈ |A| set 1

(**) [[〈x, p 〉 = 〈 y, q 〉]]r =def p ∧ q ∧ gk([[x = y]])).

It is straightforward that (**) defines an equality in |A|, with which it becomes a
L-set A 2. Furthermore, the first relation in (∗).(i) above entails

Er〈x, p 〉 =def [[〈x, p 〉 = 〈x, p 〉]]r = p ∧ gk(Ex) = p ∧ gk(p)

= p.

In general, A is not extensional. In fact, we have

Fact 35.2. For 〈x, p 〉, 〈 y, q 〉 ∈ |A|, the following are equivalent

(1) Er〈x, p 〉 = Er〈 y, q 〉 = [[〈x, p 〉 = 〈 y, q 〉]]r;
(2) p = q and k(Ex) = k(Ey) = k([[x = y]]).

Proof. If (1) holds, then, p= q and p≤ gk([[x = y]]). Since k(Ex) = p = k(Ey),
the equations in (∗).(ii) imply k(Ex) = k(Ey) ≤ k([[x = y]]), and (2) follows
immediately. Conversely, if (2) holds, then applying g to all terms yields

1Of course, [[x = y]] is the equality in A.
2Clearly, |A| = |skA| (28.4), and so (**) defines another equality in the same domain. However,
we have preferred to maintain notations distinct.
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gk(Ex) = gk(Ey) = gk([[x = y]]),

and the first inequality in (∗).(i) entails p = q = p ∧ q ∧ gk([[x = y]]), which
is equivalent to (1). 2

It is clear that (2) defines an equivalence relation on |A|, and that the domain
of the extensionalization (30.8) of A is the set of these equivalence classes. Let

krA = εA

be the extensionalization of A. We shall use the same name for an element
of |A| and for its equivalence class in |krA|. Hence, for 〈x, p 〉, 〈 y, q 〉 ∈ |krA|

〈x, p 〉 = 〈 y, q 〉 iff p = q and k(Ex) = k(Ey) = k([[x = y]]);

[[〈x, p 〉 = 〈 y, q 〉]]r = p ∧ q ∧ gk([[x = y]]);

Er〈x, p 〉 = p.

Since Er〈 a,Ea 〉 = Ea and

[[〈 a,Ea 〉 = 〈 b, Eb 〉]]r = Ea ∧ Eb ∧ gk([[a = b]]) ≥ [[a = b]],

krA comes equipped with a L-set morphism, kr : A −→ krA, a 7−→ 〈 a,Ea 〉.

A morphism f : A −→ B of L-sets, induces a morphism

krf : krA −→ krB, 〈x, p 〉 7−→ 〈 fx, p 〉.

Indeed, clearly krf preserves extent. For 〈x, p 〉, 〈 y, q 〉 ∈ |krA|, since g ◦ k is
increasing, it follows that

[[〈 fx, p 〉 = 〈 fy, q 〉]]r = p ∧ q ∧ gk([[fx = fy]])

≥ p ∧ q ∧ gk([[x = y]]) = [[〈x, p 〉 = 〈 y, q 〉]]r,

as needed. It is straightforward that

kr(IdA) = IdkrA and kr(f ◦ g) = krf ◦ krg. 2

Definition 35.3. Let k : L −→ R be a semilattice morphism, with a right
adjoint g. The construction in 35.1 is the regularization functor associated to
k, kr : Lset −→ Lset.

We now prove that

∗ The image of krA along k is isomorphic to εkA (35.4.(a));

∗ In case A has a presheaf structure compatible with its equality, krA is naturally
isomorphic to ikεkA (35.4.(c)). For this, it is enough to show that krA has the
corresponding universal property (33.3.(b)).

Theorem 35.4. Let k : L −→ R be a semilattice morphism with a right
adjoint g. Let A be a L-set.

a) The map jA : |krA| −→ |εkA|, given by 〈x, p 〉 7→ εkx is surjective and deter-
mines a morphism in SLset, 〈 jA, k 〉 : krA −→ εkA, making the triangle below-left
commutative :
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A - krA

εk 〈 jA, k 〉

εkA

kr

A
A
A
A
AU

�
�
�
�
��

krA - εk(krA)

〈 jA, k 〉 〈φA, IdL 〉

εkA

〈 εk, k 〉

A
A
A
A
AU

�
�
�
�
��

b) There is a unique isomorphism of R-sets, φA : εk(krA) −→ εkA, making the
triangle above-right commutative.

c) If A has a compatible structure of L-presheaf (26.6), then the rule

〈x, p 〉|r = 〈x|r, p∧ r 〉

defines a restriction in krA, compatible with its equality, with which it is a L-
presheaf. Moreover, the maps kr and 〈 jA, k 〉 are presheaf morphisms.

d) Assume that A has a compatible L-presheaf structure. If B is a L-set and
〈 f, k 〉 : B −→ εkA is a morphism in SLset, there is a unique morphism of H-

sets, f̂ : B −→ krA, making the following diagram commutative :

B - krA

〈 f, k 〉 〈 jA, k 〉

εkA

〈 f̂ , IdH 〉

A
A
A
A
AU

�
�
�
�
��

Proof. Recall our convention (35.1, page 386) that 〈x, p 〉 ∈ |krA| stands
for the equivalence class of 〈x, p 〉 under the equivalence relation in 35.2.(2).

a) If 〈x, p 〉 = 〈 y, q 〉 in |krA|, then 35.2.(2) implies that εkx = εky, and so jA is
well-defined; 〈 jA, k 〉 is a morphism because

Eεkx = k(Ex) = k(p) = k(Er〈x, p 〉),
and the first equation in (ii) of (*) in 35.1 yields

[[εkx = εky]] = k([[x = y]]) = k(Ex ∧ Ey ∧ [[x = y]])

= k(Ex) ∧ k(Ey) ∧ k([[x = y]])

= k(p) ∧ k(q) ∧ k([[x = y]]) = k(p ∧ q ∧ gk([[a = b]]))

= k([[〈x, p 〉 = 〈 y, q 〉]]r),
as needed (29.1.(a)). It is clear from the definitions that jA is surjective and the
displayed diagram is commutative.

b) By the universal property of image along k (30.3.(b)), there is a unique mor-
phism of R-sets, φA : εk(krA) −→ εkA, making the displayed triangle commuta-
tive. Hence, for all 〈x, p 〉 ∈ krA, φA is given by

φA(εk〈x, p 〉) = εkx.
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Since jA is surjective, φA is also surjective. To show that it is injective, we use
25.21, recalling the equations in (∗).(ii) in 35.1, to obtain

[[φA(εk〈x, p 〉) = φA(εk〈 y, q 〉)]] = [[εkx = εky]] = k([[x = y]])

= k(Ex ∧ Ey ∧ [[x = y]]) = k(p ∧ q ∧ [[x = y]])

= k(p ∧ q ∧ gk([[x = y]])) = k([[〈x, p 〉 = 〈 y, q 〉]]r)
= [[εk〈x, p 〉 = εk〈 y, q 〉]],

completing the proof of (b). Item (c) is straightforward.

c) Fix a morphism 〈 f, k 〉 : B −→ εkA; for b ∈ |B|, let xb in |A| be such that
fb = εkx

b. Since 〈 f, k 〉 is a morphism, for all c, b ∈ |B|, we have

(F)


(i) Efb = k(Eb) = k(Exb);

(ii) k([[b = c]]) ≤ [[fb = fc]] = [[εkx
b = εkx

c]]

= k([[xb = xc]]).

Applying g to inequality (ii) in (F) yields, by (∗).(i) in 35.1,

(G) [[b = c]] ≤ gk([[b = c]]) ≤ gk([[xb = xc]]).

With these preliminaries, note that (i) in (F) entails

Exb ∧ Eb = E(xb|Eb) ≤ Eb and k(Exb ∧ Eb) = k(Eb).

Hence, 〈xb|Eb, Eb 〉 ∈ |k
rA|. Define f̂ b = 〈xb|Eb, Eb 〉.

We have, Ef̂b = Er〈xb|Eb, Eb 〉 = Eb, showing that f̂ verifies [mor 1] in 25.10.

If b, c ∈ |B|, (G) yields [[f̂ b = f̂ c]] = [[〈xb|Eb, Eb 〉 = 〈xc|Ec, Ec 〉]]

= Eb ∧ Ec ∧ gk([[xb|Eb = xc|Ec]])

= Eb ∧ Ec ∧ gk(Eb ∧ Ec ∧ [[xb = xc]])

= Eb ∧ Ec ∧ gk([[xb = xc]])

≥ Eb ∧ Ec ∧ [[b = c]] = [[b = c]],

verifying [mor 2] in 25.10. For b ∈ |B|, (i) in (F) above yields

jA(〈xb|Eb, Eb 〉) = εk(xb|Eb) = (εkx
b)|k(Ep)

= fb|h(Ep)
= fb,

verifying the commutativity of the displayed triangle. It remains to check unique-
ness. Let β : B −→ krA be a morphism of L-sets, for which the triangle in the
statement is commutative. For b ∈ |B|, write βb = 〈 y, q 〉. Clearly, q = Eb ≥ Ey.
Since, jA(〈 y, q 〉) = εky, we conclude that εky = εkx

b. Consequently,

k(Ey) = k(Exb) = k(Eb) = k([[xb = y]]).

These equations and (∗).(i) in 35.1 furnish

[[〈xb|Eb, Eb 〉 = 〈 y, Eb 〉]] = Eb ∧ gk([[xb|Eb = y]]) = Eb ∧ gk(Eb ∧ [[xb = y]])

= Eb ∧ gk([[xb = y]]) = Eb

and the extensionality of krA guarantees that βb = f̂ b, as needed. �

From item (d) in Theorem 35.4 we get
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Corollary 35.5. Let k : L −→ R be a semilattice morphism with a right
adjoint. If A is has compatible structures of L-set and L-presheaf, then krA is
naturally isomorphic to ikεkA. 2

Lemma 35.6. If k : L −→ R is a semilattice morphism with a right adjoint,
the functor kr : Lset −→ Lset preserves all finite products.

Proof. Let 1 be the final object in Lset (25.5). From the definition of kr,
it follows that |kr1| = {〈x, p 〉 ∈ L × L : x ≤ p and kx = kp}, where 〈x, p 〉
is identified with 〈 y, p 〉 if k(x) = k(y) = k(x ∧ y). Hence, 〈x, p 〉 = 〈 p, p 〉 in kr1
and so kr1 = 1. If A1, . . . , An are L-sets, the map

〈x, p 〉 ∈ |kr(
∏n
i=1 Aj)| 7−→ 〈 〈x1, p 〉, . . . , 〈xn, p 〉 〉 ∈ |

∏n
i=1 k

rAj |
is easily seen to be an isomorphism. �

35.7. The regularization associated to double negation. There is a
special case of regularization 3 that is important in applications to logic : when
H is a Heyting algebra and the semilattice morphism k is the canonical quotient
map πD : H −→ H/D, where D is the filter of dense elements in H (6.19, 6.20,
10.5). Note that even if H is not complete, πD has a right adjoint,

g(p/D) = ¬¬ p.
In this case :

[r 1] : Write rA for πrDA. Thus,

|rA| = {〈x, p 〉 ∈ |A| × H : Ex ≤ p and ¬¬Ex = ¬¬ p},
with the convention that

〈x, p 〉 = 〈 y, q 〉 iff p = q and ¬¬Ex = ¬¬Ey = ¬¬ [[x = y]].

Moreover, equality in rA is given by

[[〈x, p 〉 = 〈 y, q 〉]]r = p ∧ q ∧ ¬¬ [[x = y]].

[r 2] : Write r : A −→ rA for the morphism x 7−→ rx =def 〈x,Ex 〉;
[r 3] : If f : A −→ B is a H-set morphism, rf : rA −→ rB is given by

rf(〈x, p 〉) = 〈 fx, p 〉. 2

The results in this Chapter, together with 34.18, yield

Corollary 35.8. Let H be a Heyting algebra and D the filter of dense
elements in H. Let A have compatible structures of H-set and H-presheaf.

a) The functor r : Hset −→ Hset preserves all finite products.

b) rA ≈ iπd(A/D), A/D = (rA)/D and (rA)D = AD. 4

c) If F is a prime filter in the BA H/D, then (A/D)F ≈ rA(π−1
D F ), i.e. the

stalk of A/D at F coincides with the stalk of rA at the ultrafilter π−1
D (F ) of H. 2

When H is a frame, we have,

3Actually, the origin for the terminology.
4AD is the fiber of A at D, as in 34.6.
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Proposition 35.9. If H is a frame and A is a sheaf over H, then rA is a
sheaf over H and A/D is a sheaf over H/D.

Proof. There are two ways to establish our result :

∗ Show that rA is a sheaf and conclude by 33.9.(e).(2) and 29.6;

∗ Show that A/D is a sheaf and obtain that rA is a sheaf from 33.3.(c).

The basic techniques are similar, and we take the first route.

Let {〈xi, pi 〉 : i ∈ I} be a compatible family in |rA|. Thus, ∀ i, j ∈ I,

(A) [[xi = xj ]] ≤ Exi ∧ Exj ≤ pi ∧ pj ≤ ¬¬ [[xi = xj ]].

By 8.25, there is a pairwise disjoint family {qi : i ∈ I}, such that

(B) ∀ i ∈ I, qi ≤ Exi and
∨
i∈I Exi ≤ ¬¬

∨
i∈I qi.

Let S = {(xi)|qi : i ∈ I}; since the qi are pairwise disjoint, S is compatible

in A. Let x ∈ |A| be the gluing of S. Hence,

(C)

{
(i) Ex =

∨
i∈I qi;

(ii) qi = [[x = (xi)|qi ]] = qi ∧ [[x = xi]], ∀ i ∈ I.

Thus, Ex ≤ p =def

∨
i∈I pi; additionally, Lemma 8.16.(h), ¬¬Exi = ¬¬ pi

and (B) yield

¬¬Ex = ¬¬
∨
i∈I qi = ¬¬

∨
i∈I Exi = ¬¬

∨
i∈I ¬¬Exi

= ¬¬
∨
i∈I ¬¬ pi = ¬¬

∨
i∈I pi = ¬¬ p,

and 〈x, p 〉 ∈ |rA|. Then, 〈x, p 〉 is the gluing of the original family in rA; clearly,
it has the appropriate extent.

Fact. For all i ∈ I, [[x = xi]] is dense in pi.

Proof. Let α = {j ∈ I : Exi ∧ qj 6= ⊥}; from (B) comes

(D) ¬¬Exi = ¬¬Exi ∧ ¬¬
∨
j∈I qj = ¬¬ (Exi ∧

∨
j∈I qj)

= ¬¬
∨
j∈A Exi ∧ qj .

Consequently, for j ∈ α, (A) and (C).(ii) entail

¬¬ [[x = xi]] ≥ ¬¬
(

[[x = (xj)|qj ]] ∧ [[(xj)|qj = xi]]
)

= ¬¬ (qj ∧ [[xi = xj ]]) = ¬¬ qj ∧ ¬¬ [[x = xi]]

= ¬¬ qj ∧ ¬¬ (Exi ∧ Exj) = ¬¬ (qj ∧ Exi ∧ Exj)
= ¬¬ (qj ∧ Exi).

Whence, taking joins with respect to j ∈ α, (D) and (A) yield

¬¬ [[x = xi]] ≥ ¬¬
∨
j∈A ¬¬ (qj ∧ Exi) = ¬¬

∨
j∈A Exi ∧ qj

= ¬¬Exi = ¬¬ pi,
as claimed.

With the Fact, we then obtain

[[〈x, p 〉 = 〈xi, pi 〉]]r = p ∧ pi ∧ ¬¬ [[x = xi]] = pi ∧ ¬¬ [[x = xi]]

= pi = E〈xi, pi 〉,
and 〈x, p 〉 is the gluing of the 〈xi, pi 〉, as desired. �
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Part 7

Characteristic Maps



Introduction

Characteristic maps are a means to construct an algebra of relations in the
categories Ωset and pSh(Ω). The attentive reader will realize that many of our
definitions and results are valid for general L-sets and L-presheaves. However, com-
pleteness of the base algebra guarantees that certain (possibly infinite) joins and
meets, associated to quantification, exist in the algebra of characteristic functions
and for this reason we concentrate on objects whose base algebra is a frame. The
original idea for this development appeared in [50]; [52] describes how analogous
methods may be applied to deal with subobjects in presheaves over idempotent
quantales.

Although our main interest is establishing the basic structures needed to de-
velop Model Theory in the category of Ω-presheaves, we shall also work with Ω-sets
in order to guarantee a certain generality to our constructions, as well as to in-
dicate the difficulties that arise when the domain of a first-order structure is not
a presheaf. Since in first-order languages relation and function symbols, although
finitary, might depend on arbitrarily large finite sets of variables, it seems appro-
priate to deal with arbitrary powers of a Ω-object. Moreover, if A and B are the
domains of first-order structures, it is important to describe how relations in A
transfer to B along a morphism. In this respect, inverse image is more important
than direct image. Indeed, recall that if M , N are first-order structures, a map f
: M −→ N is a L-morphism if for each n-ary relation R in L and a ∈ Mn

M |= R[a] ⇒ N |= R[fa].

This may be rephrased in terms of characteristic maps as RM ≤ f∗RN , where
R(·) is the characteristic map of the interpretation of R. In a similar vein, f is a
L-monic if RM = f∗RN and an elementary embedding if a corresponding relation
holds for all formulas.

The family of all characteristic maps on a Ω-set, as well as the collection of such
maps that depend on a fixed subset of the index set, constitute frames. However,
the family of all characteristic maps that depend on some finite subset of the index
set does not have a natural structure of a frame. Nevertheless, it can be described as
an inductive limit of an inductive system of frames of characteristic maps on finite
powers of the base domain, together with open injections. Consequently, we have
included material on the graded frame that arises by considering characteristic
maps on finite powers of a Ω-set.

Even if we had adopted a completely finitistic approach, to establish the sound-
ness of the Heyting Predicate Calculus for presheaves of structures over a frame,
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requires that characteristic maps defined on distinct finite powers, having as expo-
nents subsets α, β of the natural numbers, be considered as characteristic maps on
the power whose exponent is the union α ∪ β. This corresponds to a well-known
identification : a formula in the variables indexed by α, is considered as formula
in the variables indexed by α ∪ β. This, in turn, originates with the fact that for
n ≤ m, a subset of An can be identified with a subset of Am, via inverse image by
the projection that forgets coordinates outside n. This identification corresponds
precisely to taking, as interpretations of formulas in n free variables, the inductive
limit of its interpretations in Am, where n ≤ m.

Experience has shown that it is easier to handle the values of formulas if
one does have to worry about the extent of the arguments. Hence, characteristic
maps will be defined on a power of the domain of the base object (37.1). For Ω-
presheaves – but not for Ω-sets –, this is equivalent to characteristic maps defined
in the domain of the corresponding power of the base object (38.7). However, the
generality and practical merits of the definition we have adopted justify the effort
in developing its properties.

Unless otherwise explicitly stated, all objects are extensional and all
semilattices have ⊥ and >.
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CHAPTER 36

Closure

This Chapter discusses results of section 24.2 in the categories Ωset and
pSh(Ω). The proofs for Ω-presheaves are so similar that we shall frequently omit
them. The notion of denseness is defined in 25.32.

Definition 36.1. Let A be a Ω-set and S ⊆ |A|. The closure of S in A is

S = {x ∈ |A| : Ex =
∨
s∈S [[x = s]]}.

Clearly, S ⊆ S. We say that S is closed in A if S = S. Write P>(A) for the
family of closed subsets of A. If the domain in which the closure operation is being

performed has to be displayed, we write S
A

for S. The superscript will always be
omitted whenever clear from context.

Remark 36.2. Recall our convention (25.1) that an Ω-set A has a unique
section of extent ⊥, written ∗. For all S ⊆ |A|

⊥ = E∗ =
∨
s∈S [[∗ = s]],

and so ∗ ∈ S; {∗} is clearly closed and so it is the least closed subset of A. 2

Recall (25.3) that if A is a Ω-set, S ⊆ |A| and p ∈ Ω,

∗ The restriction of S to p, S|p, is the sub-Ω-set of A whose domain is

|S|p| = {x ∈ |A| : Ex ≤ p};

∗ The extent of S is ES =
∨
x∈S Ex.

Lemma 36.3. Let A be a Ω-set and S, T ⊆ |A|.
a) ES = ES.

b) T ⊆ S iff S is dense in T .

c) If S ⊆ T , then S = T iff S is dense in T .

d) The closure operation is increasing, inflationary and idempotent 1.

e) The intersection of any family of closed subsets of is closed.

f) If S is closed in A, then S ∩ T is closed in T .

g) If S is closed and T ⊆ S is a compatible set in A, whose gluing t exists in A,
then t ∈ S.

1That is, S ⊆ T ⇒ S ⊆ T , S ⊆ S and S = S.
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Proof. Items (a), (b), (c) and (f) are clear, as is the fact that closure is
increasing and inflationary in (d). For idempotency, we have

S dense in S, S dense in S,

and the conclusion follows from (c) and the transitivity of denseness (25.33.(a)).
For (e), let Si, i ∈ I, be closed subsets of |A|, and set S =

⋂
i∈I Si. By (c),

S ⊆ Si = Si, for all i ∈ I,

and S ⊆ S, i.e., S is closed in A. For (g), let T ⊆ S be compatible in A, with
gluing t. Then, [glu p] in 25.30, with p = >, yields

Et =
∨
u∈T [[t = u]] ≤

∨
s∈S [[t = s]],

and so t ∈ S, as asserted. �

For Ω-presheaves, closure has the following additional properties :

Lemma 36.4. Let A be a Ω-presheaf, S, T be subpresheaves of A and p ∈ Ω.

a) The following conditions are equivalent :

(1) S = S;

(2) ∀ t ∈ |A|, ∀ α ⊆ Ω,
∨
α = Et and t|q ∈ |S| ⇒ t ∈ |S|.

b) S ∩ T = S ∩ T .

c) All closed subsets of |A| are subpresheaves of A.

d) Closure commutes with restriction, i.e., (S|p) = S|p.

e) If A is a sheaf, then S is closed in A iff S is a subsheaf of A.

Proof. Item (a) is straightforward. For (b), first note that 36.3.(b) entails
S ∩ T ⊆ S ∩ T . Let x ∈ S ∩ T ; then

(I) Et =
∨
s∈S [[x = s]] =

∨
t∈T [[x = t]].

Let D = {s|([[x=s]]∧[[x=t]])
∈ |A| : s ∈ S, t ∈ T}. Note that for all 〈 s, t 〉 ∈ S × T ,

(II) s|[[x=s]]∧[[x=t]]
= x|[[x=s]]∧[[x=t]]

= t|[[x=s]]∧[[x=t]]
.

Since S, T are subpresheaves of A, (II) entails D ⊆ (S ∩ T ). But then (I) yields∨
d∈D [[x = d]] =

∨
〈s,t〉∈S×T [[x = s|[[x=s]]∧[[x=t]]

]]

=
∨
〈s,t〉∈S×T [[x = s]] ∧ [[x = t]]

=
∨
s∈S [[x = s]] ∧

∨
t∈T [[x = t]] = Et

showing that x ∈ S ∩ T .

c) It is enough to show that a closed subset is closed under restriction. Let C be
a closed subset of A, x ∈ C and p ∈ Ω. Then∨

c∈C [[x|p = c]] ≤ [[x|p = x]] = p ∧ Ex = Ex|p,
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and so x|p ∈ S = S, as desired. For (d), since restriction to p is obviously increas-

ing, it suffices to check that |S|p| ⊆ |(S|p)|. If x ∈ |S|p|, then, because S is a

subpresheaf, and Ex ≤ p, we obtain

Ex =
∨
s∈|S| [[x = s]] =

∨
s∈|S| p ∧ [[x = s]] =

∨
s∈|S| [[x = s|p]]

≤
∨
d∈|S|p| [[x = d]],

and x ∈ |(S|p)|, as needed. The proof of (e) is analogous to that of 24.13. �

Observe that

∗ If A is a Ω-presheaf, 36.4.(b) entails that P>(A) is the family of closed sub-
presheaves of A;

∗ If A is a Ω-sheaf, 36.4.(d) implies that P>(A) is the family of subsheaves of A.

Corollary 36.5. If A is a Ω-set or a Ω-presheaf, 〈P>(A), ⊆〉 is a complete
lattice, with meets given by intersection.

Proof. Follows from 36.3.(d), 36.4.(b) and the fact that (set-theoretic) in-
tersection of subpresheaves is a subpresheaf. �

If Si, i ∈ I, are closed subsets of a Ω-set or a Ω-presheaf A, then 2

(
∨

)
∨
i∈I Si =

⋃
i∈I Si

is the join of the Si in the complete lattice P>(A).

Remark 36.6. If A is a Ω-set, P>(A) is almost a Ω-presheaf. By Exercise
36.14, closure is preserved by restriction. It is then straightforward that the maps

S ∈ P>(A) 7−→ ES ∈ Ω

〈S, p 〉 ∈ P>(A) × Ω 7−→ S|p ∈ P>(A),

satisfy [rest 1] and [rest 3] in Definition 23.1, but, in general, not [rest 2] 3.

However, if A is a Ω-presheaf, then [rest 2] is verified and P>(A) is a Ω-
presheaf. In this case, Proposition 26.8 yields, for S, T ∈ P>(A),

[[S = T ]] =
∨
{p ∈ Ω : p ≤ ES ∧ ET and S|p = T|p}

=
∨
{p ∈ Ω : p ≤ ES ∧ ET and |S|p| = |T|p|}.

The reader is invited to show that, with the presheaf structure defined above,
P>(A) is a sheaf over Ω, whenever A is an extensional Ω-presheaf. 2

Example 36.7. Let |A| = {a, b, c, ∗} be a set with four elements and let
B = {⊥, p, ¬ p, >} be the four-element BA. Define, for x, y ∈ |A| − {∗}

2By 36.4.(b), in the case of presheaves.
3One may have S|p = {∗}, with ES = >.
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[[x = y]] = [[y = x]] =


> if x = y;

p if x = a and y = c;

¬ p if x = b and y = c;

⊥ if x = a and y = b,

while [[x = ∗]] = [[∗ = x]] = ⊥. It is straightforward that this defines a equality on
|A|, with which it is an extensional B-set. Note that for all x ∈ |A| − {∗}, {x, ∗}
is closed in A. Moreover, {a, b} is dense in A, because

> = Ec = [[c = a]] ∨ [[c = b]] = p ∨ ¬ p.
Thus, {c, ∗} ∩ ({a, ∗} ∨ {b, ∗}) = {c, ∗} ∩ |A| = {c, ∗}; on the other hand,
{c, ∗} ∩ {a, ∗} = {∗} = {c, ∗} ∩ {b, ∗}. Hence, P>(A) is not distributive and
so cannot be a frame. As we shall see shortly, this changes if A is a presheaf. 2

Theorem 36.8. Let A be a Ω-presheaf.

a) P>(A) is a frame, whose meets are (set-theoretic) intersections and whose joins
are given by formula (

∨
) on page 396.

b) If B is a dense subpresheaf of A, then the map

T ∈ P>(B) 7−→ T
A ∈ P>(A)

is a frame-isomorphism.

c) The map defined in (b) is a frame isomorphism between P>(A) and P>(cA),
where cA is the completion of A over Ω (27.9).

Proof. a) By 36.3.(a) and 36.4.(a), the map

? : 2|A| −→ P>(A)

is a nucleus on the cBa 2|A| (13.1). Hence, Theorem 13.2.(d) entails that P>(A) is
a frame. Item (a) in Theorem 7.5, together with the proof of 13.2, guarantee that
meets and joins in P>(A) are as asserted.

b) By 36.3.(d), the displayed map is increasing. Hence, to show that it is an
isomorphism, it is enough to check that it is a bijection.

For T , T ′ ∈ P>(B), assume that T
A

= T ′
A

. By 36.3.(b), T , T ′ are dense in
each other in A and so the same must be true in B. Since they are closed relative
to B, we must have T = T ′, verifying injectivity. If S is a closed subset of A, let T
be the subpresheaf of B whose domain is (|B| ∩ |S|); T is closed in B (36.3.(f)) and

dense in S, because B is dense in A. Thus, T
A

= S, establishing surjectivity. �

The next result simplifies computations in non-empty powers of presheaves.

Lemma 36.9. Let A be a Ω-presheaf and I 6= ∅ be a set. For S ⊆ |A|I , set 4

pS = {s|Es ∈ A
I : s ∈ S}.

Then, pS = {x ∈ |AI | : Ex =
∨
s∈S [[x = s]]}.

4Note that S ⊆ |AI | iff pS = S.
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Proof. Recall that AI has a natural presheaf structure (26.12), compatible
with its equality, given by (25.12) [[x = y]] =

∧
i∈I [[xi = yi]]. For x ∈ |AI |

and s ∈ S, 26.8.(b) yields [[x = s]] = [[x = s|Es]], with s|Es ∈ pS. Hence,∨
s∈S [[x = s]] =

∨
c∈pS [[x = c]], and the conclusion follows immediately. �

Remark 36.10. If A is an extensional Ω-presheaf, define a Ω-presheaf P(A)
by the following prescriptions :

∗ |P(A)| = {〈S, p 〉 ∈ (P>(A) × Ω) : ES ≤ p}; ∗ E〈S, p 〉 = p;

∗ 〈S, p 〉|q = 〈S|q, p ∧ q 〉.

As was the case for presheaves of sets, discussed in section 24.2 (24.38),

P(A) is a Ω-sheaf, whose set of global sections is P>(A).

Moreover, [[〈S, p 〉 = 〈T, q 〉]] =
∨
{u ≤ p ∧ q : S|u = T|u}.

The sheaf P(A) is the sheaf of closed subpresheaves of A. If A is a sheaf,
P(A) is the sheaf of subsheaves of A. 2

As for presheaves of sets (24.24, 24.26), we have

Definition 36.11. Let η : A −→ B be a morphism of Ω-sets. If S ⊆ |A|,
the image of S by η is

η∗S = {ηx : x ∈ S}.
In particular, Imη is the closure in B of the set-theoretical image of |A| by η. If
T ⊆ |B|, the inverse image of T by η is

η∗T = {x ∈ |A| : ηx ∈ T}.

Exercises

36.12. Let A be a Ω-set and ∆ = {〈 a, a 〉 : a ∈ |A|} be the diagonal of
A2 = A × A.

a) ∆ = {〈x, y 〉 ∈ |A2| : Ex = Ey = [[x = y]]}.
b) A is extensional iff ∆ is a closed subset of A2. 2

36.13. Let 1 be the final object in Ω set (25.5, 26.18). For S ⊆ |1|, as was
the case in 24.21.(b), S ∈ P>(1) iff S = 1|ES . 2

36.14. Show that restriction takes closed sets to closed sets. 2

36.15. If A is a Ω-presheaf and S, T ⊆ |A|, define 5

S → T = {x ∈ |A| : For all p ≤ Ex, x|p ∈ S ⇒ x|p ∈ T}.

a) S, T ∈ P>(A) ⇒ S → T ∈ P>(A) and (S → T ) = S → T .

b) S → T is the implication operation in the frame P>(A).

c) If S, T ∈ P>(A), the following are equivalent, for p ≤ ES ∧ ET :

5If S, T are subpresheaves, then S → T = {x ∈ |A| : x ∈ |S| ⇒ x ∈ |T |}.
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(1) A|p ⊆ (S ↔ T ); (2) S|p = T|p,

where ↔ is the equivalence operation in the frame P>(A). 2

36.16. If A is a Ω-presheaf, P(A) is flabby (31.10.(e)). 2

36.17. Let A be an extensional Ω-presheaf. Write H for the frame P>(A).

a) The map p ∈ Ω 7−→ γ(p) =def A|p ∈ H is an open frame morphism (8.1.(b)).

b) If A = 1, the morphism in (a) is an isomorphism between P>(1) and Ω 6.

c) Let H̃ be the sheaf over H in 27.7 and 25.4. Then, P(A) is the inverse image of

H̃ along the morphism γ in (a) 7. 2

36.18. Let A be an L-set and S ⊆ |A|. The finite closure of S in A is

fcl(S) = {s ∈ |A| : ∃ α ⊆f S such that Es =
∨
a∈α [[s = a]] }.

With 36.3 and 36.4 as models, discuss finite closure for L-sets and presheaves. 2

36.19. With 24.25 and 24.27 as parameters, study image and inverse image
by morphisms in Ωset and pSh(Ω), establishing their adjointness. 2

36.20. Let A, B be Ω-presheaves.

a) If S ∈ P>(A) and T ∈ P>(B) then S × T ∈ P>(A × B), where

S × T = {〈 a, b 〉 ∈ |A × B| : a ∈ S and b ∈ T}.
b) E(S × T ) = ES ∧ ET (ES is the support of S as in 26.1.(c)).

c) The map P>(A) × P>(B) −→ P>(A × B), given by 〈S, T 〉 7−→ S × T , is
a frame-morphism, where P>(A) × P>(B) has the product frame structure 8.

d) If S, S′ ∈ P>(A) and T ∈ P>(B), then

(S → S′) × T = (A × T ) ∩
(

(S × T ) → (S′ × T )
)

;

and, similarly if the first coordinate is kept fixed. Conclude that the maps{
P>(A) −→ P>(A × B), S 7−→ S × B

P>(B) −→ P>(A × B), T 7−→ A × T

are open injective frame-morphisms.

e) For 〈S, T 〉, 〈S′, T ′ 〉 ∈ P>(A) × P>(B), the following are equivalent:

(1) S × T = S′ × T ′;

(2)

{
(a) ES ∧ ET = ES′ ∧ ET ′;
(b) S|ES∧ET = S′|ES∧ET and T|ES∧ET = T ′|ES∧ET . 2

36.21. State and prove the generalization of Theorem 24.15 to L-presheaves,
assuming that L is a frame wherever necessary. 2

61 is the final object in Ω set; this generalizes 24.21.(c).
7No wonder the constructions are so similar.
8Note : S × T = π∗A(S) ∩ π∗B(T ), where πA, πB are the natural projections.
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CHAPTER 37

Characteristic Maps in Powers of a Ω-set

We shall constantly use the vector notation introduced in 25.13 and 26.11. The
reader should keep in mind the distinction between the domain of a product of
Ω-sets and the domain of their product. If A is a Ω-presheaf and I is a set,

x|Ex is always in |AI | and x|Ex = x iff x ∈ |AI |.

Moreover, if A has a compatible structures of Ω-set and presheaf (26.6), then for
all x, y ∈ |A|I and p, q ∈ L,

(Rest) [[x|p = y|q]] = p ∧ q ∧ [[x = y]],

a very useful relation. Exercise 37.21 collects the properties that will be of constant
use.

We begin by defining characteristic maps on powers of a Ω-set. However,
most of the results can be readily extended to finite products of Ω-sets or Ω-
presheaves, corresponding to relations whose variables range over distinct sorts.
Recall (25.15.(a)) that if A is a Ω-set and I 6= ∅ is a set, then∨

a∈|A|I Ea = EA.

Definition 37.1. Let A be a Ω-set and I be a set. A I-characteristic map

on A is a map, |A|I k−→ Ω, such that for x, y ∈ |A|I ,

[ch 1] : k(x) ≤ Ex; [ch 2] : k(x) ∧ [[x = y]] ≤ k(y).

Let KI(A,Ω) be the set of I-characteristic maps on A. Whenever context allows,
write KIA for KI(A,Ω). For h ∈ KIA, set

Eh =
∨
a∈|A|I h(a),

called the extent of h.

If I = n = {1, . . . , n}, a I-characteristic map is called a n-characteristic
map on A; write KnA for the set of n-characteristic maps on A.

Remark 37.2. Let A be a Ω-set and I be a set.

a) It is straightforward that [ch 2] in 37.1 is equivalent to

[ch 2′] : k(x) ∧ [[x = y]] = k(y) ∧ [[x = y]],

or yet, using the equivalence in the frame Ω (6.9), [ch 2] and [ch 2′] can be written

[ch 2′′] : [[x = y]] ≤ k(x) ↔ k(y).

400
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b) If D is a sub-Ω-set of A and k ∈ KIA, write k|D for the restriction of k to |D|I ,
called the restriction of k to D. Hence, for d ∈ |D|I , k|D(d) = k(d). Clearly,

k|D is I-characteristic map on D.

c) If h ∈ KIA, it follows from 25.15.(a) and [ch 1] in 37.1 that

Eh =
∨
a∈|A|I Ea = EA.

Hence, KIA could be defined as the set of maps h : |A|I −→ EA, satisfying [ch 1]
and [ch 2] in 37.1. In our setting, the distinction between the definitions is slight,
except when treating K∅A, discussed in 37.3, below.

These observations will be of constant use, frequently without explicit reference. 2

Remark 37.3. If I = ∅, a I-characteristic map k : |A|0 −→ Ω is a func-
tion from {∗} to Ω. Hence, the statement of 37.1 implies that K∅A is in bijective
correspondence with Ω. However, taking 37.2.(c) into account, we shall instead

(!) Identify K∅A with the frame (EA)←.

We shall also write K0A for K∅A.

Convention (!) is adopted to prevent many of our central results to be falsified
for trivial reasons. If characteristic maps on A are taken to have codomain EA,
which, as noted in 37.2.(c), is equivalent to 37.1, then (!) is immediately forth-
coming. On the other hand, one would have to constantly take into account the
codomain of characteristic maps, burdening arguments unnecessarily. A structural
reason for (!) will emerge in Chapter 40 of this Part (see 40.4).

As an additional argument for keeping 37.1, note that if I is finite, it can be
stated verbatim for a L-set, where L is any semilattice. 2

The set of I-characteristic maps, KIA, inherits the structure that is present in
Ω. Care must be exercised in handling implication and negation. We summarize
the pertinent results, omitting proofs, in

Proposition 37.4. Let A be a L-set and I be a set.

a) There is a partial order on KIA, given by

h ≤ k iff ∀ x ∈ |A|I , h(x) ≤ k(x).

In this partial order, the maps ⊥⊥⊥I and >>>I 1 are the bottom and top of KIA,
respectively.

b) If p ∈ L and k ∈ KIA, then p ∧ k ∈ KIA, where for all x ∈ |A|I

(p ∧ k)(x) = p ∧ k(x).

c) If L is a lattice, KIA is a lattice, with meets and joins computed pointwise, i.e.,(∧
λ∈Λ hλ

)
(x) =

∧
λ∈Λ h(x) and

(∨
λ∈Λ hλ

)
(x) =

∨
λ∈Λ hλ(x),

are the meet and join of the hλ in the partial order of (a). Moreover, if L is
complete or a frame, the same is true of KIA.

d) If L is a HA, KIA is a HA in which implication and negation are given by

1In items (b) and (c) of 37.22.
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(h → k)(x) = Ex ∧ (h(x) → k(x));

(¬h)(x) = Ex ∧ ¬h(x),

where → and ¬ in the right-hand side of these formulas are implication and nega-
tion in L.

e) If L is a BA, then, with the operations described above, KIA is a Boolean algebra,
which is complete whenever the same is true of L.

f) Let SI be the set of permutations of I, that is, the set of bijective maps from
I to I. If σ ∈ SI and x ∈ |A|I , let xσ ∈ |A|I be given by xσi = xσ(i). For

h ∈ KIA, define hσ : |A|I −→ Ω by hσ(x) = h(xσ). Then

(1) hσ ∈ KIA; (2) The map h 7→ hσ is an automorphism of KIA. 2

Example 37.5. Recall (25.5) that 1 is the final object in the category Ωset,
where |1| = Ω and [[p = q]] = p ∧ q.

Fact 37.6. Let p ∈ Ω.

a) If k ∈ K11|p, then for all q ∈ |1|p|, k(q) = k(p) ∧ q.
b) The map k ∈ K11|p 7−→ k(p) ∈ p← is an isomorphism.

Proof. Keep in mind that |1|p| = p← and that if q ∈ |1|p|,
Eq = q = p ∧ q = [[p = q]].

For k ∈ K11|p and q ∈ |1|p|,

k(q) = k(q) ∧ Eq = k(q) ∧ [[p = q]] = k(p) ∧ [[p = q]] = k(p) ∧ q,
establishing (a). Since Ep = p, it is clear that k(p) ≤ p. It is immediate from (a)
that the map in (b) is injective. Surjectivity comes from 37.4.(b) : if u ≤ p, then
k = u ∧ >>>1 ∈ K11|p and k(p) = u. 4

If A is a Ω-set, then (!) in 37.3 and Fact 37.6 entail 2

K0A ≈ (EA)← ≈ K11|EA.

From this perspective, if I is any set, there is an isomorphic copy of K0A inside
KIA, namely the image of the map

p ≤ EA 7−→ p ∧ >>>I ∈ KIA

i.e., the I-characteristic map on A given by a 7→ p ∧ Ea. To see that this map is
injective, note that if p, q ≤ EA are such that

∀ a ∈ |A|I , p ∧ Ea = q ∧ Ea
then taking joins on both sides over a yields p ∧ EA = q ∧ EA, and so p = q. We
shall return to this theme in Chapter 40. 2

Example 37.7. Let f : A −→ B be a morphism of Ω-sets and letI be a set.

Fix ξ = b ∈ |B|I and define

kξ : |A|I −→ Ω, by kξ(a) = [[f(a) = b]].

2One is tempted by the idea that the empty power of A should be 1|EA.
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Then, kξ is a I-characteristic map on A. First note that since f is a morphism,

we have kξ(a) ≤ Efa = Ea, for all a ∈ |A|I . If x ∈ |A|I , [[a = x]] ≤ [[fa = fx]]
yields

kξ(a) ∧ [[a = x]] = [[fa = b]] ∧ [[a = x]] ≤ [[fa = b]] ∧ [[fa = fx]]

≤ [[fx = b]] = kξ(x),

verifying [ch 2] in 37.1. By 37.2.(a), for all a, x ∈ |A|I

[[fa = b]] ∧ [[a = x]] = [[fx = b]] ∧ [[a = x]]. (*)

The reader has probably noticed that in case I = {1}, we have just shown that

certain singletons are in K1(A). Similarly, one verifies that for a ∈ |A|I ,
ka(b) = [[fa = b]]

is a I-characteristic map on B. Moreover, by 37.4.(c),(∨
a∈|A| ka

)
(b) =

∨
a∈|A|I [[fa = b]] (**)

is in KIB, since it is a join of elements in KIB. 2

Our next result describes the basic properties of extension and restriction of
characteristic maps; its item (c) is a very important property of characteristic maps
on finite powers, guaranteeing that if D is dense in A, a characteristic map on D
has a unique extension to a characteristic map on A.

Theorem 37.8. Let D ⊆ A be Ω-sets and I be a set.

a) For h ∈ KID, define he : |A|I −→ Ω by

he(a) =
∨
d∈DI [[a = d]] ∧ h(d).

Then, he ∈ KIA and he|D = h 3.

b) The map k ∈ KIA 7−→ k|D ∈ KID is an open (8.1.(c)) surjection.

c) If I is finite and D is dense in A, then the restriction morphism in (b) is an
isomorphism, with inverse h 7→ he.

Proof. a) Clearly, he verifies [ch 1] in 37.1. For a, b ∈ |A|I ,
he(a) ∧ [[a = b]] = [[a = b]] ∧

∨
d∈DI [[a = d]] ∧ h(d)

=
∨
d∈DI [[a = b]] ∧ [[a = d]] ∧ h(d)

≤
∨
d∈DI [[b = d]] ∧ h(d) = he(b),

showing that he ∈ KIA. Now, if t ∈ |D|I , we get

he(t) =
∨
d∈DI [[t = d]] ∧ h(d) =

∨
d∈DI [[t = d]] ∧ h(t)

= h(t) ∧
∨
d∈DI [[t = d]] = h(t) ∧ Et = h(t),

and (he)|D = h, as desired.

b) By (a), restriction is a surjection from KIA onto KID; it is straightforward that
it preserves all meets and joins, as well as implication, being therefore open.

3Restriction is defined in 37.2.(b).
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c) We may assume that I = n = {1, . . . , n}. It is enough to check that h|D = k|D
implies h= k. SinceD is dense in A, for a ∈ |A|n we have Eaj =

∨
dj∈|D| [[aj = dj ]],

1 ≤ j ≤ n. Thus, distributivity of joins over finite meets (8.4) yields

Ea =
∧n
j=1 Eaj =

∧n
j=1

∨
dj∈|D| [[aj = dj ]] =

∨
d∈Dn [[a = d]].

Hence, h(a) = h(a) ∧ Ea = h(a) ∧
∨
d∈Dn [[a = d]]

=
∨
d∈Dn h(a) ∧ [[a = d]] =

∨
d∈Dn h(d) ∧ [[a = d]]

=
∨
d∈Dn k(d) ∧ [[a = d]] =

∨
d∈Dn k(a) ∧ [[a = d]]

= k(a). �

Corollary 37.9. If A is a Ω-set and n ≥ 0 is an integer, there is a natural
isomorphism between KnA and KncA, where cA is the completion of A (27.9).

Proof. Notation as in Theorem 27.9, we may identify A with its image by
c in cA. Then A is dense in cA and the conclusion follows from 37.8.(c). �

When A is a Ω-presheaf, characteristic maps on A have important additional
properties. First, we introduce

37.10. Notation. Let A be a Ω-set and I be a set.

a) For x ∈ |A|I and u ∈ ΩI , set

x|u = the I-sequence in |A| whose ith-coordinate is xi|ui .

b) For a ∈ |A|I , x ∈ |A| and k ∈ I, the substitution of x at the kth coordinate
of a is the I-sequence in |A| given by

a px | kq (i) =

{
ai if i 6= k

x if i = k.

Clearly, this definition applies to any product of sets. 2

Lemma 37.11. Let A be a Ω-set and I 6= ∅ be a set.

a) For a, c ∈ |A|I , k ∈ I and x, y ∈ |A|,
(1) [[a px | kq = c py | kq ]] = [[x = y]] ∧

∧
i 6=k [[ai = ci]].

(2) [[a px | kq = a py | kq ]] = [[x = y]] ∧ Ea px | kq
= [[x = y]] ∧ Ea py | kq .

(3) Ea ∧ Ea px | kq = Ea ∧ Ex.

b) If h ∈ KIA, then

(1) h(a px | kq ) ∧ [[x = y]] ≤ h(a py | kq ).

(2) h(a px | kq ) ∧ [[x = y]] = h(a py | kq ) ∧ [[x = y]].

Proof. a) (1) and (3) are straightforward; for (2), we have

[[a px | kq = a py | kq ]] = [[x = y]] ∧
∧
i 6=k Eai

= [[x = y]] ∧ Ex ∧
∧
i 6=k Eai = [[x = y]] ∧ Ea px | kq .

A similar reasoning proves the other equality.

F. Miraglia. An Introduction to Partially Ordered Structures and Sheaves. Lógica no Avião.



Chapter 37. Characteristic Maps in Powers of a Ω-set 405

b) (2) follows from (1), as in 37.2.(a). For (1), (a).(2) yields

h(a py | kq ) ≥ h(a px | kq ) ∧ [[a px | kq = a py | kq ]]

= h(a px | kq ) ∧ [[x = y]] ∧ Ea px | kq
= h(a px | kq ) ∧ [[x = y]]. �

Proposition 37.12. Let A be a Ω-presheaf, I be a set and k, h ∈ KIA.

a) For x ∈ |A|I and u ∈ ΩI , h(x|u) = h(x) ∧
∧
i∈I ui. In particular,

h(x|Ex) = h(x|h(x)
) = h(x).

b) h ≤ k iff ∀ a ∈ |A|I , h(a) = Ea ⇒ k(a) = Ea.

c) Assume that I 6= ∅. If S ∪ {x} ⊆ |A| and p ∈ Ω satisfy p =
∨
s∈S [[x = s]],

then for all y ∈ |A|I and k ∈ I
p ∧ h(y px | kq ) =

∨
s∈S h(y ps | kq ) ∧ [[s = x]].

In particular, if p =
∨
λ∈Λ pλ, then h(y px|p | kq ) =

∨
λ∈Λ h(y px|pλ | kq ).

d) If D is a dense subset of AI , then h|D = k|D ⇒ h = k 4.

Proof. a) For x ∈ |A|I , u ∈ ΩI , [ch 2′] in 37.2.(a) yields

h(x|u) ∧ [[x|u = x]] = h(x) ∧ [[x|u = x]]. (1)

Since [[x|u = x]] =
∧
i∈I [[xi|ui = xi]] =

∧
i∈I Exi ∧ ui = Ex ∧

∧
i∈I ui

= Ex|u,

it follows from (1) that h(x|u) = h(x|u) ∧ Ex|u = h(x) ∧ Ex ∧
∧
i∈I ui

= h(x) ∧
∧
i∈I ui,

as desired. The remaining assertions are clear.

b) Since the value of any characteristic map is less than or equal to the extent of
its argument, it is clear that (1) ⇒ (2). For the converse, let x ∈ |A|I ; then

Ex|h(x)
= h(x)

and item (a) entails h(x|h(x)
) = h(x) = Ex|h(x)

. Hence, (2) and item (a) yield

h(x) = Ex|h(x)
= k(x|h(x)

) = h(x) ∧ k(x), verifying that h(x) ≤ k(x).

c) By 37.11.(b), if s ∈ S, then h(y pk | xq ) ∧ [[x = s]] = h(y pk | sq ) ∧ [[x = s]].

Thus, p ∧ h(a px | kq ) = h(a px | kq ) ∧
∨
s∈S [[x = s]]

=
∨
s∈S h(a px | kq ) ∧ [[x = s]]

=
∨
s∈S h(a ps | kq ) ∧ [[x = s]].

The remaining statement is clear.

d) We start with

Fact. If D is dense in AI and a ∈ |A|I , then Ea =
∨
d∈D [[a = d]].

Proof. Since a|Ea ∈ A
I and its extent is Ea, we obtain

4This is stronger than 37.8.(c).
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Ea =
∨
d∈D [[a|Ea = d]] =

∨
d∈D [[a = d]],

as asserted.

For a ∈ |A|I , the Fact above yields

k(a) = k(a) ∧ Ea =
∨
d∈D k(a) ∧ [[a = d]]

=
∨
d∈D k(d) ∧ [[a = d]] =

∨
d∈D h(d) ∧ [[a = d]]

=
∨
d∈D h(a) ∧ [[a = d]] = h(a),

ending the proof. �

Definition 37.13. Let A be a Ω-set and I 6= ∅ be a set. For S ⊆ |A|I , define

kS : |A|I −→ Ω by kS(a) =
∨
s∈S [[a = s]],

called the I-characteristic map of S in A.

Proposition 37.14. Let A be a Ω-set and I 6= ∅ be a set. Let k ∈ KIA and S, T ⊆ |A|I .

a) kS ∈ KIA and for all s ∈ S, kS(s) = Es. Moreover, EkS = ES.

b) kS ≤ k iff ∀ s ∈ S, k(s) = Es.

c) S ⊆ T ⇒ kS ≤ kT .

d) If S ⊆ |AI |, then

(1) ∀ x ∈ |AI |
(
Ex = kS(x) iff x ∈ S

)
;

(2) kS = kS.

e) The following are equivalent, for S, T ⊆ |AI | :

(1) ∀ s ∈ S, kT (s) = Es; (2) kS ≤ kT ;

(3) S ⊆ T ; (4) S ⊆ T .

Proof. Item (a) is straightforward. For (b), [ch 1] in 37.1 implies that the
hypothesis kS ≤ k forces the value of k at s ∈ S to be Es. Conversely, if this
condition holds and a ∈ |A|I , then

kS(a) =
∨
s∈S [[a = s]] =

∨
s∈S [[a = s]] ∧ Es

=
∨
s∈S [[a = s]] ∧ k(s) =

∨
s∈S [[a = s]] ∧ k(a)

= k(a) ∧
∨
s∈S [[a = s]] = k(a) ∧ kS(a),

and kS ≤ k. Item (c) follows immediately from (a) and (b).

d) (1) is immediate from the definition of closure (36.1). For (2), it suffices (by
(c)) to check that kS ≤ kS , which by (b) is equivalent to

∀ y ∈ S, kS(y) =
∨
s∈S [[y = s]] = Ey.

This clear, because S is dense in S. Item (e) follows from the preceding ones. �

For Ω-presheaves, Lemma 36.9 and Proposition 37.14.(d).(2) yield

Corollary 37.15. If A is a Ω-presheaf and I 6= ∅ is a set, then for all

S ⊆ |A|I , kS = kpS. 5 2

5Recall that pS = {s|Es ∈ |A
I | : s ∈ S}.
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We now state the fundamental

Theorem 37.16. (The Representation Theorem) Let A be a Ω-set and let
I 6= ∅ be a set. Consider the maps S? and k? defined by :{

S ∈ P>(AI) 7−→ kS ∈ KIA

k ∈ KIA 7−→ Sk = {x ∈ |AI | : k(x) = Ex}.
Then,

a) For all k ∈ KIA, Sk is a closed subset of AI .

b) The map k? is an injective
∨

-morphism. Moreover,

(1) 〈 k?, S? 〉 is an adjoint pair between KIA and P>(A);

(2) S? is a surjective
∧

-morphism;

(3) For all 〈S, k 〉 ∈ P>(A) × KIA, SkS = S and kSk ≤ k.

c) If A is a Ω-presheaf, the maps S? and k? are inverse isomorphisms.

Proof. a) Fix t ∈ |AI |, with Et =
∨
s∈Sk [[t = s]]. If s ∈ |Sk|, then

k(t) ∧ [[t = s]] = k(s) ∧ [[t = s]] = Es ∧ [[t = s]] = [[t = s]].

Thus, k(t) ≥ [[t = s]], ∀ s ∈ |Sk|, and so k(t) ≥ Et. Hence, k(t) = Et, and Sk is
closed in AI .

b) By 37.14.(d).(1), S 7−→ kS is injective. To verify the preservation of joins, let
Sλ, λ ∈ Λ, be closed subsets of A and set T =

∨
λ∈Λ Sλ. It is immediate from

37.14.(c) that
∨
λ∈Λ kλ ≤ kT . Suppose k ∈ KIA satisfies kλ ≤ k, for all λ ∈ Λ. By

37.14.(b), to prove that kT ≤ k, it suffices to check that if t ∈ T , then k(t) = Et.
Recalling formula (

∨
) in page 396, we have

Et =
∨
s∈
⋃
Sλ

[[t = s]]. (+)

Hence, if s ∈ Sλ, since kλ(s) = Es, it follows that

k(t) ≥ k(s) ∧ [[t = s]] ≥ kλ(s) ∧ [[t = s]] = [[t = s]],

which, together with (+), entails k(t) ≥ Et. Hence, kT =
∨
λ∈Λ kλ, as desired. To

finish the proof of (b), it suffices to see that 〈 k?, S? 〉 is an adjoint pair : the other
assertions are then immediately forthcoming from Theorem 7.8 and Corollary 7.9.
But adjointness means that for T ∈ P>(A) and k ∈ KIA

kT ≤ k iff T ≤ Sk,

exactly the content of 37.14.(b).

c) We shall verify that for k ∈ KIA, kSk = k. By (b).(3), it is enough to see that
k ≤ kSk . Observe that (b) and 36.4.(b) imply Sk is a closed subpresheaf of AI .

If x ∈ |A|I , then, k(x) ≤ Ex and 37.14.(a) yield :

x|k(x)
∈ |AI | and k(x) = k(x|k(x)

) = Ex|k(x)
.

Hence, x|k(x)
∈ Sk and so k(x) = k(x|k(x)

) = kSk(x|k(x)
) = k(x) ∧ kSk(x).

Thus, k ≤ kSk , and the adjointness in (b).(1) guarantees that k? is an isomor-
phism, with inverse S?. �
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Remark 37.17. If I = ∅, Example 37.5 and Exercise 36.13 imply that
k 7−→ Ek is a natural isomorphism between K0A and (EA)←, for all Ω-sets A.
This will be understood as the natural extension of the representation Theorem
37.16 to the empty power of a Ω-set. 2

Theorem 37.16 allows the identification of closed subsets ofAI by I-characteris-
tic maps. Further, if A is a presheaf, this identification is an isomorphism, through
which operations on subpresheaves are reflected in the corresponding operations
on characteristic maps. This will be the way we shall henceforth deal with I-ary
relations on Ω-sets and presheaves. We have had the opportunity of using, in
Chapter 27, a special class of characteristic maps, namely singletons, to construct
the completion of an Ω-set. The root that idea is described in Exercise 37.26.

Remark 37.18. For Ω-sets in general, the map k? of 37.16 is not surjective
and does not preserve even finite meets. To see this, let A be a B-set in Example
36.7 (B is a cBa). The map

k(a) = p ∧ Ea,

is in K1A, in fact, k = p ∧ >>>1. Since Ek = p 6∈ {⊥, >}, 37.14.(a) guarantees that
k cannot be equal to kS , for any S ⊆ |A|, because all such subsets have extent
either equal to > or to ⊥.

For x ∈ A(>), let kx be the characteristic map of {x, ∗}. The reader can check
that

ka ∧ kc 6= k{∗} = ⊥⊥⊥1,

although {a, ∗} ∩ {c, ∗} = {∗} 6. In fact, ka ∧ kc and kb ∧ kc, the first of extent
p and the latter of extent ¬ p, are not characteristic maps of any subset of |A|.

This example shows that, in the case of Ω-sets, treating relations via their
characteristic maps has shortcomings. To begin with, an element of K1(AI) might
not correspond to a I-relation on A. Moreover, the correspondence S 7−→ kS does
not preserve intersections. Nevertheless, there are important situations, as shown
by 37.26 and the very definition of Ω-set − [[· = ·]] is an element of K2A, not of
K1(A2) −, wherein characteristic maps on a Ω-set provide a means to arrive at
significant constructions. In this respect, see also 37.19, below.

It would be interesting to determine, for Ω-sets in general, conditions for an
element of KIA to belong to the image of k?. 2

Lemma 37.19. Let A be a Ω-set and n ≥ 2 be an integer. If ∆n is the diagonal
of An, then for all x ∈ |A|n, [[ ∆n(x) ]] =

∧n−1
i=1 [[xi = xi+1]].

Proof. Fix x ∈ |A|n; the exchange rule in 25.35.(b) yields, for a ∈ |A|,
[[a = x1]] ∧ [[a = x2]] = [[x1 = x2]] ∧ [[a = x2]]. Thus,∧n

i=1 [[a = xi]] = [[x1 = x2]] ∧
∧n
i=2 [[a = xi]],

and induction then implies

(])
∧n
i=1 [[a = xi]] = [[a = xn]] ∧

∧n−1
i=1 [[xi = xi+1]].

6This is to be expected : K1(A) is a frame, while P>(A) is not.

F. Miraglia. An Introduction to Partially Ordered Structures and Sheaves. Lógica no Avião.



Chapter 37. Characteristic Maps in Powers of a Ω-set 409

Hence, if â is the constant n-sequence with entries equal to a,

[[ ∆n(x) ]] =
∨
a∈|A| [[x = â]] =

∨
a∈|A|

∧n
i=1 [[a = xi]]

=
∧n−1
i=1 [[xi = xi+1]] ∧

∨
a∈|A| [[a = xn]]

=
∧n−1
i=1 [[xi = xi+1]] ∧ Exn =

∧n−1
i=1 [[xi = xi+1]],

as desired. �

Whenever convenient, our notation for the characteristic map of

R ⊆ |A|I will be [[R(·) ]] : |A|I −→ Ω, instead kR. Thus, for x ∈ |A|I ,

[[R(x) ]] =
∨
{[[x = s]] : s ∈ |R|}.

If it is necessary to register that this characteristic map is being computed relative
to A, we shall write [[R(x) ]]A.

In this notation, Proposition 37.14, Corollary 37.15 and Theorem 37.16 yield

Corollary 37.20. If A is a Ω-presheaf and I is a set, the following are

equivalent, where S ⊆ |A|I and R ∈ P>(AI) : 7

(1) pS ⊆ |R|; (2) pS ⊆ R;

(3) [[S(·) ]] ≤ [[R(·) ]]; (4) For all s ∈ S, [[R(s) ]] = Es. 2

Exercises

37.21. Let A be a Ω-presheaf and I be a set. Let x, y, z be elements in |A|I .
a) [[x = y]] ∧ [[y = z]] ≤ [[x = z]].

b) If A is extensional, then x|[[x=y]]
= y|[[x=y]]

.

c) In the presheaf AI , extensionality is equivalent to

∀ x, y ∈ |A|I , Ex = Ey = [[x = y]] ⇒ x|Ex = y|Ey.

d) A family xλ in |AI |, λ ∈ Λ, is compatible iff for all λ, µ ∈ Λ,

[[xλ = xµ]] = Exλ ∧ Exµ.

e) If S ⊆ |AI |, then the domain of closure of S in AI is given by

|S| = {t ∈ |AI | : Et =
∨
s∈S [[t = s]].

f) AI is a sheaf iff for all compatible families xλ in |AI |, λ ∈ Λ, there is t ∈ |AI |
such that

(i) Et =
∨
λ∈Λ Exλ and (ii) Exλ = [[t = xλ]].

g) The above laws, with the appropriate modifications, hold in any product of
presheaves over Ω. 2

7pS = {s|Es ∈ |A
I | : s ∈ S}; see 36.9.
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37.22. Let A be a Ω-set and I a set.

a) Equality is a 2-characteristic map on A.

b) The map ⊥⊥⊥I(x) = ⊥ is a I-characteristic map on A.

c) The map >>>I(x) = Ex is a I-characteristic map on A.

37.23. Let A be a Ω-set and I be a set. The following are equivalent, for a

map h : |A|I −→ Ω :

(1) h is a I-characteristic map on A;

(2) h verifies [ch 1] in 37.1 and for all x, y ∈ |A|I 8

h(x) ∧ [x ≡ y] ≤ h(y). 2

37.24. (Fixing Coordinates) Let A be a Ω-set and J ⊆ I be sets. Set K = I − J .
Define

〈 · ; · 〉 : |A|J × |A|K −→ |A|I , by 〈 a; c 〉(i) =

{
ai if i ∈ J ;

ci if i ∈ K.

a) If a ∈ |A|I and b, c ∈ |A|K , then

(1) E〈 a; b 〉 = Ea ∧ Eb.
(2) [[〈 a; b 〉 = 〈 a; c 〉]] = Ea ∧ [[b = c]].

b) For a ∈ |A|I and h ∈ KI(A), define k : |A|K −→ Ω by k(c) = h(〈 a; c 〉).
Then, k ∈ KKA, obtained by fixing the coordinates in J . 2

37.25. Generalizing 37.4.(f), if A is a Ω-set and I
σ−→ J is a bijection, the

map

h ∈ KIA 7−→ hσ ∈ KJA,

where hσ(a) = h(aσ), is a frame-isomorphism 9. 2

37.26. If A is a Ω-set, there is a natural bijective correspondence between
singletons in A and the closure of compatible sets of sections in A. 2

37.27. Let A be a Ω-presheaf and n, m ≥ 0 be integers. With notation as in
36.20, if S ∈ P>(An) and T ∈ P>(Am), then for all x ∈ |A|n+m

[[S × T (x) ]] = [[S(x1, . . . , xn) ]] ∧ [[T (xn+1, . . . , xn+m) ]]. 2

8[· ≡ ·] is strict equality in A, discussed in Chapter 28.
9Hence, KIA is independent, up to isomorphism, of the “presentation” of I.

F. Miraglia. An Introduction to Partially Ordered Structures and Sheaves. Lógica no Avião.



CHAPTER 38

Exterior Products and Q-morphisms

Recall that the canonical Ω-set structure on a product is described in 25.12.
Lemma 25.14 suggests the following construction.

38.1. Exterior Product Let Ai, i ∈ I, be Ω-sets, with I 6= ∅. Define a Ω-set,⊗
i∈I Ai, by the following prescriptions :

∗ |
⊗

i∈I Ai| =
∏
i∈I |Ai|;

∗ For a, c ∈
∏
i∈I |Ai|, [[a = c]] =

∧
i∈I [[ai = bi]].

By 25.14.(a).(2),
⊗

i∈I Ai is a Ω-set, called the exterior product of the Ai.

If L is a semilattice, this construction makes sense for finite families of L-sets;
and arbitrary ones, when L is complete. Clearly, the canonical product,

∏
i∈I Ai,

is a sub-Ω-set of
⊗

i∈I Ai.

The exterior product of I copies of a Ω-set A, written
⊗I

A, is the exterior
power of A by I. When I = ∅, we set⊗∅

A =def

⊗0
A =def 1|EA,

where 1 is the final object in Ωset, as in 25.5 1. 2

Remark 38.2. Let Ai, i ∈ I, be Ω-sets, with I 6= ∅. Care must be exercised
in treating exterior products, as shown by the following comments :

a) Even if all Ai are extensional,
⊗

i∈I Ai will not be extensional. As an example,
let a, b be compatible sections of distinct extent in a Ω-set A. Then, in A

⊗
A

E〈 a, b 〉 = E〈 b, a 〉 = Ea ∧ Eb = [[a = b]] = [[〈 a, b 〉 = 〈 b, a 〉]],
but 〈 a, b 〉 6= 〈 b, a 〉.
b) The canonical projections πi no longer are morphisms, because although they
verify [mor 2] in 25.10, [mor 1] is, in general, violated.

c) If each Ai is a presheaf, then we may define restriction and extent in
⊗

i∈I Ai
using 26.11, that is, for a ∈

∏
i∈I |Ai| and p ∈ Ω,

Ea =
∧
i∈I Eai and a|p = 〈 ai|p 〉.

However,
⊗

i∈I Ai is not a Ω-presheaf, since, in general, a|Ea 6= a, violating

[rest 1] in 26.1. Nevertheless, [rest 2] and [rest 3] are satisfied, that is,

Ea|p = p ∧ Ea; (a|p)|q = a|p∧q,

1But the empty product and power are still equal to 1.
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as well as the important relation in 26.8.(b) :

[[a|p = c|q]] = p ∧ q ∧ [[a = c]].

In the case of presheaves, if each component is extensional, then

Ea = Ec = [[a = c]] ⇒ a|Ea = c|Ec,

simply because a|Ea ∈ |
∏
i∈I Ai|.

Even with all these shortcomings, the exterior product will be useful in unifying
the presentation and proof of some of our basic results. 2

Recall (25.1) that the support of a Ω-set A is EA =
∨
a∈|A| Ea. From 25.15

and 37.3 we get

Corollary 38.3. Let A be a Ω-set.

a) If I 6= ∅ is a set, then E
⊗I

A = EAI = EA.

b) E
⊗0

A = E1|EA = EA. 2

Proposition 38.4. Let K 6= ∅ be a set, Ak, k ∈ K, be Ω-presheaves and B
be a Ω-set.

a) The map

ρ : |
⊗

k∈K AK | −→ |
∏
k∈K Ak|, ρ(a) = a|Ea

is a Ω-set morphism, satisfying the following properties :

(1) ρ is surjective and a regular monic;

(2) If B is a presheaf and p ∈ Ω, then ρ(a|p) = ρ(a)|p
2.

b) The map

f ∈ [
∏
k∈K Ak, B] 7−→ f ◦ ρ ∈ [

⊗
k∈K Ak, B]

is injective. If B is a presheaf, then it is a bijection 3.

c) If A is a Ω-set and I is a set, there is a natural bijective correspondence between

KIA and [
⊗I

A, Ω̃] 4.

d) If A is a Ω-presheaf and I 6= ∅ is a set, there is a natural bijective correspondence

between [AI , Ω̃] and KIA.

Proof. a) First, it is clear that a|Ea is in the domain of
∏
k∈K Ak. It is also

clear that ρ is surjective. Next, for a, c ∈
∏
k∈K |Ak|, Eρ(a) = Ea|Ea = Ea,

and [[ρ(a) = ρ(c)]] = [[a|Ea = c|Ec]] = Ea ∧ Ec ∧ [[a = c]]

= [[a = c]],

2But ρ is not a presheaf morphism.
3Recall that [C, D] is the set of morphisms from C to D.
4Ω̃ is defined in 25.4; see also 27.7.
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and so ρ is a Ω-set morphism and a regular monic 5. If B is a presheaf, then
recalling 38.2.(c) and that Ea|p = p ∧ Ea, we get

ρ(a|p) = (a|p)|p∧Ea = a|p∧Ea = (a|Ea)|p = ρ(a)|p,
ending the proof of (a).

b) Since ρ is surjective (and therefore, epic), the map f 7→ ρ ◦ f is injective. If B
is a presheaf and g is a Ω-set morphism in [

⊗
k∈K Ak, B], let f be the restriction

of g to |
∏
k∈K Ak|; since the product is a sub-Ω-set of the exterior product, f is

a Ω-set morphism. For a ∈
∏
k∈K |Ak|, the fact that B is a presheaf and (a).(2)

yield f(ρ(a)) = f(a|Ea) = g(a|Ea) = g(a)|Ea = g(a)|Eg(a)
= g(a),

verifying that g = f ◦ ρ.

c) Let f ∈ [
⊗I

A, Ω̃]; for a ∈ |A|I , we may write

f(a) = 〈hf (a), Ea 〉,
where hf : |A|I −→ Ω; the definition of Ω̃ guarantees that hf (a) ≤ Ea. Since f is
a Ω-set morphism, we have

[[a = c]] ≤ [[f(a) = f(c)]] = [[〈hf (a), Ea 〉 = 〈hf (c), Ec 〉]]
= Ea ∧ Ex ∧ (hf (a) ↔ hf (c)),

a relation that is equivalent to [ch 2′] in 37.2.(a). Hence, hf ∈ KIA. Conversely,

given h ∈ KIA, define a morphism fh ∈ [
⊗I

A, Ω̃] by

fh(a) = 〈h(a), Ea 〉.
It is left to the reader to check that

∗ fh is a Ω-set morphism and f 7→ hf and h 7→ fh are inverse bijective corre-
spondences;

∗ The above computations hold true even for I = ∅, because
⊗0

A = 1|EA.

Item (d) is immediate from (b) and (c). �

Remark 38.5. In the setting of 38.4, if I = ∅, then⊗0
A = 1|EA and AI = 1.

The morphism ρ in 38.4.(b) is the canonical injection of 1|EA into 1. It is a regular

monic, but will not be epic unless EA = >. In a similar vein, in item (c) we have,
recalling 37.5 and 37.6

K0A = (EA)← and K01 = Ω,

which are distinct, unless EA = >. 2

Corollary 38.6. If Ai, i ∈ I, are extensional Ω-presheaves, the extension-
alization 6 of

⊗
i∈I Ai is

∏
i∈I Ai. 2

Corollary 38.7. If A is a Ω-presheaf and I, J are sets, KI×JA and KJ(AI)
are naturally isomorphic. In particular, KIA ≈ K1(AI).

5But not injective : ρ(a) = ρ(a|Ea).

6As in Remark 30.7 and Corollary 30.8.

F. Miraglia. An Introduction to Partially Ordered Structures and Sheaves. Lógica no Avião.



Chapter 38. Exterior Products and Q-morphisms 414

Proof. It is straightforward that AI×J is naturally isomorphic to (AI)J 7.
Then, 38.4.(d) yields

KI×JA ≈ [AI×J , Ω̃] ≈ [(AI)J , Ω̃] ≈ KJ(AI)

as claimed. Since I ≈ I × {1}, 37.25 entails KIA ≈ K1(AI). �

The statement of 38.7 is false for Ω-sets in general. Hence, if A, B are Ω-sets,
a morphism f : AI −→ BJ will induce an adjoint pair 8

f∗ : K1(AI) −→ K1(BJ) and f∗ : K1(BJ) −→ K1(AI)

but not the image and inverse image connecting KIA and KJB. To obtain these,
one has to consider maps between the exterior powers of A and B. But it has
already been remarked (38.2.(b)) that the projection that forgets coordinates is
not a morphism when defined in exterior powers. Since we wish to discuss the
classical quantifiers for relations defined in Ω-sets − not just in Ω-presheaves −,
there is need of a method to treat uniformly morphisms and projections that forget
certain coordinates. To this end, we introduce the following

Definition 38.8. Let A, B be Ω-sets. A map f : |A| −→ |B| is a Q-
morphism if for all x, y ∈ |A|

[[x = y]] ≤ [[fx = fy]].

Hence a Q-morphism is a map that verifies [mor 2] in 25.10. Note that a Q-
morphism satisfies Ex ≤ Efx.

It is clear that

∗ The composition of Q-morphisms is a Q-morphism.

∗ Every Ω-set morphism is a Q-morphism.

We shall be mostly interested in Q-morphisms defined and with values in
exterior powers of Ω-sets (38.1). Generalizing 38.2.(b), we have

Example 38.9. Let Ai, i ∈ I, be Ω-sets and ∅ 6= J ⊆ I. There are natural
projections { ∏

i∈I Ai −→
∏
j∈J Aj⊗

i∈I Ai −→
⊗

j∈J Aj ,

both be written πJ , that forget the coordinates outside J . Hence, for a ∈
∏
i∈I |Ai|,

and j ∈ J 9 πJ(a)(j) = aj . It is straightforward that if a, c ∈
∏
i∈I |Ai|, then

[=J ] : [[a = c]] = [[πJ(a) = πJ(c)]] ∧ [[πI−J(a) = πI−J(c)]];

[EJ ] : Ea = EπJ(a) ∧ EπI−J(a).

[chJ ] : If R ∈ KIA and u ∈ |A|I−J , then, with notation as in 37.24,

[[πJa = πJc]] ∧ [[R(πJa; u) ]] ≤ [[R(πJc; u) ]].

Note that [chJ ] follows from [ch 2] in 37.1 once it is observed that

7True even in Sh(Ω), see 24.44.
8Image and inverse image; see Theorem 38.11 and Corollary 38.15.
9We refrain from writing a|J , in place of πJ (a), for obvious motives.
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[[R(πJa; u) ]] ≤ Eu;

[[〈πJa; , u 〉 = 〈πJc; u 〉]] = [[πJa = πJc]] ∧ Eu.
Hence,

∗ Considered as a map
⊗

i∈I Ai −→
⊗

j∈J Aj , πJ is a Q-morphism 10;

∗ Considered a map
∏
i∈I Ai −→

∏
j∈J Aj , πJ is a morphism of Ω-sets.

These projections shall be used frequently in the sequel and context will establish
which is the pertinent meaning. Note that

∗ If I = J , πJ is the identity of
⊗

i∈I Ai or
∏
i∈I Ai;

∗ If J = ∅ and Ai = A, i ∈ I, then πJ :

{
AI −→ 1⊗I
A −→ 1|EA,

in both cases given by a 7−→ Ea. 2

Example 38.10. Let f : A −→ B be a morphism of Ω-sets. Then f induces
Ω-set morphisms, indicated by the same symbol

f I :

{
AI −→ BI⊗I
A −→

⊗I
B,

where f I(a) = 〈 f(ai) 〉 11. Note that in this case, if a ∈ |A|I ,
Ef I(a) =

∧
i∈I Ef(ai) =

∧
i∈I Eai = Ea,

and f I is a Ω-set morphism, whether with domain the power or the exterior power
of A. We have agreed to indicate f I(a) by f(a) (1.4). Again, context will make
clear to which map we are referring. If I = ∅, then

f∅ :

{
1 −→ 1

1|EA −→ 1|EB ,

in both cases being the map p 7→ p 12.

If J ⊆ I, we may compose f I with πJ to obtain a Ω-set and a Q-morphism,
again denoted by the same symbol

πJ ◦ f I :

{
AI −→ BJ⊗I
A −→

⊗J
B.

The above construction may be generalized by considering a family of Q-
morphisms, fi : Ai −→ Bi, i ∈ I. Then

f =
∏
i∈I fi, a ∈ |

⊗
i∈I Ai| 7−→ 〈 fiai 〉 ∈ |

⊗
i∈I Bi|,

is a Q-morphism. Indeed, for a, c ∈
∏
i∈I |Ai|,

[[f(a) = f(c)]] =
∧
i∈I [[fi(ai) = fi(ci)]] ≥

∧
i∈I [[ai = bi]] = [[a = c]],

as needed. Similarly, f can be understood as a Q-morphism from
∏
i∈I Ai to∏

i∈I Bi. The reader can check that if each fi is a Ω-set morphism, then
∏
i∈I fi

10But not a Ω-set morphism.
11Both for a ∈ |A|I and in |AI |.
12By Exercise 25.36, EA ≤ EB.
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defines Ω-set morphisms between the product and the exterior product of the Ai,
respectively. 2

The main result of this Chapter is

Theorem 38.11. Let A, B be Ω-sets and let I, J be sets. A Q-morphism,

f :
⊗I

A −→
⊗J

B, induces maps

f∗ : KIA −→ KJB and f∗ : KJB −→ KIA,

defined for R ∈ KIA, S ∈ KJB, a ∈ |A|I and s ∈ |B|J , by{
f∗R(s) =

∨
a∈|A|I [[f(a) = s]] ∧ [[R(a) ]];

f∗S(a) = [[S(f(a)) ]] ∧ Ea,

satisfying the following conditions 13 :

a) f∗ is a
∨

-morphism such that

f∗⊥⊥⊥I = ⊥⊥⊥J and f∗>>>I ≤ [[ f(|A|I)(·) ]].

If f is a morphism of Ω-sets, then f∗>>>I = [[ f(|A|I)(·) ]].

b) f∗ is a open morphism and f∗⊥⊥⊥J = ⊥⊥⊥I and f∗>>>J = >>>I .

c) If EA = EB or if f is a Ω-set morphism, then 〈 f∗, f∗ 〉 is an adjoint pair (7.8).

d) If f is a Ω-set morphism, the following are equivalent :

(1) For all a, c ∈ |A|I , [[f(a) = f(c)]] = [[a = c]] 14;

(2) f∗ is injective; (3) f∗ is surjective.

e) Consider the following conditions :

(1) f∗ is injective; (2) For all s ∈ |B|J , Es =
∨
a∈|A|I [[f(a) = s]];

(3) f∗ is surjective.

Then, (1) ⇒ (2); if f is a Ω-set morphism, all three conditions are equivalent.

Proof. a) Clearly, f∗h(s) ≤ Es. For R ∈ KIA and s, u ∈ |B|J , we have

[[s = u]] ∧ f∗R(s) = [[s = u]] ∧
∨
a∈|A|I [[fa = s]] ∧ [[R(a) ]]

=
∨
a∈|A|I [[s = u]] ∧ [[fa = s]] ∧ [[R(a) ]]

≤
∨
a∈|A|I [[fa = u]] ∧ [[R(a) ]] = f∗R(u),

establishing [ch 2] in 37.1. Let Rλ, λ ∈ Λ, be a family in KIA. Recall (37.4.(c))
that joins in KIA are computed pointwise. Hence,

f∗
(∨

λ∈Λ Rλ
)
(s) =

∨
a∈|A|I [[fa = s]] ∧

∨
λ∈Λ [[Rλ(a) ]]

=
∨
λ∈Λ

∨
a∈|A|I [[fa = s]] ∧ [[Rλ(a) ]]

=
∨
λ∈Λ f∗Rλ(s) = [

∨
λ∈Λ f∗Rλ](s),

and f∗ is a
∨

-morphism. Since⊥⊥⊥I(a) =⊥ (37.22.(b)), it is obvious that f∗⊥⊥⊥I = ⊥⊥⊥J .
Recalling that >>>I(a) = Ea ≤ Ef(a), we get

13⊥⊥⊥I and >>>I are the bottom and top of KIA, as in 37.22.(b) and (c).
14Hence, f is a regular monic.
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f∗>>>I(s) =
∨
a∈|A|I [[fa = s]] ∧ Ea ≤

∨
a∈|A|I [[fa = s]] ∧ Ef(a)

=
∨
a∈|A|I [[fa = s]] = [[ f(|A|I)(s) ]].

If f is a morphism, then Ef(a) = Ea and the only inequality in the preceding
computation is an equality; hence, f∗>>>I = [[ f(|A|I)(·) ]].

b) For S ∈ KJB, it is clear that f∗S(a) ≤ Ea; if c ∈ |A|I , then

[[a = c]] ∧ f∗S(a) = [[a = c]] ∧ [[S(f(a)) ]] ∧ Ea = [[a = c]] ∧ [[S(f(a)) ]] ∧ Ec
≤ [[f(c) = f(a)]] ∧ [[S(f(a)) ]] ∧ Ec
≤ [[S(f(c)) ]] ∧ Ec = f∗S(c),

and f∗k ∈ KIA. It is straightforward that f∗ is a [
∧

,
∨

]-morphism. To check that
it is open, let S1, S2 ∈ KIB; then

f∗(S1 → S2)(a) = [[ (S1→ S2)(fa) ]] ∧ Ea
= Ea ∧ Ef(a) ∧

(
[[S1(fa) ]] → [[S2(fa) ]]

)
= Ea ∧

(
[[S1(fa) ]] → [[S2(fa) ]]

)
= Ea ∧

(
(Ea ∧ [[S1(fa) ]]) → (Ea ∧ [[S2(fa) ]])

)
= [f∗S1 → f∗S2](a),

as needed. The remaining statement is clear.

c) For R ∈ KIA and a ∈ |A|I , we have, recalling [ch 2′] in 37.2.(a)

f∗(f∗R)(a) = Ea ∧ f∗R(f(a)) = Ea ∧
∨
c∈|A|I [[f(c) = f(a)]] ∧ [[R(c) ]]

≥
∨
c∈|A|I [[a = c]] ∧ [[R(c) ]] =

∨
c∈|A|I [[a = c]] ∧ [[R(a) ]]

= [[R(a) ]] ∧
∨
c∈|A|I [[a = c]] = [[R(a) ]] ∧ Ea = [[R(a) ]].

We have just verified that f∗ ◦ f∗ ≥ IdKIA. Now, if S ∈ KIB, then

(*)
f∗(f

∗S)(s) =
∨
a∈|A|I [[f(a) = s]] ∧ f∗S(a)

=
∨
a∈|A|I [[f(a) = s]] ∧ [[S(f(a)) ]] ∧ Ea.

We now discuss two cases :

f is a morphism : Then, Ef(a) = Ea and (*) yields

f∗(f
∗S)(s) =

∨
a∈|A|I [[f(a) = s]] ∧ [[S(f(a)) ]] ∧ Ef(a)

=
∨
a∈|A|I [[f(a) = s]] ∧ [[S(f(a)) ]] ≤ [[S(s) ]].

EA = EB : From (*), 38.3 and [[S(s) ]] ≤ Es ≤ EB we get

f∗(f
∗S)(s) =

∨
a∈|A|I [[f(a) = s]] ∧ [[S(f(a)) ]] ∧ E(a)

≤
∨
a∈|A|I [[S(f(s)) ]] ∧ Ea

= [[S(s) ]] ∧ E
⊗I

A = [[S(s) ]] ∧ EB = [[S(s) ]].

In both of the above cases f∗ ◦ f∗ ≤ IdKJB ; since also have f∗ ◦ f∗ ≥ IdKIA,
Exercise 7.12 implies that 〈 f∗, f∗ 〉 is an adjoint pair.

d) (1) ⇒ (2) : If P , Q ∈ KIA verify f∗P = f∗Q, then for s ∈ |B|I , we have∨
a∈|A|I [[fa = s]] ∧ [[P (a) ]] =

∨
a∈|A|I [[fa = s]] ∧ [[Q(a) ]]. (I)
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Fix c ∈ |A|n; (I) then yields, with s = fc,∨
a∈|A|I [[fa = fc]] ∧ [[P (a) ]] =

∨
a∈|A|I [[fa = fc]] ∧ [[Q(a) ]]. (II)

From (1) we get

[[fa = fc]] ∧ [[P (a) ]] = [[a = c]] ∧ [[P (a) ]] = [[a = c]] ∧ [[P (c) ]],

with a similar relation holding for Q. But then∨
a∈|A|I [[fa = fc]] ∧ [[P (a) ]] =

∨
a∈|A|I [[a = c]] ∧ [[P (c) ]]

= [[P (c) ]] ∧
∨
a∈|A|I [[a = c]]

= [[P (c) ]] ∧ Ec = [[P (c) ]],

with an analogous result for Q. Thus, (II) yields [[P (c) ]] = [[Q(c) ]], verifying that
f∗ is injective.

(2) ⇒ (1) : Exactly as in 37.7, for all s ∈ |B|J , h(x) = [[fx = s]] is a I-

characteristic map on A. Hence, [ch 2′] in 37.2.(a) applied to h yields

(*) ∀ a, c ∈ |A|I , [[fa = s]] ∧ [[a = c]] = [[fc = s]] ∧ [[a = c]].

Fix c ∈ |A|I ; the following are I-characteristic maps on A : h1(x) = [[x = c]]
and h2(x) = [[fx = fc]] 15. For s ∈ |B|J , (*) then yields

f∗(h1)(s) =
∨
a∈|A|I [[fa = s]] ∧ [[a = c]] =

∨
a∈|A|I [[fc = s]] ∧ [[a = c]]

= [[fc = s]] ∧
∨
a∈|A|I [[a = c]] = [[fc = s]] ∧ Ec

= [[fc = s]] ∧ Efc = [[fc = s]].

On the other hand, the exchange rule in 25.35.(b) entails

f∗(h2)(s) =
∨
a∈|A|I [[fa = s]] ∧ [[fa = fc]] = [[fc = s]] ∧

∨
a∈|A|I [[fa = fc]]

= [[fc = s]] ∧ Efc = [[fc = s]].

We have shown that f∗h1 = f∗h2, and so h1 = h2 in KIA. But this means that

for all x ∈ |A|I , [[x = s]] = [[fx = fs]]. i.e., f is a regular monic.

Since f is a morphism, it follows from the adjointness in (c) and 7.9.(b) that
(2) and (3) are equivalent.

e) (1) ⇒ (2) : By item (b), f∗>>>J = >>>I . Let h be the J-characteristic map of

f(|A|I) in B, that is, h(s) =
∨
a∈|A|I [[fa = s]], s ∈ |B|I . Then, if c ∈ |A|I

f∗(h)(c) = h(fc) ∧ Ec = Ec ∧
∨
a∈|A|I [[fa = fc]] = Ec ∧ Efc = Ec,

and so f∗h = f∗>>>J in KIA. Thus, h = >>>J , that is, for s ∈ |B|I ,
Es =

∨
a∈|A|I [[fa = s]],

establishing (2). If f is a Ω-set morphism, we prove

(2) ⇒ (1) : Let S, T ∈ KJB verify f∗S = f∗T . Since for all a ∈ |A|I , Efa =
Ea, the hypothesis and the definition of f∗ entail

(#)
[[S(f(a) ]] = [[S(f(a) ]] ∧ Efa = [[S(fa) ]] ∧ Ea

= [[T (fa) ]] ∧ Ea = [[T (fa) ]] ∧ Efa = [[T (fa) ]].

15For h1 this is clear; h2 is a special case of the preceding.

F. Miraglia. An Introduction to Partially Ordered Structures and Sheaves. Lógica no Avião.



Chapter 38. Exterior Products and Q-morphisms 419

Hence, if s ∈ |B|J , (2) and (#) yield

[[S(s) ]] = [[S(s) ]] ∧ Es = [[S(s) ]] ∧
∨
a∈|A|I [[fa = s]]

=
∨
a∈|A|I [[S(s) ]] ∧ [[fa = s]]

=
∨
a∈|A|I [[S(fa) ]] ∧ [[fa = s]] =

∨
a∈|A|I [[T (fa) ]] ∧ [[fa = s]]

=
∨
a∈|A|I [[T (s) ]] ∧ [[fa = s]] = [[T (s) ]] ∧ Es = [[T (s) ]],

verifying that f∗ is injective. As in (d), (2)⇔ (3) is a consequence of the adjunction
in (c) and 7.9.(a), ending the proof. �

Definition 38.12. Let A, B be Ω-sets and I, J be sets. If

f :
⊗I

A −→
⊗J

B

is a Q-morphism, R ∈ KIA and S ∈ KJB,

a) f∗R is the image of R by f .

b) f∗S is the inverse image of S by f .

Corollary 38.13. Let A be a Ω-set and J , I be sets. Let

∆ :

{
A −→ AJ

A −→
⊗J

A

be the diagonal embeddings and η : AJ −→
⊗J

A be the natural embedding. The
diagrams below are commutative

KIA - KI(A
J)

∆∗ η∗

KI×J(A)

∆∗

A
A
A
A
AU

�
�
�
�
��

KI×J(A) - KI(A
J)

∆∗ ∆∗

KIA

η∗

A
A
A
A
AU

�
�
�
�
��

and have the following properties :

a) All arrows above-left are injective
∨

-morphisms, while those above-right are
surjective open morphisms, with corresponding to adjoint pairs ·∗ and ·∗.
b) If A is a presheaf, η∗ and η∗ are inverse isomorphisms.

Proof. a) The commutative diagram of regular Ω-set embeddings below-left,
induces, by 38.10, the commutative diagram of regular Ω-set embeddings below-
right

A - AJ

∆ η

⊗J
A

∆

A
A
A
A
AU

�
�
�
�
��

⊗I
A -

⊗I
(AJ)

∆I ηI

⊗I×J
A

∆I

A
A
A
A
AU

�
�
�
�
��
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recalling that
⊗I

(
⊗J

A) is naturally isomorphic to
⊗I×J

A 16. Theorem 38.11
then yields the commutative diagrams in the statement.

b) This is an explicit rendering of the isomorphism in 38.7. For S in KI×JA, let
T = S||AJ |I ; then T ∈ KI(A

J) (37.2.(b)); we show that η∗T = S, completing

the proof. For t ∈ |A|I×J we have

η∗T (t) =
∨
s∈|AJ |I [[ηs = t]] ∧ [[T (s) ]] =

∨
s∈|AJ |I [[ηs = t]] ∧ [[T (t) ]]

≤ [[T (t) ]].

On the other hand, noting that t|Et ∈ |A
I×J | ⊆ |AJ |I and [[t = t|Et]] = Et,

37.4.(a) yields

[[S(t) ]] = [[S(t|Et) ]] ≤
∨
s∈|AJ |I [[ηs = t]] ∧ [[T (t|Et) ]] = η∗T (t),

as needed. �

Remark 38.14. If A is a Ω-set and I, J are sets, 38.13 implies that

∗ KI(AJ) is a retract of KI×JA and KIA is a retract of KI(A
J);

∗ KIA is a quotient of KI(A
J), which in turn is a quotient of KI×JA. Since the

surjections that characterize these quotients are open, it follows from Remark 10.7
that there are principal filters F ⊆ G in KI×JA, such that

KI(A
J) ≈ (KI×JA)/F and KIA ≈ (KI×JA)/G.

The reader can check that F is the principal filter generated by η∗>>>I , i.e., the
characteristic map of |AJ |I ⊆ |A|I×J . Similarly, one obtains G.

Similar comments apply, by the same argument and 38.11.(d), to the inverse
image by any regular embedding. 2

Corollary 38.15. Let f : A −→ B be a Ω-set morphism. For each set I, f
induces an adjoint pair 〈 f∗, f∗ 〉, satisfying the following conditions :

a) f∗ : KIA −→ KIB, given by f∗R(b) =
∨
a∈|A|I [[fa = b]] ∧ [[R(a) ]], is a∨

-morphism that takes >>>I to [[ f(|A|I)(·) ]].

b) f∗ : KIB −→ KIA, given by f∗S(a) = [[S(fa) ]] is an open frame morphism.

c) The following conditions are equivalent :

(1) f is a regular monic; (2) f∗ is injective; (3) f∗ is surjective.

d) If I is finite and B is extensional, the following are equivalent

(1) f is epic; (2) f∗ is surjective; (3) f∗ is injective.

Proof. By Example 38.10, f I :
⊗I

A −→
⊗I

B is a Ω-set morphism and
items (a), (b) and (c) follow from 38.11. For (d), it is clear that f I is a regular
monic if the same is true of f ; the stated equivalence follows from 38.11.(d).

e) By Lemma 25.24, f is epic iff for all b ∈ |B|
Eb =

∨
a∈|A| [[fa = b]].

If I is finite, then for b ∈ |B|I , distributivity of joins over finite meets (8.4) yields

16By exponential adjunction.
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Eb =
∧
i∈I Ebi =

∧
i∈I

∨
ai∈|A| [[fai = bi]]

=
∨
a∈|A|I

∧
i∈I [[fai = bi]] =

∨
a∈AI [[fa = b]],

and f I verifies condition (2) in 38.11.(e), ending the proof. �

Corollary 38.16. Let A be a Ω-set and I be a set. For J ⊆ I, the projection

πJ :
⊗I

A −→
⊗J

A

induces an adjoint pair 〈π∗J , πJ∗ 〉 satisfying the following conditions :

a) π∗J : KJA −→ KIA, given, for R ∈ KJA and a ∈ |A|I by

π∗JR(a) = [[R(πJa) ]] ∧ Ea
is an open frame embedding.

b) πJ∗ : KIA −→ KJA, given, for S ∈ KIA and c ∈ |A|J , by

πJ∗S(c) =
∨
a∈|A|I [[πJ(a) = c]] ∧ [[S(a) ]]

is a surjective
∨

-morphism that preserves ⊥⊥⊥I and >>>I .

Proof. Since πJ :
⊗I

A −→
⊗J

A is a Q-morphism (38.9) and E⊗IA =
E⊗JA = EA (38.3), Theorem 38.11 entails all conclusions, except

(1) π∗J is injective.

Once (1) is proven, 7.9 implies that πJ∗ is surjective and so must preserve >>>I
because, being a

∨
-morphism, it is increasing.

Proof of (1) : First assume that J = ∅. Then,
⊗J

A = 1|EA; by the isomorphism

of K11|EA with (EA)← in 37.6, the inverse image by πJ of p ≤ EA is the I-

characteristic map p ∧ >>>I . The argument that p ≤ EA 7−→ p ∧ >>>I ∈ KIA is
injective was presented at the end of Example 37.5.

Now suppose that J 6= ∅ and fix k in J . We may assume that J 6= I, otherwise
there is nothing to prove, since πJ is the identity. Let R, T ∈ KJA satisfy

(*) ∀ a ∈ |A|I , [[R(πJa) ]] ∧ Ea = [[T (πJa) ]] ∧ Ea,

and fix c ∈ |A|J . Let ĉk be the constant I − J sequence with value ck and consider
a = 〈 c; ĉk 〉 ∈ |A|I 17. Observe that

πJa = c and Ea =
∧
i∈I Eai = Ec ∧ Eck = Ec.

Hence, (*) yields

[[R(c) ]] = [[R(c) ]] ∧ Ec = [[R(πJa) ]] ∧ Ea = [[T (πJa) ]] ∧ Ea = [[T (c) ]],

as needed. �

Corollary 38.17. Let A be a Ω-set and n ≥ 1 be an integer. Let

πn :
⊗n+1

A −→
⊗n

A

be the projection that forgets the (n + 1)th-coordinate. If R ∈ KnA, then for all
a ∈ |A|n+1

π∗nR(a) = [[R(a1, . . . , an) ]] ∧ Ean+1.

17Notation as in 37.24.
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Proof. Immediate from 38.16.(a), since for a ∈ |A|n+1

[[R(a1, . . . , an) ]] ∧ Ea = [[R(a1, . . . , an) ]] ∧ Ean+1

because [[R(a1, . . . , an) ]] ≤ E〈 a1, . . . , an 〉 =
∧n
i=1 Eai. �

Exercises

38.18. If A, B, C are Ω-sets and I, J , K are sets, then

a) Id(⊗IA)∗ = Id∗⊗IA = IdKIA.

b) If
⊗I

A
f−→
⊗J

B
g−→
⊗K

C are Q-morphisms, then

(g ◦ f)∗ = g∗ ◦ f∗ and (g ◦ f)∗ = f∗ ◦ g∗. 2

38.19. In the setting 38.11, assume that A is a Ω-presheaf. If R ∈ KIA, then

f∗R(s) =
∨
a∈|AI | [[f(a) = s]] ∧ [[R(a) ]].

Thus, the parameters a in |A|I in the definition, may be substituted for sections
in AI . Verify that in this case f∗>>>I = [[ f(AI) ]]. 2

38.20. With notation as in 38.13, assume that J is finite. For t ∈ |A|I×J and
j ∈ J , let

tj : I −→ |A| be given by tj(i) = t(i, j).

a) If R ∈ KIA, then for all t ∈ |A|I×J ,

∆∗R(t) =
∧
j∈J [[R(tj) ]],

with ∆ :
⊗I

A −→
⊗I×J

A as in 38.13. A similar relation holds for image along

the diagonal embedding ∆ :
⊗I

A −→
⊗I

AJ .

b) Both maps ∆∗ from KIA to KI×JA and KI(A
J) preserve arbitrary meets being

therefore complete (or regular) embeddings. 2

The next Exercise furnishes yet another argument in favor of dealing with
extensional objects.

38.21. Let A be a Ω-set and I 6= ∅ be a set. Let εA be the extensionalization
of A (30.7, 30.8). Then, ε∗ : KIA −→ KIεA is a frame isomorphism. 2
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CHAPTER 39

Image and Inverse Image under Change of Base

In this Chapter we present a generalization of image and inverse image for
morphisms between objects with (possibly) distinct basis (29.1), as well as several
applications of these set of ideas. We shall deal mainly with presheaves, but many
of our results hold true, with the same proofs, in the category Ωset.

Theorem 39.1. Let L, Ω be frames and A, B be presheaves over L and Ω,
respectively. Let

f = 〈 f, λ 〉 : A −→ B

be a morphism in pSh 1, with λ a frame-morphism. Let ρ : Ω −→ L be the right
adjoint of λ. Then, for each set I, f induces an adjoint pair 〈 f∗, f

∗ 〉, as follows :

a) f∗ : KIA −→ KIB is a
∨

-morphism, called image by f, given, for b ∈ |B|I
and R ∈ KIA by

f∗R(b) =
∨
a∈|A|I [[fa = b]] ∧ λ

(
[[R(a) ]]

)
.

b) f∗ : KIB −→ KIA is a
∧

-morphism, called inverse image by f, defined for
a ∈ |A|I and S ∈ KIB by

f∗S(a) = Ea ∧ ρ
(

[[S(fa) ]]
)

.

Moreover, the pair 〈 f∗, f
∗ 〉 has the following properties :

c) If I = ∅, then f∗ = λ and f∗ = g.

d)

{
(1) f∗⊥⊥⊥I = ⊥⊥⊥I and f∗>>>I = [[ f(AI) ]].

(2) f∗⊥⊥⊥I = ⊥⊥⊥I and f∗>>>I = >>>I .

e) If ρ preserves implication or joins, the same is true of f∗.

f) Suppose λ is injective and consider the following conditions :

(1) For all a, b ∈ |A|, [[fa = fb]] = λ
(

[[a = b]]
)

;

(2) For all finite I, f∗ is injective;

(3) For all finite I, f∗ is surjective;

(4) For all a, b ∈ |A|, [[a = b]] = ρ
(

[[fa = fb]]
)

.

Then, (1) ⇒ (2) ⇔ (3) ⇒ (4). If ρ is a
∨

-morphism, then (2), (3) and (4) are
equivalent.

1As in 29.1.
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g) If λ is surjective, the following conditions are equivalent :

(1) For all b ∈ |B|, Eb =
∨
a∈|A| [[fa = b]];

(2) For all finite I, f∗ is surjective;

(3) For all finite I, f∗ is injective.

h) If 〈 g, µ 〉 : B −→ C is a morphism in pSh, with µ a frame-morphism, then

(1) (〈 g, µ 〉 ◦ 〈 f, λ 〉)∗ = 〈 g, µ 〉∗ ◦ 〈 f, λ 〉∗
(2) (〈 g, µ 〉 ◦ 〈 f, λ 〉)∗ = 〈 f, λ 〉∗ ◦ 〈 g, µ 〉∗.

Proof. Analogous to the corresponding statements in 38.11. The only signif-
icant difference is the presence of the right adjoint ρ; and we shall verify that f∗S
is in KIA, adjointness, (f) and (g), sampling the techniques to handle its presence.

From the definition of f∗ in (b), it is enough to check [ch 2] in 37.1. If S ∈ KIB
and a ∈ |A|I , since ρ ◦ λ ≥ IdL (7.8.(a)), we get

f∗S(a) ∧ [[a = c]] = Ea ∧ ρ
(

[[S(fa) ]]
)
∧ [[a = c]]

≤ Ec ∧ ρ
(
λ([[a = c]])

)
∧ ρ

(
[[S(fa) ]]

)
≤ Ec ∧ ρ

(
[[fa = fc]] ∧ [[S(fa) ]]

)
≤ Ec ∧ ρ

(
[[S(fc) ]]

)
= f∗S(c),

and f∗S ∈ KIA. Adjointness means that for R ∈ KIA and S ∈ KIB,
f∗R ≤ S ⇔ R ≤ f∗S. Assume that f∗R(b) ≤ [[S(b) ]], for all b ∈ |B|I . Then, for

all a ∈ |A|I , [[fa = fa]] ∧ λ
(

[[R(fa) ]]
)
≤ [[S(fa) ]]. Since Efa = λ(Ea), the

preceding inequality yields

λ
(
Ea ∧ [[R(a) ]]

)
= λ

(
[[R(a) ]]

)
≤ [[S(fa) ]],

that, by adjointness, implies [[R(a) ]] ≤ Ea ∧ ρ
(

[[S(fa) ]]
)

= f∗S(a), estab-

lishing (⇒). The argument for (⇐) is similar.

f) By 7.9, (2) and (3) are equivalent. Moreover, since λ preserves finite meets, if
a, c ∈ |A|I , then (1) entails

(λ) [[fa = fc]] =
∧
i∈I [[fai = fci]] =

∧
i∈I λ([[ai = ci]]) = λ([[a = c]]).

A similar argument shows that (4) implies

(ρ) ρ([[fa = fc]]) = [[a = c]].

(1) ⇒ (2) : For R ∈ KIA and a ∈ |A|I , (λ) yields

f∗R(fa) =
∨
c∈|A|I [[fc = fa]] ∧ λ

(
[[R(c) ]]

)
=

∨
c∈|A|I λ

(
[[c = a]]

)
∧ λ

(
[[R(c) ]]

)
=

∨
c∈|A|I λ

(
[[c = a]] ∧ [[R(c) ]]

)
=

∨
c∈|A|I λ

(
[[c = a]] ∧ [[R(a) ]]

)
= λ

(
[[R(a) ]]

)
.
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If R′ ∈ KIA is such that f∗R = f∗R
′, the above computation shows that for all

a ∈ |A|I ,
λ
(

[[R(a) ]]
)

= λ
(

[[R′(a) ]]
)

,

whence [[R(a) ]] = [[R′(a) ]], establishing (2). Since λ is injective, 7.9 yields
ρ ◦ λ = IdL and λ ◦ ρ ≤ IdR.

(2) ⇒ (4) : Fix c ∈ |A|. Consider the elements of K1A given by

h1(x) = [[x = c]] and h2(x) 2 ρ
(

[[fc = fx]]
)

.

To see that h2 ∈ K1A, let x, y ∈ |A|. Then,

∗ h2(x) = ρ
(

[[fc = fx]]
)
≤ ρ(Efx) = ρ(λ(Ex)) = Ex;

∗ h2(x) ∧ [[x = y]] = ρ
(

[[fc = fx]]
)
∧ [[x = y]] = ρ

(
[[fc = fx]] ∧ λ([[x = y]])

)
≤ ρ

(
[[fc = fx]] ∧ [[fx = fy]]

)
≤ ρ

(
[[fx = fy]]

)
= h2(y).

We shall now verify that f∗h1 = f∗h2. For b ∈ |B|,

f∗h1(b) =
∨
u∈|A| [[fu = b]] ∧ λ([[u = c]])

=
∨
u∈|A| [[fc = b]] ∧ λ([[u = c]])

= [[fc = b]] ∧ λ
(∨

u∈|A| [[u = c]]
)

= [[fc = b]] ∧ λ(Ec) = [[fc = b]] ∧ Efc = [[fc = b]].

For h2, first note that

f∗h2(b) =
∨
u∈|A| [[fu = b]] ∧ λ(ρ([[fu = fc]]))

≤
∨
u∈|A| [[fu = b]] ∧ [[fu = fc]] ≤ [[fc = b]].

On the other hand, [[fc = b]] ∧ λ(ρ([[fc = fc]])) = [[fc = b]] ∧ λ(ρ(λ(Ec))

= [[fc = b]] ∧ λ(Ec)

= [[fc = b]] ∧ Efc
= [[fc = b]].

Hence, f∗h2(b) = [[fc = b]] and so f∗h1 = f∗h2, as desired. Thus, the injectivity
of f∗ entails h1 = h2, proving (4).

Now assume that ρ is a
∨

-morphism to show

(4) ⇒ (2) : If R ∈ KIA and a ∈ |A|I , we get, recalling (ρ) above,

ρ
(
f∗R(fa)

)
=

∨
c∈|A|I ρ

(
[[fc = fa]]

)
∧ ρ(λ([[R(c) ]]))

=
∨
c∈|A|I [[c = a]] ∧ [[R(c) ]]

=
∨
c∈|A|I [[c = a]] ∧ [[R(a) ]] = [[R(a) ]].

Hence, if R, R′ ∈ KIA are such that f∗R = f∗R
′, the preceding computation

immediately implies R = R′, as needed.
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g) By 7.9, (2) ⇔ (3) and λ ◦ ρ = IdR. Hence, it suffices to see that (1) ⇔ (3).
The proof of (3) ⇒ (1) is similar to that of (1) ⇒ (2) in 38.11.(e). For (1) ⇒ (3),
let S ∈ KIB and a ∈ |A|I ; then

λ(f∗S(a)) = λ
(
Ea ∧ ρ([[S(fa) ]])

)
= λ(Ea) ∧ [[S(fa) ]]

= Efa ∧ [[S(fa) ]] = [[S(fa) ]].

Hence, if f∗S = f∗S′, the preceding computation shows that S and S′ coincide
in (fA)I . Since (1) implies that fA is dense in B, 37.8.(c) entails S = S′, as
needed. �

Recall that if L is a frame, DL is the filter of dense elements in L and Reg(L)
is the cBa of regular elements in L, naturally isomorphic to the quotient L/D 2.

Lemma 39.2. Let A be a Ω-set and I be a set.

a) Reg(KIA) = {R ∈ KIA : ∀ a ∈ |A|I , Ea ∧ ¬¬ [[R(a) ]] = [[R(a) ]]}.
b) DKIA = {R ∈ KIA : ∀ a ∈ |A|I , Ea ≤ ¬¬ [[R(a) ]]}

= {R ∈ KIA : ∀ a ∈ |A|I , ¬¬Ea = ¬¬ [[R(a) ]]}.

Proof. Item (a) is immediate from 37.4.(d). For (b), since the top of KIA
is >>>I , R is dense iff ¬¬R = >>>I . Hence, for all a ∈ |A|I ,

[[¬¬R(a) ]] = Ea ∧ ¬¬ [[R(a) ]] = >>>I(a) = Ea

which is equivalent to ¬¬Ea = ¬¬ [[R(a) ]]. �

One might inquire as to whether the cBa KIA/DKIA corresponds to charac-
teristic maps on some object. For finite I, we have

Theorem 39.3. Let A be a Ω-presheaf and I a finite set. Let D, Dk be the
filters of dense elements in Ω and KIA, respectively. Let 3

h = 〈 εD, πD 〉 : A −→ A/D

be the localization morphism of A at the filter D. Then,

a) h∗ : KI(A/D) −→ Reg(KIA) is an isomorphism of complete Boolean algebras.

b) KIA/Dk is naturally isomorphic to KI(A/D).

Proof. Let ρ : Ω/D −→ Ω be the right adjoint of πD, ρ(p/D) = ¬¬ p.
Hence,

(+) Imρ = Reg(Ω) and ρ(πD(p)) = ¬¬ p.
Furthermore, since I is finite, if a, c ∈ |A|I , then (see 34.2)

(&)

{
(i) εDa = 〈 ai/D 〉i∈I =def a/D;

(ii) [[a/D = c/D]] =
∧
i∈I πD([[ai = ci]]) = πD([[a = c]]).

Since εD and πD are surjective, 39.1.(g) guarantees that h∗ is injective. Re-
calling that in Ω/D

2See 6.19, 6.21 and 10.5.
3Notation as in 34.1.
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¬ (p/D) = ¬ p/D and (p → q)/D = p/D → q/D

items (d) and (j) in 6.8 imply that ρ preserves implication and negation. Hence, h∗

is a
∧

-morphism, preserving implication and negation (39.1.(e)). Because KI(A/D)
is a cBa (37.4.(e)), the de Morgan laws (8.16.(h)) entail that h∗ is an open injection,
i.e., it preserves all meets and joins, as well as implication. The same argument
shows that ρ is open, in fact, an isomorphism between Ω/D and Reg(Ω).

For S ∈ KI(A/D) and a ∈ |A|I , 37.4.(d) and 6.8.(g) yield, since Imρ = Reg(Ω)

[¬¬ h∗S](a) = Ea ∧ ¬¬ h∗R(a) = Ea ∧ ¬¬Ea ∧ ¬¬ ρ
(

[[S(a/D) ]]
)

= Ea ∧ ρ
(

[[S(a/D) ]]
)

= h∗S(a)

and Im h∗ ⊆ Reg(KIA). To end the proof of (a) we need :

Fact 39.4. If a, u ∈ |A|I , then

a) ρ
(

[[a/D = u/D]]
)

= ¬¬ [[a = u]].

b) ρ
(∨

c∈|A|I [[c/D = a/D]]
)

= ¬¬Ea.

c) For R ∈ KIA, h∗h∗R = ¬¬R.

Proof. a) Item (ii) in (&) yields

ρ
(

[[a/D = u/D]]
)

= ρ(πD([[a = u]])) = ¬¬ [[a = u]].

b) With (a) and the fact that ρ is open we obtain

ρ
(∨

c∈|A|I [[c/D = a/D]]
)

=
∨
c∈|A|I ρ(πD([[c = a]]))

=
∨
c∈|A|I ¬¬ [[c = a]] = ¬¬Ea,

as needed.

c) Since ρ is open, (a), (b) and 8.16.(g) yield, for a ∈ |A|I ,
h∗[h∗R](a) = Ea ∧ ρ

(
h∗R(a/D)

)
= Ea ∧ ρ

(∨
c∈|A|I [[c/D = a/D]] ∧ πD([[R(c) ]])

)
= Ea ∧

∨
c∈|A|I ρ

(
[[c/D = a/D]]

)
∧ ρ(πD([[R(c) ]]))

= Ea ∧
∨
c∈|A|I ¬¬ [[c = a]] ∧ ¬¬ [[R(c) ]]

= Ea ∧
∨
c∈|A|I ¬¬ [[c = a]] ∧ ¬¬ [[R(a) ]]

= Ea ∧ ¬¬ [[R(a) ]] ∧
∨
c∈|A|I ¬¬ [[c = a]]

= Ea ∧ ¬¬ [[R(a) ]] ∧ ¬¬Ea = [[¬¬R(a) ]],

as desired. �

It follows immediately from 39.4 that h∗ is onto Reg(KIA), ending the proof
of (a). Item (b) follows from (a) and 10.5. �

As long as we are on the subject, there is also an isomorphism between
Reg(KIA) and Reg(KIrA), where rA is the regularization of A associated to double
negation, as in 35.7 :
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Theorem 39.5. Let A be a Ω-presheaf and A
r−→ rA be the regularization

of A associated to double negation (35.7). For each finite set I, the pair 〈 r∗, r∗ 〉
induces inverse isomorphisms between Reg(KIA) and Reg(KI(rA)).

Proof. We assume the reader is familiar with Chapter 35, in particular with
the notational conventions in 35.7. By 30.6, we may assume I to be n = {1, 2,
. . . , n}. The fact that double negation distributes over finite meets (6.8.(g)) will
be used repeatedly, without further comment. Write

〈x, p 〉 = 〈 〈x1, p1 〉, . . . , 〈xn, pn 〉 〉
for a typical element of |rA|n. We shall also write Kn(∗) for KI(∗).

By 39.1.(e) 4, r∗ : Kn(rA) −→ KnA is an open morphism.

Fact 39.6. a) If T ∈ Kn(rA) and 〈x, p 〉 ∈ |rA|n, then

[[T (〈x, p 〉) ]] ∧ Ex = [[T (rx) ]].

b) The restriction of r∗ to Reg(Kn(rA)) is an open embedding into Reg(KnA).

c) If S ∈ KnA and 〈x, p 〉 ∈ |rA|n, define

rS(〈x, p 〉) =
∧n
i=1 pj ∧ ¬¬ [[S(x) ]].

Then, rS ∈ Reg(Kn(rA)) and r∗(rS) = ¬¬S.

Proof a) By [ch 2′] in 37.2, we have

(+) [[T (〈x, p 〉) ]] ∧ [[〈x, p 〉 = rx]]r = [[T (rx) ]] ∧ [[〈x, p 〉 = rx]]r.

Since Exi ≤ pi ≤ ¬¬Exi, 1 ≤ i ≤ n, it follows [r 1] in 35.7 that

[[〈x, p 〉 = rx]]r =
∧n
i=1 pi ∧ Ex ∧ ¬¬Ex = Ex = Erx,

which substituted into (+) yields the stated equality.

b) If T ∈ Reg(Kn(rA)) and a ∈ |A|n, since r is a morphism 5, we get

¬¬T ∗(a) = Ea ∧ ¬¬ [[T (ra) ]] = Era ∧ ¬¬ [[T (ra) ]]

= [[¬¬T (ra) ]] = [[T (ra) ]] = r∗T (a),

and T ∗ ∈ Reg(KnA). To verify injectivity, suppose T , T ′ ∈ Reg(Kn(rA)) satisfy
r∗T = r∗T ′. Then, [[T (ra) ]] = [[T ′(ra) ]], for all a ∈ |A|n, and item (a) yields, for

〈x, p 〉 ∈ |rA|n,

(&) [[T (〈x, p 〉) ]] ∧ Ex = Ex ∧ [[T ′(〈x, p 〉) ]].

Taking double negation on both sides of (&) and recalling that

(*) E〈x, p 〉 =
∧n
i=1 pi ≤ ¬¬Ex,

we arrive at ¬¬ [[T (〈x, p 〉) ]] = ¬¬ [[T ′(〈x, p 〉) ]] and so T = T ′, as desired. Since
r∗ is an open morphism and Reg(Kn(rA)) is both a Boolean algebra and a [

∧
,¬ ]-

sublattice of Kn(rA), it follows that the restriction of r∗ to the regular elements
in Kn(rA) is still an open morphism.

4Applied to the pair 〈 IdΩ, IdΩ 〉.
5And so r∗T (a) = Ea ∧ [[T (ra) ]] = Era ∧ [[T (ra) ]] = [[T (a) ]].
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c) It is clear from (*) above that rS satisfies [ch 1] in 37.1. For the Leibniz rule
we have

[[ rS(〈x, p 〉) ]] ∧ [[〈x, p 〉 = 〈 y, q 〉]]r =

=
∧n
i=1 pi ∧ ¬¬ [[S(x) ]] ∧

∧n
i=1 qi ∧ ¬¬ [[x = y]]

≤
∧n
i=1 qi ∧ ¬¬ ([[S(x) ]] ∧ [[x = y]])

≤
∧n
i=1 qi ∧ ¬¬ [[S(y) ]] = [[ rS(〈 y, q 〉) ]],

and rS ∈ Kn(rA). It is straightforward that r∗(rS) = ¬¬S.

It is immediate from (b) and (c) in 39.6 that r∗ is an isomorphism from
Reg(Kn(rA)) onto Reg(KnA), whose inverse is, in fact, r∗

6. �

Remark 39.7. Theorem 39.5 can be generalized to other regularization func-
tors. Let k : L −→ Ω be a frame-morphism with right adjoint g. If A is a L-presheaf,
n ≥ 1 is a positive integer, R ∈ KnA and a ∈ |A|n, define

[[ gkR(a) ]] = Ea ∧ gk([[R(a) ]]).

Then, gkR ∈ KnA. Let

Rk(KnA) = {R ∈ KnA : gkR = R}.
If kr : A −→ krA is the regularization morphism in 35.1, the adjoint pair 〈 kr∗, kr∗ 〉
establishes algebraic connections between Rk(KnA) and Rk(Kn(krA)), that de-
pend on the properties of k and g. 2

6Hint : rS = r∗(¬¬S).
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CHAPTER 40

Dependence on Coordinates

This Chapter generalizes to Ω-sets the content of Definition 24.28.

Definition 40.1. Let Ai, i ∈ I, be Ω-sets. For x, y ∈
∏
i∈I |Ai|, define

c(x, y) = {i ∈ I : [[xi = yi]] = Exi ∧ Eyi}
i.e., c(x, y) is the set of i ∈ I wherein xi and yi are compatible in Ai. It is clear
that c(x, y) = c(y, x) 1.

Definition 40.2. Let B, A be Ω-sets, I be a set and J ⊆ I.

a) A characteristic map R ∈ KIA depends on J if for all x, y ∈ |A|I

J ⊆ c(x, y) ⇒ Ex ∧ [[R(y) ]] = Ey ∧ [[R(x) ]].

Write KI(A, J) for the set of R ∈ KIA that depend on J .

b) A subset of AI depends on J if its characteristic map (37.13) depends on J .

c) Let Ai, i ∈ I, be Ω-sets. A morphism f :
∏
i∈I Ai −→ B depends on J if for

all a, c ∈ |
∏
i∈I Ai|
J ⊆ c(a, c) ⇒ [[f(a) = f(c)]] = Ea ∧ Ec,

that is, f(a) and f(c) are compatible in B. In particular, if B is extensional and
Ea = Ec, then f(a) = f(c). Write [AI , B]J for the collection of morphisms from
AI to B that depend on J .

Lemma 40.3. Let J ⊆ I be sets and A, B, Ai, i ∈ I, be Ω-sets and let
P =

∏
i∈I Ai. Let f : P −→ B be a Ω-set morphism.

a) If R ∈ KIA and a, c ∈ |P | are such that c(a, c) = I, then

Ea ∧ [[R(c) ]] = Ec ∧ [[R(a) ]].

b) For R ∈ KIA, consider the following conditions :

(1) R depends on J ;

(2) For all a, c ∈ |P |, πJ(a) = πJ(c) ⇒ Ea ∧ [[R(c) ]] = Ec ∧ [[R(a) ]].

(3) For all a, c ∈ |P |,
πJ(a) = πJ(c) ⇒ EπJc(a) ∧ [[R(c) ]] = EπJc(c) ∧ [[R(a) ]].

(4) For all a, c ∈ P , Ea = Ec and πJ(a) = πJ(c) ⇒ [[R(c) ]] = [[R(a) ]].

Then, (1) ⇔ (2) ⇔ (3) ⇒ (4). If A is a presheaf, these conditions are equivalent.

1However, it is not true in general that c(x, y) ∩ c(y, z) ⊆ c(x, z).
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c) Consider the following conditions :

(1) f depends on J ;

(2) For all x, y ∈ |P | , πJ(x) = πJ(y) ⇒ [[fx = fy]] = Ex ∧ Ey;

(3) For all x, y ∈ |P |, Ex = Ey and πJ(x) = πJ(y) ⇒ fx = fy.

Then, (1) ⇒ (2) ⇒ (3). If B, Ai, i ∈ I, are presheaves, these conditions are
equivalent.

Proof. a) If the conditions in the statement are met, then

[[a = c]] =
∧
i∈I [[ai = ci]] =

∧
i∈I Eai ∧ Eci = Ea ∧ Ec,

and the definition of characteristic map (37.1) entails Ea ∧ [[R(c) ]] = Ec ∧ [[R(a) ]].

b) Note that

πJ(a) = πJ(c) ⇒ J ⊆ c(a, c),

to obtain (1)⇒ (2). Since [[R(u) ]] ≤ EπJu for all u ∈ |A|I , we have (2)⇒ (3). For
the converse take the meet on both sides of the equality in (3) with EπJa = EψJc
to obtain (2). Clearly, (2) ⇒ (4). To complete the first batch of equivalences, it
will be verified that (2) ⇒ (1).

If u, v ∈ |A|I verify J ⊆ c(u, v), consider x ∈ |A|I , defined by

xi =

{
vi if i 6∈ J
ui if i ∈ J .

Then,

(i) πJx = πJu; (ii) Ex = EπJcv ∧ EπJu;

(iii) [[v = x]] = EπJcv ∧ [[πJv = πJu]] = EπJcv ∧
∧
i∈J [[vi = ui]]

= EπJcv ∧
∧
i∈J Evi ∧ Eui = EπJcv ∧ EπJv ∧ EπJu

= Ev ∧ EπJu.

Hence, (2), (i) and (iii) entail

(A) Eu ∧ [[R(x) ]] = Ex ∧ [[R(u) ]] = EπJcv ∧ [[R(u) ]].

Taking the meet with Ev on both sides of (A) yields

(B) Eu ∧ Ev ∧ [[R(x) ]] = Ev ∧ [[R(u) ]].

Now, (ii) implies Eu ∧ Ev ∧ [[R(x) ]] = Eu ∧ EπJu ∧ Ev ∧ [[R(x) ]]

= Eu ∧ [[v = x]] ∧ [[R(x) ]]

≤ Eu ∧ [[R(v) ]],

that, together with (B), entails Ev ∧ [[R(u) ]] ≤ Eu ∧ [[R(v) ]]. Since the argument
is symmetrical in u, v, we conclude the equality needed to establish (1).

To show that (4) ⇒ (1), assume that A is a Ω-presheaf. If J ⊆ c(a, c), set

p = Ea ∧ Ec, x = a|p and y = c|p.

Then, Ea|p = Ec|p = p; if i ∈ c(a, c), then Exi = Eyi = p, with

[[xi = yi]] = [[ai|p = ci|p]] = p ∧ [[ai = ci]] = p ∧ Eai ∧ Eci = p,
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and so the extensionality of Ai entails xi = yi. Since J ⊆ c(a, c), we conclude that
πJ(x) = πJ(y). Now (3) and 37.12.(a) yield

Ea ∧ [[R(c) ]] = Ea ∧ Ec ∧ [[R(c) ]] = [[R(c|p) ]] = [[R(a|p) ]]

= Ec ∧ Ea ∧ [[R(a) ]] = Ec ∧ [[R(a) ]],

as needed. The arguments for item (b) are similar. �

Lemma 40.4. Let A be a Ω-set and I be a set.

a) For R ∈ KIA, the following conditions are equivalent :

(1) R depends on ∅; (2) For all a ∈ |A|I , [[R(a) ]] = ER ∧ Ea 2.

b) The map R ∈ KI(A, ∅) 7−→ ER ∈ (EA)← is a regular embedding and an
isomorphism whenever A is a Ω-presheaf.

Proof. a) It is clear that (2) ⇒ (1); for the converse, if (1) holds, then R
satisfies ∀ a, c ∈ |A|I , Ea ∧ [[R(c) ]] = Ec ∧ [[R(a) ]]. Taking joins with respect
to c on both sides yields, Ea ∧ ER = [[R(a) ]] ∧

∨
c∈|A|I Ec = [[R(a) ]], as

needed.

b) It is straightforward that the displayed map is a regular embedding. The iso-
morphism in case A is a presheaf is left to the reader. �

Proposition 40.5. Let A be a Ω-set and I be a set. Let J , K and Jλ, λ ∈ Λ,
be subsets of I.

a) J ⊆ K ⊆ I ⇒ KI(A, J) ⊆ KI(A,K).

b) Rλ ∈ KI(A, Jλ), λ ∈ Λ ⇒
∨
λ∈Λ Rλ,

∧
λ∈Λ Rλ ∈ KI(A,

⋃
Jλ).

c) R ∈ KI(A, J), S ∈ KI(A,K) ⇒
{

¬R ∈ KI(A, J)

(R → S) ∈ KI(A, J ∪ K).

d) With the operations induced by KIA, KI(A, J) is a frame and the canonical
inclusion into KIA is an open embedding.

e) If Λ is finite and J =
⋂
λ∈Λ Jλ, then

(1)
⋂
λ∈Λ KI(A, Jλ) = KI(A, J).

(2) If B, Ai, i ∈ I, are Ω-presheaves, then⋂
λ∈Λ

[∏
i∈I Ai, B

]
Jλ

=
[∏

i∈I Ai, B
]
J

.

Proof. Item (a) is clear. For (b), suppose a, c ∈ |A|I satisfy Jλ ⊆ c(a, c),
for all λ ∈ Λ.

Then, Ec ∧ [[
∨
λ∈Λ Rλ(a) ]] =

∨
λ∈Λ Ec ∧ [[Rλ(a) ]] =

∨
λ∈Λ Ea ∧ [[Rλ(c) ]]

= Ea ∧ [[
∨
λ∈Λ Rλ(c) ]],

and
∨
λ∈Λ Rλ depends on

⋃
λ∈Λ Jλ. The case of meets is analogous.

c) If J ∪ K ⊆ c(a, c), then 6.4.(i) entails

2Recall from 37.1 that ER =
∨
a∈|A|I [[R(a) ]] is the extent of R.
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Ec ∧ [[ (R→S)(a) ]] = Ec ∧ Ea ∧ ([[R(a) ]] → [[S(a) ]])

= Ec ∧ Ea ∧ [(Ec ∧ [[R(a) ]]) → (Ec ∧ [[S(a) ]])]

= Ec ∧ Ea ∧ [(Ea ∧ [[R(c) ]]) → (Ea ∧ [[S(c) ]])]

= Ea ∧ [[ (R→S)(c) ]],

as needed. The case of negation is similar. Item (d) is an immediate consequence
of the preceding.

e) Proof of (1) : By (a), KI(A, J) ⊆
⋂
λ∈Λ KI(A, Jλ). For the reverse inclusion,

it is enough to verify the statement for J1, J2 ⊆ I and use induction. If J1 ⊆ J2

or vice-versa there is nothing to prove. Assume then that R ∈ KIA depends on J1

and J2 and that a, c ∈ |A|I verify J ⊆ c(a, c). Consider x ∈ |A|I , defined by

xi =

{
ai if i ∈ J1

ci if i 6∈ J1.

Then : (i) x coincides with a in J1 and J2 ⊆ c(x, c) 3.

(ii) Ex = EπJc1 c ∧ EπJ1a ≥ Ec ∧ Ea and so

Ea ∧ [[R(c) ]] ≤ Ex and Ec ∧ [[R(a) ]] ≤ Ex.

Hence, 40.3.(b) and (i) imply

(*)

{
Ex ∧ [[R(c) ]] = Ec ∧ [[R(x) ]]

Ex ∧ [[R(a) ]] = Ea ∧ [[R(x) ]].

Now, (ii) and (*) yield

Ea ∧ [[R(c) ]] = Ea ∧ Ex ∧ [[R(c) ]] = Ea ∧ Ec ∧ [[R(x) ]]

= Ec ∧ Ex ∧ [[R(a) ]] = Ec ∧ [[R(a) ]],

as needed.

For (2), the above argument shows that if f is a morphism from
∏
i∈I Ai to

B depending on J1 and J2, and a, c ∈ |A|I verify Ea = Ec and J ⊆ c(a, c), then
f(a) = f(c). Since domain and codomain are presheaves, the desired conclusion
follows from 40.3.(c). �

Example 40.6. Item (e) in Proposition 40.5 is false for infinite intersections,
even in the classical, set-theoretic, case. As an example, let F be the filter of
cofinite subsets in N and consider the canonical projection

πF : NN −→ NN/F
from NN to the reduced power modulo F . Since

πF (s) = πF (t) iff {k ∈ N : s(k) = t(k)} ∈ F ,

it is clear that πF depends on every cofinite set. However, since it is not constant,
it does not depend on ∅, the intersection of all cofinite sets. To obtain an example
of a characteristic map violating 40.5.(e).(1) for infinite intersections, it suffices to
consider the characteristic map of the equivalence relation that originates πF . 2

Remark 40.7. If A is a Ω-set and I is a set, by Proposition 40.5 the functor

3In J , a is compatible with c; in J2 − J , x coincides with c.
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D :

{
J ∈ 2I 7−→ KI(A, J)

J ⊆ K 7−→ ιJK : KI(A, J) −→ KI(A,K),

where ιJK is the canonical inclusion, is an inductive system of frames and open
embeddings over the poset 〈 2I ,⊆〉. It is clear that KIA is the inductive limit of
this system, i.e., KIA = lim→ D. 2

We now show that KI(A, J) is naturally isomorphic to KJA.

Theorem 40.8. Let A be a Ω-set and I be a set. For J ⊆ I, let

πJ :
⊗I

A −→
⊗J

A

be the projection that forgets the coordinates outside J 4. Then, π∗J is an isomor-
phism from KJA onto KI(A, J).

Proof. By 38.16, π∗J : KJA −→ KIA is an open embedding; thus, it is enough
to show that its image is KI(A, J). For R ∈ KJA and a ∈ |A|I , we have

[[π∗JR(a) ]] = Ea ∧ [[R(πJa) ]].

Hence, if a, c ∈ |A|I verify J ⊆ c(a, c), then, c(πJ(a), πJ(c)) = J and so [EJ ] in
38.9 and 40.3.(a) yield

Ec ∧ [[π∗JR(a) ]] = Ec ∧ Ea ∧ [[R(πJa) ]]

= Ea ∧ EπJcc ∧ EπJc ∧ [[R(πJa) ]]

= Ea ∧ EπJcc ∧ EπJa ∧ [[R(πJc ]]

= Ea ∧ EπJcc ∧ [[R(πJc) ]]

= Ea ∧ EπJcc ∧ EπJc ∧ [[R(πJc) ]]

= Ea ∧ Ec ∧ [[R(πJc) ]] = Ea ∧ [[π∗JR(c) ]],

and π∗JR ∈ KI(A, J). To verify that π∗J is onto KI(A, J), let S be an element of
KI(A, J). For z ∈ |A|J , define 5

[[R(z) ]] =
∨
e∈|A|I−J [[S(〈 z; e 〉) ]].

Then, R ∈ KJA; clearly, it satisfies [ch 1] in 37.1. If x, y ∈ |A|J and e ∈ |A|I−J ,
note that [[〈x; e 〉 = 〈 y; e 〉]] = [[x = y]] ∧ Ee, and so, since [[S(〈x; e 〉) ]] ≤ Ee,

[[x = y]] ∧ [[R(x) ]] = [[x = y]] ∧
∨
e∈|A|I−J [[S(〈x; e 〉) ]]

=
∨
e∈|A|I−J [[x = y]] ∧ Ee ∧ [[S(〈x; e 〉) ]]

=
∨
e∈|A|I−J [[〈x; e 〉 = 〈 y; e 〉]] ∧ [[S(〈x; e 〉) ]]

≤
∨
e∈|A|I−J [[S(〈 y; e 〉) ]] = [[R(y) ]],

verifying [ch 2]. Note that the above holds true for any S in KIA. We shall now
verify that π∗JR = S. For a ∈ |A|I ,
(1) [[π∗JR(a) ]] = [[R(πJa) ]] ∧ Ea =

∨
e∈|A|I−J Ea ∧ [[S(〈πJ(a); e 〉) ]].

Since S ∈ KI(A, J) and πJa = πJ(〈πJa; e 〉), 40.3.(b) entails

Ea ∧ [[S(〈πJa; e 〉) ]] = E〈πJa; e 〉 ∧ [[S(a) ]],

4As in 38.9 and 38.16.
5Notation as in 37.24.
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which substituted into (1) yields, recalling 25.15.(a),

[[π∗JR(a) ]] =
∨
e∈|A|I−J E〈πJa; e 〉 ∧ [[S(a) ]] = [[S(a) ]] ∧

∨
e∈|A|I−J E〈πJa; e 〉

= [[S(a) ]] ∧ EπJa ∧
∨
e∈|A|I−J Ee = [[S(a) ]] ∧ EA = [[S(a) ]],

ending the proof. �

Remark 40.9. Direct image by a morphism does not preserve dependence on
coordinates, even in the classical, set-theoretic, setting. If f : A −→ B is a non-
surjective map and I is a set, the characteristic map of AI depends on the empty
set, but its image under f , that is the characteristic map of f(A)I (38.15.(a)),
depends on I and on no smaller subset. In particular, the image of a characteristic
map that depends on a finite set may turn out to be dependent on an infinite set
of coordinates. This Remark illustrates the result that follows. 2

Proposition 40.10. Let L, R be frames and A, B be presheaves over L and
R, respectively. Let f = 〈 f, λ 〉 : A −→ B be a morphism in pSh, with λ a

frame-morphism and J ⊆ I be sets. Let fI = 〈 f I , λ 〉.
a) T ∈ KI(B, J) ⇒ fI∗T ∈ KI(A, J).

b) With notation as in the diagram below, the left adjoint of f∗|KI(B,J)
is

Bπ∗J ◦ f
J
∗ ◦ AπJ∗ = Bπ∗J ◦ BπJ∗ ◦ f

I
∗.

⊗J
A

⊗I
A

?

-
⊗I

B

〈AπJ , Id 〉

fI

⊗J
B

〈BπJ , Id 〉

fJ

?
-

Proof. a) With notation as in 39.1, let ρ be the right adjoint of λ and assume
that a, c ∈ |A|I verify J ⊆ c(a, c). Then, J ⊆ c(fa, fc) and so for T ∈ KI(B, J)
we have

(1) Efa ∧ [[T (fc) ]] = Efc ∧ [[T (fa) ]].

Hence, since ρ ◦ λ ≥ IdL (7.8.(a)), (1) entails

Ea ∧ fI∗T (c) = Ea ∧ Ec ∧ ρ([[T (fc) ]])

≤ Ec ∧ Ea ∧ ρ(λ(Ea)) ∧ ρ([[T (fc) ]])

= Ec ∧ Ea ∧ ρ
(
Efa ∧ [[T (fc) ]]

)
= Ec ∧ Ea ∧ ρ

(
Efc ∧ [[T (fa) ]]

)
= Ec ∧ Ea ∧ ρ(λ(Ec)) ∧ ρ([[T (fa) ]])

= Ec ∧ Ea ∧ ρ([[T (fa) ]]) = Ec ∧ fI∗T (a).

Since the argument is symmetrical in a and c, we conclude that
fI∗T ∈ KI(A, J), as desired.
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b) The equality of the terms in the statement follows from the commutativity
of the displayed diagram and 39.1.(h) 6. To verify adjointness, let S ∈ KI(A, J)
and T ∈ KI(B, J). By 40.8, there is T ′ ∈ KJB, such that Bπ∗JT

′ = T . Hence, the
adjointness of the pairs 〈 f∗, f

∗ 〉 and 〈πJ∗, π∗J 〉 yield

Bπ∗J ◦ f
J
∗ ◦ AπJ∗(S) ≤ T iff Bπ∗J ◦ f

J
∗ ◦ AπJ∗(S) ≤ Bπ∗J(T ′)

iff fJ∗ ◦ AπJ∗(S) ≤ T ′

iff AπJ∗(S) ≤ fJ∗(T ′)

iff S ≤ Aπ∗J ◦ f
J∗(T ′) = fI∗ ◦ Bπ∗J(T ′)

= fI∗(T ),

completing the proof. �

Remark 40.11. a) By 40.10.(b), the left adjoint of the restriction of f∗ to
KI(B, J) is obtained as follows : given S ∈ KI(A, J), we take the saturation of f∗S
along πJ , that is, the inverse image of its projection in KJB. If λ is the left adjoint
of the said restriction, then for S ∈ KI(A, J) and b ∈ |B|I ,

λS(b) = Eb ∧
∨
u∈|B|I−J f∗S(πJ(b); u).

b) The reader can check that statement and proof of 40.10 are valid for Ω-sets. 2

Proposition 40.10, together with Theorems 40.8, 39.3 and 39.5 yield

Corollary 40.12. Let A be a Ω-presheaf and D be the filter of dense elements
in Ω. Let

h = 〈 εD, πD 〉 : A −→ A/D and r : A −→ rA

be the localization of A at D (34.1) and the regularization associated to double
negation (35.7). If I is a set, then for all finite J ⊆ I,

(1) h∗ takes KI(A/D, J) isomorphically onto Reg(KI(A, J));

(2) r∗ takes Reg(KI(rA, J)) isomorphically onto Reg(KI(A, J)). 2

The analog of Theorem 40.8 for morphisms is left to the reader. Recall that
[A,B] is the set of Ω-set morphisms from A to B.

Theorem 40.13. For J ⊆ I, let πJ :
∏
i∈I Ai −→

∏
j∈J Aj be the morphism

that forgets the coordinates outside J , where Ai, i ∈ I, are Ω-sets. If B is a Ω-set,
the map

f ∈
[∏

j∈J Aj , B
]
7−→ f ◦ πJ ∈

[∏
i∈I Ai, B

]
is a natural bijection between

[∏
j∈J Aj , B

]
and

[∏
i∈I Ai, B

]
J

7. 2

The last result of this Chapter shows that KI(A, J) can be naturally identified
with KI(A,K), whenever J and K are of the same cardinality.

Proposition 40.14. Let A be a Ω-set and J , K ⊆ I be sets. If card(J) =
card(K), there is an automorphism τ of KIA that restricts to an isomorphism
between KI(A,K) and KI(A, J).

6A similar observation, together with 40.8, yields another proof of item (a).
7[
∏
i∈I Ai, B]J is the set of morphisms from that depend on J , as in 40.2.
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Proof. We shall use the Fact that follows, whose proof is left to the reader.

Fact. For J , K as above, one of the following alternatives hold

(1) card(J −K) = card(K − J);

(2) If card(J−K) < card(K−J), there is T ⊆ J ∩ K such that card[(J−K) ∪ T ]
= card(K − J);

(3) If card(K−J) < card(J−K), there is S ⊆ J ∩ K such that card[(K−J) ∪ S]
= card(J −K).

We now define a permutation, σ : I −→ I, such that σ(J) = K. To start off,
set σ equal to the identity in I − (J ∪ K). In J ∪ K,

∗ If card(J −K) = card(K − J), let f : (J − K) −→ (K − J) be a bijection and
define, for i ∈ (J ∪ K)

σ(i) =


i if i ∈ J ∩ K;

f(i) if i ∈ J − K;

f−1(i) if i ∈ K − J .

It is clear that σ is a permutation of I, taking J to K.

∗ If card(J−K) < card(K−J), by the Fact, there is T ⊆ (J ∩ K) and a bijection
f : (J − K) ∪ T −→ (K − J). For i ∈ I, define

σ(i) =


i if i ∈ (J ∩ K) − T ;

f(i) if i ∈ (J − K) ∪ T ;

f−1(i) if i ∈ (K − J).

Again, it is straightforward that σ is a permutation of I, taking J to K. The
situation of case (3) can be handled similarly. By 37.4.(f), the map τ given by

S ∈ KIA 7−→ Sσ ∈ KIA

is an automorphism of KIA. Since [[Sσ(a) ]] = [[S(aσ) ]], where aσi = aσ(i), it is
readily verified that the characteristic maps that depend on J correspond bijec-
tively, via τ , to the characteristic maps that depend on K. �

Remark 40.15. If J , K are finite subsets of I of the same cardinality, only
case (1) in the statement of the Fact in the proof of 40.14 can occur. Hence, it
is possible to give an automorphism of KIA that moves only coordinates in the
symmetric difference J 4 K. If I is well-ordered, such an isomorphism can be
constructed from an increasing bijection between (J − K) and (K − J). 2

Exercises

40.16. Let A be a Ω-presheaf and I be a set. If S is closed in AI and J ⊆ I,

then S depends on J iff for all a, c ∈ |A|I ,
Ea = Ec, πJ(a) = πJ(c) and a ∈ S ⇒ c ∈ S. 2

40.17. If A is a Ω-presheaf and I is a set, there are natural isomorphisms

KI(A, ∅) ≈ (EA)← ≈ {(AI)|p : p ≤ EA}. 2
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CHAPTER 41

Composition and Substitution

The result that follows describes how relations are composed in the context of
characteristic maps. As usual, Ω denotes a frame.

Lemma 41.1. Let A be a Ω-set and I, J , K be sets. If R ∈ KI×JA and
S ∈ KJ×KA, define, for a ∈ |A|I×K 1

[[S ◦ R(a) ]] =
∨
c∈|A|J [[R(πI(a); c) ]] ∧ [[S(c;πK(a)) ]].

Then, S ◦ R ∈ KI×KA.

Proof. If a ∈ |A|I×K and c ∈ |A|J

[[R(πI(a); c) ]] ≤ EπI(a) and [[S(c;πK(a)) ]] ≤ EπK(a)

and so [[S ◦ R(a) ]] ≤ Ea. Next, if u ∈ |A|I×K and c ∈ |A|J , [=J ] and [chJ ] in
38.9 yield

[[a = u]] ∧ [[R(πI(a); c) ]] ∧ [[S(c;πK(a)) ]] =

= [[πIa = πIu]] ∧ [[πKa = πKu]] ∧ [[R(πI(a); c) ]] ∧ [[S(c;πK(a)) ]]

≤ [[R(πI(u); c) ]] ∧ [[S(c;πK(u)) ]],

and so, taking joins over c ∈ |A|J we get [[S ◦ R(a) ]] ∧ [[a = u]] ≤ [[S ◦ R(u) ]],
completing the verification that S ◦ R ∈ KI×KA. �

Definition 41.2. With notation as in 41.1, the characteristic map S ◦ R is
the composition of R and S.

An important operation in the syntax of formal languages and in their inter-
pretation is that of substitution of terms for variables in a relation or in another
term. This is an example of a situation in which matters are considerably simpli-
fied by working with presheaves. Before stating the pertinent results we generalize
the notation in 37.10.(b).

41.3. Let A be a Ω-set and I 6= ∅ be a set. If J ⊆ I, c ∈ |A|J and a ∈ |A|I ,
define the substitution of c for the coordinates of a in J as the I-sequence
given by

a pc | Jq (i) =

{
ai if i 6∈ J
ci if i ∈ J .

1Notation as in 37.24.
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Theorem 41.4. Let A be a Ω-set and J ⊆ I 6= ∅ be sets. Let AI
fj−→ A,

j ∈ J , be morphisms and let f : AI −→ AJ be their product. If R ∈ KIA and
a ∈ |A|I , set

[[R pf | Jq (a) ]] =
∨
c∈|AI | [[R(a pfc | Jq ) ]] ∧ [[a = c]].

Then, R pf | Jq ∈ KIA. Moreover,

a) For all a ∈ |AI |, [[R pf | Jq (a) ]] = [[R(a pfa | Jq ) ]].

b) If A is a Ω-presheaf, then

(1) For all a ∈ |A|I , [[R pf | Jq (a) ]] = [[R(a pf(a|Ea) | Jq ) ]].

(2) If R depends on K and fj depends on Kj, j ∈ J , then R pf | Jq depends on
(K ∩ Jc) ∪

⋃
j∈K Kj.

Proof. It is clear that [[R pf | Jq (a) ]] ≤ Ea. Let a, u ∈ |A|I ; for c ∈ |AI |,
since f is a morphism, we get

(A)
[[a pfc | Jq = u pfc | Jq ]] = [[πJca = πJcu]] ∧ Efc

= [[πJca = πJcu]] ∧ Ec.
Hence, (A) yields

[[Ra pfc | Jq ]] ∧ [[a = c]] ∧ [[a = u]] =

= [[Ra pfc | Jq ]] ∧ Ec ∧ [[πJca = πJcu]] ∧ [[a = c]] ∧ [[a = u]]

= [[Ra pfc | Jq ]] ∧ [[a pfc | Jq = u pfc | Jq ]] ∧ [[a = c]] ∧ [[a = u]]

≤ [[Ru pfc | Jq ]] ∧ [[u = c]],

and so, taking joins over c ∈ |AI |, we obtain [[R pf | Jq (a) ]] ∧ [[a = u]] ≤
[[R pf | Jq (u) ]], and R pf | Jq ∈ KIA, as asserted.

a) Clearly, for all a ∈ |AI |, we have [[R pf | Jq (a) ]] ≥ [[R(a pfa | Jq ) ]]. For
the reverse inequality, let c ∈ |AI |. Then,

(B) [[a pfc | Jq = a pfa | Jq ]] = EπJca ∧ [[fa = fc]].

Since EπJca ∧ [[fa = fc]] ≥ [[a = c]], (B) entails

[[R(a pfc | Jq ) ]] ∧ [[a = c]] ≤ [[R(a pfc | Jq ) ]] ∧ EπJca ∧ [[fa = fc]]

= [[R(a pfc | Jq ) ]] ∧ [[a pfc | Jq = a pfa | Jq ]]

≤ [[R(a pfa | Jq ) ]].

Taking joins over c ∈ |AI |, yields [[R(a pfa | Jq ) ]] ≥ [[R pf | Jq (a) ]], establishing
the equality of these terms.

b) (1) If A is a Ω-presheaf, 37.4.(a) entails, for a ∈ |A|I ,
[[R pf | Jq (a) ]] = [[R pf | Jq (a|Ea) ]],

and since a|Ea ∈ |A
I |, we get [[R pf | Jq (a) ]] = [[R(a|Ea pfa|Ea | Jq ) ]].

Since [[a pfa|Ea | Jq = a|Ea pfa|Ea | Jq ]] = Ea, [ch 2′] in 37.2 yields

[[R(a|Ea pfa|Ea | Jq ) ]] = [[R(a pfa|Ea | Jq ) ]].

F. Miraglia. An Introduction to Partially Ordered Structures and Sheaves. Lógica no Avião.



Chapter 41. Composition and Substitution 440

(2) Write W = (K ∩ Jc) ∪
⋃
j∈K Kj and suppose a, u ∈ |A|I satisfy W ⊆ c(a, u).

Since

[[ai|Ea = ui|Eu]] = Ea ∧ Eu ∧ [[ai = ui]],

we have c(a, u) ⊆ c(a|Ea, u|Eu). Hence, by (b).(1), we may suppose that a, u are

in |AI |, otherwise just reason with a|Ea and u|Eu, in place of a, u, respectively. If

j ∈ J ∩ K, then [[fj(a) = fj(u)]] = Ea ∧ Eu = Efa ∧ Efu, because fj
depends on Kj ⊆ W . Hence, K ⊆ c(a pfa | Jq , u pfu | Jq ). Since

Ea pfa | Jq = Ea and Eu pfu | Jq = Eu

and R depends on K, item (a) entails

Ea ∧ [[R pf | Jq (u) ]] = Ea pfa | Jq ∧ [[R(u pfu | Jq ) ]]

= Eu pfu | Jq ∧ [[R(a pfa | Jq ) ]]

= Eu ∧ [[R pf | Jq (a) ]],

ending the proof. �

Definition 41.5. Notation as in 41.4, the characteristic map R pf | Jq is the
substitution of f in R at the coordinates in J . If J = {j}, write R pf | jq
for R pf | {j}q .

For elements of K1(AI), A a Ω-set, and elements of KIA, A a presheaf, substi-
tution of morphisms in distinct coordinates is commutative :

Corollary 41.6. Let A be a Ω-set and I 6= ∅ be a set. Let j, k be distinct
elements of I and f , g : AI −→ A be Ω-set morphisms. If R ∈ K1(AI) or if
R ∈ KIA and A is a presheaf, then

R pf | jq pg | kq = R pg | kq pf | jq = R p〈 f, g 〉 | 〈 j, k 〉q .

There is an analog of Theorem 41.4 that describes the process of substitution of
morphisms for variables in a morphism. We give the pertinent statement, omitting
the proof.

Proposition 41.7. Let A be a Ω-presheaf and J ⊆ I 6= ∅ be sets. Let
g, fj : AI −→ A be morphisms, j ∈ J , and f : AI −→ AJ be the product of
the fj. Define

g pf | Jq : AI −→ A, by g pf | Jq (a) = g(a pfa | Jq ),

called the substitution of f in g at the coordinates in J . Then,

a) g pf | Jq is a Ω-set morphism from AI to A.

b) If g depends on K and fj depends on Kj, j ∈ J , then g pf | Jq depends on
(K ∩ Jc) ∪

⋃
j∈K Kj. 2

Exercises

41.8. Determine the dependence on coordinates of a composition of relations
as a function of the dependence of its factors. 2
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41.9. This exercise consists in verifying directly that Theorem 41.4 holds
for I-ary relations on a Ω-set. Let A be a Ω-set and J ⊆ I 6= ∅ be sets. Let
fj : AI −→ A be morphisms, j ∈ J , and let f be their product. For R ∈ K1(AI) and
a ∈ |AI |, define

[[R pf | Jq (a) ]] = [[R(a pfa | Jq ) ]].

Then, R pf | Jq ∈ K1(AI), and is called the substitution of f in R at the
coordinates in J . Moreover, if R depends on K and fj depends on Kj , then
R pf | Jq depends on (Jc ∩ K) ∪

⋃
j∈K Kj . 2
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CHAPTER 42

Quantifiers

In this Chapter we discuss the operation of quantification. The first section is
devoted to a general form of this notion, associated to a morphism of Ω-sets. In
the second section we specialize to the case of coordinate forgetting projections,
that give rise to the classical existential and universal quantifiers.

1. Quantification along a Morphism

Let f : A −→ B be a morphism of Ω-sets, which will remain fixed throughout
this section. By Corollary 38.15, for each set I, f induces an adjoint pair

f∗ : KI(A) −→ KI(B) and f∗ : KI(B) −→ KI(A).

From a logical point of view, we can consider f∗ as existential quantification
along f . Therefore, some authors write ∃f for f∗. Hence, 38.15 yields, for b ∈ |B|I ,
R ∈ KIA and S ∈ KIB

(∃f )

 [[ ∃fR(b) ]] =
∨
a∈|A|I [[fa = b]] ∧ [[R(a) ]];

[[ ∃fR ]] ≤ [[S ]] iff [[R ]] ≤ [[ f∗R ]].

Since ∃f is a left adjoint, it preserves joins, that is, for R, S ∈ KIA

[[ ∃fR ]] ∨ [[ ∃fS ]] = [[ ∃f (R ∨ S) ]],

a familiar law of Logic, that holds even for arbitrary families in KIA.

By Corollary 38.15, f∗ is an open morphism and so Theorem 7.8 implies that
it has a right adjoint,

u : KIA −→ KIB,

satisfying for R ∈ KIA and T ∈ KIB

f∗T ≤ R iff T ≤ uR.

We have (see proof of 7.8)

uR =
∨
{T ∈ KIB : f∗T ≤ R},

that is, the largest element of KIB whose inverse image is contained in R. Because
of this property, the right adjoint of f∗ is called universal quantification along
f , written ∀f . Hence, we have constructed a

∧
-morphism

∀f : KIA −→ KIB,

given, for R ∈ KIA by

∀fR =
∨
{T ∈ KIB : ∀ a ∈ |A|I , [[T (fa) ]] ≤ [[R(a) ]]}.

Since ∀f is a
∧

-morphism, if {Rλ : λ ∈ Λ} ⊆ KIA, then
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∀f (
∧
λ∈Λ Rλ) =

∧
λ∈Λ ∀fRλ,

a law that, in its finite version, is well-known in Logic. The next result gives a
more convenient description of ∀f .

Theorem 42.1. Let f : A −→ B be a morphism of Ω-sets and I be a set. If
R ∈ KIA and b ∈ |B|I

(∀f ) [[∀f R(b) ]] = Eb ∧
∧
a∈|A|I [[fa = b]] → [[R(a) ]],

where → in the right side of (∀f ) is implication in Ω.

Proof. Fix R ∈ KIA and let u : |B|I −→ Ω be given by

u(b) = Eb ∧
∧
a∈|A|I [[fa = b]] → [[R(a) ]].

It is straightforward that u ∈ KIB. We shall verify that for T ∈ KIB

f∗T ≤ R iff T ≤ u,

and so u = ∀fR. Assume that for all a ∈ |A|I ,
[[ f∗T (a) ]] = [[T (fa) ]] ≤ [[R(a) ]]. (1)

For b ∈ |B|I and a ∈ |A|I , we have

[[T (b) ]] ∧ [[fa = b]] = [[T (fa) ]] ∧ [[fa = b]], (2)

and (1) entails [[T (b) ]] ∧ [[fa = b]] ≤ [[R(a) ]], wherefrom it follows that for
arbitrary a ∈ |A|I

[[T (b) ]] ≤ [[fa = b]] → [[R(a) ]].

Hence,

[[T (b) ]] ≤
∧
a∈|A|I [[fa = b]] → [[R(a) ]]. (3)

Since [[T (b) ]] ≤ Eb, from (3) we conclude that T ≤ u, as desired. To establish that
T ≤ u implies f∗T ≤ R, it is enough to check, since inverse image is increasing,
that f∗u ≤ R. For c ∈ |A|I , we have

f∗u(c) = u(fc) = Efc ∧
∧
a∈|A|I [[fa = fc]] → [[R(a) ]]

≤ Ec ∧ ([[fc = fc]] → [[R(c) ]]) = Ec ∧ (Ec → [[R(c) ]])

≤ [[R(c) ]],

ending the proof. �

In the remainder of this section we describe the laws that connect quantifica-
tion and negation. We begin with a general result.

Proposition 42.2. Let γ : L −→ R be an open frame morphism and
let λ, ρ : R −→ L be the left and right adjoints of γ, respectively. Then, for all
p, q ∈ R,

a) ρ(p → q) ≤ ρp → ρq = ρ(γ(ρp) → q).

b) ρ(¬ p) = ¬λ(¬¬ p). In particular, ρ(¬ p) is regular in L.

c) ¬ ρ(¬ p) = ¬¬λ(¬¬ p) and ¬λ(¬ p) = ¬¬ ρ(¬¬ p) = ρ(¬¬ p).
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Proof. Recall the adjointness relations in 7.8 and 7.9 :

∀ 〈 a, p 〉 ∈ L × R,


(i) γa ≤ p iff a ≤ ρp;

(ii) λp ≤ a iff p ≤ γa;

(iii) γ(ρ(p)) ≤ p and γ(λ(p)) ≥ p;

(iv) ρ ◦ γ ◦ ρ = ρ; λ ◦ γ ◦ λ = λ.

(ad)

a) Since ρ preserves meets (it is a right adjoint), we have

ρ(p → q) ≤ ρp → ρq,

and (iv) in (ad) yields

ρ(γ(ρp) → q) ≤ ρ(γ(ρp)) → ρq = ρp → ρq.

Let a ∈ L be such that a ∧ ρp ≤ ρq; by relation (i) in (ad), γ(a ∧ ρp) ≤ q.
Since γ preserves meets, γ(a ∧ ρp) = γa ∧ γ(ρp) and so γa ∧ γ(ρp) ≤ q. Thus,
γa ≤ γ(ρp) → q and another application of (i) entails a ≤ ρ(γ(ρp) → q), proving
(a).

b) To simplify understanding, we first prove

Fact. For 〈 a, p 〉 ∈ L × R, γa ∧ p = ⊥ iff a ∧ λp = ⊥.

Proof. If a ∧ λp = ⊥, then since γ(⊥) = ⊥, γ preserves meets and γ(λp) ≥ p, it is
clear that γa ∧ p = ⊥. For the converse, γa ∧ p = ⊥ implies p ≤ ¬ γa = γ(¬ a);
by the adjointness relation (ii), λp ≤ ¬ a and so λp ∧ a = ⊥, as desired.

Item (b) is equivalent to

¬λ(¬¬ p) ≤ ρ(¬ p) and ρ(¬ p) ≤ ¬λ(¬¬ p),
and so (i) in (ad) and the fact that ¬∗ = ∗ → ⊥ imply that the above are in turn
equivalent to

(1) γ(¬λ(¬¬ p)) ∧ p = ⊥ and (2) ρ(¬ p) ∧ λ(¬¬ p) = ⊥.

Proof of (1) : By the Fact, (1) is equivalent to ¬λ(¬¬ p) ∧ λ(p) = ⊥. Since λ is

increasing (it is a
∨

-morphism) and p ≤ ¬¬ p, we get

¬λ(¬¬ p) ∧ λ(p) ≤ ¬λ(¬¬ p) ∧ λ(¬¬ p) = ⊥,

as needed.

Proof of (2) : By the Fact, (2) is equivalent to γ(ρ(¬ p)) ∧ ¬¬ p = ⊥. Thus, the

first inequality in (iii) of (ad) yields γ(ρ(¬ (p)) ∧ ¬¬ p ≤ ¬ p ∧ ¬¬ p = ⊥,
establishing (b). Item (c) is a straightforward consequence of (b). �

Proposition 42.2 applied to f∗ yields

Corollary 42.3. If A
f−→ B is a morphism of Ω-sets and I is a set, then

for all R, S ∈ KIA,

a) ∀f (R → S) ≤ ∀fR → ∀fS.

b) ∀f¬R = ¬∃f¬¬R and ∀f¬¬R = ¬∃f¬R.

c) ¬∀f¬R = ¬¬ ∃f ¬¬R.

Note that if KIA is a Boolean algebra, (c) and (d) in 42.3 give back the usual
relations between the quantifiers and negation.
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2. Classical Quantifiers

As mentioned at the beginning of this Chapter, the classical quantifiers arise
when we consider projections that forget coordinates. If A is a Ω-set, I is a set
and J ⊆ I, the adjoints to π∗J are associated to the existential and universal quan-
tification with respect to the variables in (I − J). In 24.30 there is a geometrical
discussion of the fundamental ideas concerning this topic.

By 40.8, the following diagram is commutative, where can. is the canonical
open embedding of KI(A, J) into KIA (40.5.(d)) and π∗J : KJA −→ KI(A, J) is an
isomorphism :

KJA - KI(A, J)

π∗J can.

KIA

π∗J

A
A
A
A
AU

�
�
�
�
��

Hence, we may identify inverse image by πJ with the canonical open inclusion of
KI(A, J) into KIA. To make clear our general framework, we prove

Proposition 42.4. Let L
h−→ R be a regular embedding of complete lattices.

Let P = Imh and γ : L −→ P be the induced isomorphism. Let ιP : P −→ R be
the canonical inclusion.

a) ιP is a regular embedding 1.

b) If λ, ρ are the left and right adjoints of ιP , then γ−1 ◦ λ and γ−1 ◦ ρ are
the left and right adjoints of h, respectively.

Proof. Item (a) is immediate from the fact that h is a regular embedding.
For (b), let λ, ρ : R −→ P satisfy

(*) For all 〈 p, r 〉 ∈ P × R,

{
(i) λr ≤ p iff r ≤ p;

(ii) p ≤ r iff p ≤ ρr.

One should keep in mind that for p ∈ P and x ∈ L
(**) h(γ−1(p)) = p and γ−1(h(x)) = x.

For 〈x, r 〉 ∈ L × R, (i) in (*), the first relation in (**) and the fact that h is an
embedding yield

γ−1(λ(r)) ≤ x iff h(γ−1(λ(r))) ≤ hx iff λr ≤ hx iff r ≤ hx,

showing that γ−1 ◦ λ is the left adjoint of h. On the other hand, the second relation
in (**) and (ii) in (*) entail

hx ≤ r iff hx ≤ ρx iff γ−1(h(x)) ≤ γ−1(ρ(x)) iff x ≤ γ−1(h(x)),

establishing that γ−1 ◦ ρ is the right adjoint of h. �

1I.e., P is a regular sublattice of R.
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Proposition 42.4 shows that if the regular embedding h is identified, via the
isomorphism γ, to the canonical embedding of its image into its codomain, then
the left and right adjoints of this embedding are isomorphic to the left and right
adjoints of h, respectively.

Applying 42.4 to the open embedding π∗J : KJA −→ KIA, we obtain that
the left and right adjoints of the canonical inclusion of KI(A, J) into KIA will
represent, up to isomorphism, the left and right adjoints of π∗J . This is the way we
shall treat the classical quantifiers.

42.5. Notation. If A is a Ω-set, K ⊆ I are sets and a ∈ |A|I , define

p(a,K) = {c ∈ |A|I : πK(a) = πK(c)}. 2

Theorem 42.6. Let A be a Ω-set, and J ⊆ I be sets. For S in KIA and a in
|A|I , define

(∃πJ) [[∃πJS(a) ]] = Ea ∧
∨
c∈p(a,J) [[S(c) ]];

(∀πJ) [[∀πJS(a) ]] = Ea ∧
∧
c∈p(a,J) Ec → [[S(c) ]],

where → in the right-hand side of (∀πJ) is implication in Ω. Then,

a) S ∈ KI(A,K) ⇒ ∃πJS, ∀πJS ∈ KI(A, K ∩ J).

b) The map ∃πJ , ∀πJ : KIA −→ KIA are the left and right adjoints of the
canonical inclusion of KI(A, J) into KIA, respectively.

Proof. Initially, it must be shown that if S ∈ KIA, then ∀πJS, ∃πJS ∈ KIA.
The case of ∃πJS was treated in the proof of 40.8. In the case of ∀πJS, [ch 1] in
37.1 is clear. For [ch 2], if x, y ∈ |A|I , it must be verified that

[[x = y]] ∧ [[ ∀πJS(x) ]] ≤ Ey ∧
∧
v∈p(y,J) Ev −→ [[S(v) ]],

that amounts to proving that for each v ∈ p(y, J)

[[x = y]] ∧ [[ ∀πJS(x) ]] ≤ Ev −→ [[S(v) ]],

that, in view of the adjunction [→] in 6.1, reduces to

(1) [[x = y]] ∧ [[ ∀πJS(x) ]] ∧ Ev ≤ [[S(v) ]].

Notation as in 37.24, set c = 〈πJ(x);πJ−I(v) 〉; then, c ∈ p(x, J) and, since
πJ(v) = πJ(y), [=J ] in 38.9 yields

(2)
[[c = v]] = [[πJ(x) = πJ(v)]] ∧ [[πI−J(v) = πI−J(v)]]

= [[πJ(x) = πJ(y)]] ∧ EπI−J(v).

From (2), we obtain, recalling [EJ ] and [=J ] in 38.9,

[[x = y]] ∧ Ev =

= [[πJ(x) = πJ(y)]] ∧ [[πJ−I(x) = πI−J(y)]] ∧ EπJ(v) ∧ EπI−J(v)

= [[c = v]] ∧ [[πJ−I(x) = πI−J(y)]] ∧ EπJ(v)

= [[c = v]] ∧ [[πI−J(x) = πI−J(y)]] ≤ [[c = v]].

Going back to (1), the preceding and Modus Ponens in 6.4.(b) entail
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[[x = y]] ∧ [[ ∀πJS(x) ]] ∧ Ev ≤ [[c = v]] ∧ Ex ∧
∧
u∈p(x,J) Eu → [[S(u) ]]

≤ [[c = v]] ∧ (Ec → [[S(c) ]])

= Ec ∧ [[c = v]] ∧ (Ec → [[S(c) ]])

≤ [[c = v]] ∧ [[S(c) ]] ≤ [[S(v) ]]

completing the proof that ∀πJS ∈ KIA.

a) Let S ∈ KI(A,K) and x, y ∈ |A|I verify J ⊆ c(x, y). It must be shown (40.2.(a))
that

(3) Ex ∧ [[ ∀πJS(y) ]] = Ey ∧ [[ ∀πJS(x) ]].

Fact 1. For x, y as above, if u ∈ p(x, J), then

Eu ∧ [[ ∀πJS(y) ]] ≤ [[S(u) ]].

Proof. Set c = 〈πJ(y); πJc(u) 〉; note that c ∈ p(y, J) and

(i) Ec = EπJ(y) ∧ EπJc(u) ≥ Ey ∧ Eu;

(ii) c(c, u) = I; indeed, outside J , c and u coincide, while in J we have πJc = πJy
and πJu = πJx, and so J ⊆ c(c, u).

(iii) By 40.3.(a), (ii) implies Eu ∧ [[S(c) ]] = Ec ∧ [[S(u) ]].

From (i) and (iii) we get

Eu ∧ [[ ∀πJS(y) ]] = Eu ∧ Ey ∧
∧
v∈p(y,J) Ev → [[S(v) ]]

≤ Ec ∧ Eu ∧ (Ec → [[S(c) ]])

≤ Eu ∧ [[S(c) ]] ≤ [[S(u) ]],

completing the proof of Fact 1.

By Fact 1, for all u ∈ p(x, J) we have [[∀πJS(y) ]] ≤ Eu → [[S(u) ]], and so,
taking meets with respect to u on the right-hand side and meets with Ex on both
sides, we arrive at Ex ∧ [[ ∀πJS(y) ]] ≤ [[ ∀πJS(x) ]], which in turn readily implies
Ex ∧ [[ ∀πJS(y) ]] ≤ Ey ∧ [[ ∀πJS)(x) ]]. Since the argument is symmetrical in x
and y, we conclude the validity of (3). The argument for ∃πJ is similar (in fact,
simpler).

b) It is immediate from (a) that ∀πJS, ∃πJS ∈ KI(A, J), for all S in KIA. Let
ιJ : KI(A, J) −→ KIA be the natural embedding.

∀πJ is right adjoint to ιJ : For R ∈ KI(A, J) and S ∈ KIA, we must verify that

(4) R ≤ S ⇔ R ≤ ∀πJS.

Assume that [[R(x) ]] ≤ [[S(x) ]], for all x ∈ |A|I . If u ∈ p(x, J), the fact that
R ∈ KI(A, J) entails Eu ∧ [[R(x) ]] = Ex ∧ [[R(u) ]] ≤ [[S(u) ]], whence
[[R(x) ]] ≤ Eu → [[S(u) ]]. Since u is arbitrary in p(x, J) and [[R(x) ]] ≤ Ex, we
get

[[R(x) ]] ≤ Ex ∧
∧
u∈p(x,J) Eu → [[S(u) ]] = [[∀πJS(x) ]],

verifying (⇒) in (4). Conversely, if the right-hand side of (4) holds, then

[[R(x) ]] ≤ Ex ∧ (Ex → [[S(x) ]]) ≤ [[S(x) ]],

as needed.

∃πJ is left adjoint to ιJ : This amounts to proving, for R ∈ KI(A, J) and S ∈ KIA
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∃πJS ≤ R ⇔ S ≤ R.

(⇒) is clear; for the converse, fix x ∈ |A|I . If u ∈ p(x, J), then

Ex ∧ [[S(u) ]] ≤ Ex ∧ [[R(u) ]] = Eu ∧ [[R(x) ]] ≤ [[R(x) ]].

Taking joins on both sides with respect to u ∈ p(x, J), we get

[[ ∃πJS(x) ]] ≤ [[R(x) ]],

ending the proof. �

Corollary 42.7. Let A be a Ω-set and J ⊆ K ⊆ I be sets.

a) If R ∈ KI(A, J), then R = ∀πKR = ∃πKR.

b) If S ∈ KIA, then QπK (Q′πJ S) = Q′πJ S, where QπK and Q′πJ stand for
existential or universal quantification.

Proof. a) To be precise, let ιJ : KI(A, J) −→ KIA be the canonical embed-
ding. We have a commutative diagram of open embeddings

KI(A, J) - KI(A,K)

ιJ ιK

KIA

ιJK

A
A
A
A
AU

�
�
�
�
��

and so ιK ◦ ιJK = ιJ . To simplify notation, let λK , ρK be the left and right
adjoints of ιK . Then, Corollary 7.9 yields

(*) λK ◦ ιK = IdKI(A,J) = ρK ◦ ιK .

Indeed, since 〈λJ , ιJ 〉 is an adjoint pair and ιJ is injective, 7.9.(a) entails λK ◦
ιJ = IdKI(A,J). Similarly, 7.9.(b) implies the other relation in (*). From (*), we
obtain

λK ◦ ιJ = λK ◦ (ιK ◦ ιJK) = IdKI(A,J) ◦ ιJK = ιJK .

The same argument shows that ρK ◦ ιJ = ιJK , establishing (a). Item (b) follows
readily from (a) and 42.6.(a). �

Corollary 42.7 expresses a familiar law of Logic : quantifying over variables
already quantified yields nothing new. Another of these well-known laws is that the
order which variables are existentially or universally quantified is immaterial. This
can be proven by direct computation, but we prefer to use a different approach,
that exhibits the structural properties of the concepts in discussion.

Proposition 42.8. a) A commutative diagram of regular embeddings of com-
plete lattices
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(D)

L - P

h g

Q

f

A
A
A
A
AU

�
�
�
�
��

gives rise to two commutative diagrams

Q - P

λh λf

L

λg

A
A
A
A
AU

�
�
�
�
��

Q - P

ρh ρf

L

ρg

A
A
A
A
AU

�
�
�
�
��

where λ∗, ρ∗ are the left and right adjoints of the arrows in (D), respectively.

b) Consider a commutative diagram of regular embeddings of complete lattices :

(E)

Q

L

?

h

-� PP ′
f ′ f

@
@
@
@
@
@@R

g′

�
�

�
�

�
��	

g

Assume that for all 〈 p, p′ 〉 ∈ P × P ′ 2

(∗) (i) λgg
′(p′), ρgg

′(p′) ∈ Imf ; (ii) λg′g(p), ρg′g(p) ∈ Imf ′.

Then, gλgg
′λg′ = g′λg′gλg and gρgg

′ρg′ = g′ρg′gρg, where λ∗ and ρ∗ are
the left and right adjoints of the arrows in (E).

Proof. As already noted, composition will be written as superposition.

a) To show that the diagram of adjoints is commutative, it is sufficient to check
that

(1) 〈λfλg, h 〉 and 〈h, ρfρg 〉
are adjoint pairs, because adjoints are uniquely determined by this relation (7.8).
For 〈 q, ` 〉 ∈ Q × L,

λfλg(q) ≤ ` iff λg(q) ≤ f(`) iff q ≤ g(f(`)) = h(`),

verifying that the first adjunction in (1); the second can be obtained similarly.

2Composition is written as superposition.
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b) Since all arrows in (E) are injective, it follows from items (a) and (b) in 7.9
that

(**) λ∗ ◦ ∗ = Iddom ∗ = ρ∗ ◦ ∗ .

We start with the following

Fact. 1) λgg
′ = fλf ′ and ρgg

′ = fρf ′ . 2) λg′g = f ′λf and ρg′g = f ′ρf .

Proof. 1) We shall show that hypothesis (i) in (*) implies (1). For the first equation,
let p′ be an element in P ′ and set λgg

′(p′) = f(`); then, (**) yields

` = λff(`) = λfλgg
′(p′).

Hence, (a) and another application of (**) entail

λgg
′(p′) = fλfλgg

′(p′) = fλhg
′(p′) = fλf ′λg′g

′(p′) = fλf ′(p
′),

as desired. The second equation in (1), as well as, the implication (∗).(ii) ⇒ (2)
can be obtained similarly.

The first equation in (1) of the Fact and item(a) yield

λgg
′ = fλf ′ ⇒ gλgg

′λg′ = gfλf ′λg′ = hλh.

Similarly, the first equation in (2) of the Fact entails

g′λg′gλg = hλh,

wherefrom we conclude that gλgg
′λg′ = g′λg′gλg. The same argument applied to

the second equations in (1) and (2) of the Fact shows that

gρgg
′ρg′ = hρh = g′ρg′gρg,

ending the proof. �

Corollary 42.9. If A is a Ω-set and J , K ⊆ I are sets, then

QπJQπK = QπKQπJ ,

where Q is either ∃ or ∀.

Proof. By 42.6.(a), the following commutative diagram of open embeddings
verifies the hypothesis (i) and (ii) in (∗) of 42.8 :

KIA

KI(A, J ∩ K)

?

ιJ∩K

-� KI(A, J)KI(A,K)
ιJ∩K,K ιJ∩K,J

HHH
HHH

HHH
HHHHj

ιK

���
���

���
�����

ιJ

Indeed, if R ∈ KI(A,K), then QπJR is in KI(A, J ∩K); of course, the same applies,
with the roles of J and K reversed and the conclusion follows from 42.8. �

Proposition 42.2.(c) applied to the open embedding ιJ : KI(A, J) −→ KIA
yields (analogously to 42.3)
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Corollary 42.10. If A is a Ω-set, J ⊆ I are sets and R, S ∈ KIA,

a) ∀πJ(R → S) ≤ ∀πJR → ∀πJS.

b) ∀πJ¬R = ¬∃πJ¬¬R and ∀πJ¬¬R = ¬∃πJ¬R.

c) ¬∀πJ¬R = ¬¬∃πJ¬¬S.

d) R ∈ KI(A,K) ⇒ ∀vi¬R ∈ Reg(KI(A, (K − J)). 2

All the intuitionistic laws involving negation and quantifiers follow from 42.10.

The classical quantifiers along the ith-coordinate, ∃vi, ∀vi, are special cases of
the above, with J = I − {i}. Here, instead of the p notation in 42.5, it is better
to use the substitution of an element of |A| into the ith-coordinate of a I-sequence,
introduced in 37.10.(b). This is because for x ∈ |A|I ,

p(x, I − {i}) = {x pa | iq ∈ |A|I : a ∈ |A|}.
The formulas for ∃vi and ∀vi are so important that we state them explicitly.

Corollary 42.11. Let A be a Ω-set and I be a set.

a) For i ∈ I and S ∈ KIA,

(∃vi) [[∃viS(x) ]] = Ex ∧
∨
a∈|A| [[S(x pa | iq ) ]].

(∀vi) [[∀viS(x) ]] = Ex ∧
∧
a∈|A| Ea → [[S(x pa | iq ) ]]

= Ex ∧
∧
a∈|A| Ea →

(
Ea ∧ [[S(x pa | iq ) ]]

)
.

b) S ∈ KI(A,K) ⇒ QviS ∈ KI(A,K − {i}).

Proof. Immediate from the preceding results. For (b), just note that since
Qvi corresponds to QπI−{i}, 42.6.(a) guarantees that for S ∈ KI(A,K), QviS is
in KI(A,K ∩ I − {i}) = KI(A, K − {i}). �

Proposition 42.12. Let L, R be frames and A, B be presheaves over L and
R, respectively. Let f = 〈 f, λ 〉 : A −→ B be a morphism in pSh, with λ a frame
morphism. Let I be a set and R ∈ KIB. With notation as in 39.1,

a) For all i ∈ I, f∗(∃viR) ≥ ∃vi f∗R and f∗(∀viR) ≤ ∀vi f∗R.

b) Assume that f verifies Eb =
∨
a∈|A| [[fa = b]] and ρ ◦ λ = IdL, where ρ is the

right adjoint of λ.

(1) If ρ is a
∨

-morphism, then f∗(∃viR) = ∃vi f∗R.

(2) If ρ is an open morphism, then f∗(∀viR) = ∀vi f∗R.

Proof. a) Let ρ : R −→ L be the right adjoint of λ. We shall use the following
observations, all straightforward :

∗ If g : L −→ R is increasing and S ⊆ L, then g(
∨
S) ≥

∨
s∈S g(s);

∗ g : L −→ R is a semilattice morphism, then g(p → q) ≤ g(p) → g(q).

One should also keep in mind that ρ ◦ λ ≥ IdL (7.8.(a)).

We first treat the case of the universal quantifier.
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Fact 42.13. For x ∈ |A|I , i ∈ I, a ∈ |A| and R ∈ KIB

Ex ∧ ρ
(
Efa → [[R(fx pa | iq ) ]]

)
≤ Ea → f∗R(x pa|iq )

Proof. Since Efa = λ(Ea), by the second observation in the beginning of the proof,
it is enough to check that

Ex ∧
(
ρ(λ(Ea)) → ρ

(
[[R(fx pa | iq ) ]]

))
≤ Ea → f∗R(x pa | iq ).

By the adjunction [→] in 6.1, this is equivalent to

Ea ∧ Ex ∧
(
ρ(λ(Ea)) → ρ

(
[[R(fx pa | iq ) ]]

))
≤ f∗R(x pa | iq ).

Since Ea ≤ ρ(λ(Ea)), Modus Ponens and 37.11.(a).(3) yield

Ea ∧ Ex ∧
(
ρ(λ(Ea)) → ρ

(
[[R(fx pa | iq ) ]]

))
=

= Ea ∧ Ex ∧ ρ(λ(Ea)) ∧
(
ρ(λ(Ea)) → ρ

(
[[R(fx pa | iq ) ]]

))
≤ Ea ∧ Ex ∧ ρ

(
([[R(fx pa | iq ) ]]

)
= Ex ∧ Ex pa | iq ∧ ρ

(
([[R(fx pa | iq ) ]]

)
≤ Ex pa | iq ∧ ρ

(
([[R(fx pa | iq ) ]]

)
= f∗R(x pa | iq ),

establishing the Fact.

Since ρ is a
∧

-morphism we then obtain

f∗(∀viR)(x) = Ex ∧ ρ
(

[[ ∀viR(fx) ]]
)

= Ex ∧ ρ
(
Efx ∧

∧
y∈|B| Ey → [[R([fx] py | iq ) ]]

)
= Ex ∧

∧
y∈|B| ρ

(
Ey → [[R([fx] py | iq ) ]]

)
≤ Ex ∧

∧
a∈|A| ρ

(
Efa → [[R([fx] pfa | iq ) ]]

)
≤ Ex ∧

∧
a∈|A| Ea → f∗R(x pa | iq ) = ∀vi f∗R(x),

as needed. For the existential quantifier, 42.11 and 37.11.(a).(3) yield

f∗(∃viR)(x) = Ex ∧ ρ([[ ∃viR(fa) ]])

= Ex ∧ ρ
(∨

y∈|B| Ey ∧ [[R([fx] py | iq ) ]]
)

≥ Ex ∧ ρ
(∨

a∈|A| Efa ∧ [[R([fx] pfa | iq ) ]]
)

≥ Ex ∧ ρ
(∨

a∈|A| λ(Ea) ∧ [[R(fx pa | iq ) ]]
)

≥ Ex ∧
∨
a∈|A| ρ(λ(Ea)) ∧ ρ

(
[[R(fx pa | iq ) ]]

)
≥ Ex ∧

∨
a∈|A| Ex ∧ Ea ∧ ρ

(
[[R(fx pa | iq ) ]]

)
= Ex ∧

∨
a∈|A| Ex pa | iq ∧ ρ

(
[[R(fx pa | iq ) ]]

)
= Ex ∧

∨
a∈|A| f

∗R(x pa | iq ) = ∃vi f∗R(x).
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b) (1) First note that for a ∈ |A|I and b ∈ |B|,
[[R(fa pb | iq ) ]] = [[R(fa pb | iq ) ]] ∧ Eb

= [[R(fa pb | iq ) ]] ∧
∨
c∈|A| [[fc = b]]

=
∨
c∈|A| [[R(fa pb | iq ) ]] ∧ [[fc = b]]

=
∨
c∈|A| [[R(f(a pc | iq )) ]] ∧ [[fc = b]].

Hence, since ρ(Efc) = ρ(λ(Ec)) = Ec,

f∗(∃viR)(a) = Ea ∧ ρ([[ ∃viR(a) ]])

= Ea ∧ ρ
(∨

b∈|B| [[R(fa pb | iq ) ]]
)

= Ea ∧
∨
b∈|B| ρ([[Rf(a pb | iq ) ]])

= Ea ∧
∨
b∈|B|

∨
c∈|A| ρ([[R(f(a pc | iq )) ]] ∧ [[fc = b]])

= Ea ∧
∨
c∈|A| ρ

(
[[R(f(a pc | iq )) ]]) ∧

∨
b∈|B| [[fc = b]]

)
= Ea ∧

∨
c∈|A| ρ([[R(f(a pc | iq )) ]]) ∧ ρ(Efc)

= Ea ∧
∨
c∈|A| ρ([[R(f(a pc | iq )) ]]) ∧ Ec

= Ea ∧
∨
c∈|A| Ea pc | iq ∧ ρ([[R(f(a pc | iq )) ]] = ∃vif∗R(a).

(2) For the universal quantifier, recall (8.16.(b)) that

(*)
(∨

λ∈Λ pλ
)
→ q =

∧
λ∈Λ (pλ → q).

Since Eb =
∨
c∈|A| [[fc = b]], (*) yields

Eb → [[R(fa pb | iq ) ]] = (
∨
c∈|A| [[fc = b]]) → [[R(fa pb | iq ) ]]

=
∧
c∈|A| [[fc = b]] → [[R(fa pb | iq ) ]]

=
∧
c∈|A| [[fc = b]] → ([[fc = b]] ∧ [[R(fa pb | iq ) ]])

=
∧
c∈|A| [[fc = b]] → ([[fc = b]] ∧ [[R(fa pfc | iq ) ]])

=
∧
c∈|A| [[fc = b]] → [[R(f(a pc | iq )) ]].

Thus, another application of (*) entails∧
b∈|B| Eb → [[R(fa pb | iq ) ]] =

=
∧
b∈|B|

∧
c∈|A| ([[fc = b]] → [[R(f(a pc | iq )) ]])

=
∧
c∈|A|

∧
b∈|B| ([[fc = b]] → [[R(f(a pc | iq )) ]])

=
∧
c∈|A|

(∨
b∈|B| [[fc = b]]

)
→ [[R(f(a pc | iq )) ]]

=
∧
c∈|A| Efc → [[R(f(a pc | iq )) ]].

Since ρ is open and ρ(Efc) = Ec, we then obtain∧
b∈|B| ρ(Eb → [[R(fa pb | iq ) ]]) =

∧
c∈|A| Ec → ρ([[R(f(a pc | iq )) ]]),

and the conclusion in (2) is immediately forthcoming. �

For localization at the filter of dense elements and regularization by double
negation we have, complementing 39.3 and 39.5 :

Theorem 42.14. Let A be a Ω-presheaf and I 6= ∅ be a finite set. Let

h = 〈 εD, πD 〉 : A −→ A/D and A
r−→ rA
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be the localization of A at the filter D of dense elements in Ω (34.6, 39.3) and the
regularization associated to double negation (35.7, 39.5).

a) For T ∈ KI(rA),

{
(1) r∗∀vi¬T = ∀vir∗¬T ;

(2) r∗¬∃viT = ¬∃vir∗T .

b) If T ∈ Reg(KI(rA)), then r∗(∀viT ) = ∀vir∗T .

c) For T ∈ KI(A/D),

{
(1) h∗∀vi¬T = ∀vi¬ h∗T ;

(2) h∗¬∃viT = ¬∃vih∗T .

d) If T ∈ Reg(KI(A/D)), then h∗∀viT = ∀vih∗T .

Proof. We prove (a) and (b), leaving (c), (d) to the reader. Recall the
following facts concerning implication and negation in a frame :

∗ p ∧ (q → r) = p ∧ ((p ∧ q) → (p ∧ r)); (6.4.(i))

∗ p ∧ q = p → (p ∧ q);
∗ ¬¬ distributes over ∧ and →; (6.8.(g), 6.8.(j))

∗ q ∈ Reg(Ω) ⇒ p → q = ¬¬ p → q ∈ Reg(Ω); (6.20.(b))

∗ ¬¬
∧
s∈S ¬¬ s =

∧
s∈S ¬¬ s; (8.16.(g))

∗ ¬ (
∨
S) = ¬

∨
s∈S ¬¬ s; (8.16.(h))

These relations will be used forthwith, without comment.

Fact 42.15. For 〈x, p 〉 ∈ |rA|, a ∈ |A|I and T ∈ KI(rA)

¬ [[T ([ra] p〈x, p 〉 | iq ) ]] = ¬ [[T (r(a px | iq )) ]].

Proof. From Fact 39.6.(a) comes

[[T (r(a px | iq )) ]] =
∧
j 6=i Eaj ∧ Ex ∧ [[T ([ra] p〈x, p 〉 | iq ) ]].

Taking double negation on both sides, recalling that Ex ≤ p ≤ ¬¬Ex, we get

¬¬ [[T (r(a px | iq )) ]] =
∧
i6=j ¬¬Eaj ∧ ¬¬Ex ∧ ¬¬ [[T ([ra] p〈x, p 〉 | iq ) ]]

= ¬¬E[ra] p〈x, p 〉 | iq ∧ ¬¬ [[T ([ra] p〈x, p 〉 | iq ) ]]

= ¬¬ [[T ([ra] p〈x, p 〉 | iq ) ]],

which is equivalent to the desired result.

Proof of (1) : From 42.15 we get, since Ea = Era and E〈x, p 〉 = p (35.1) :

r∗(∀vi¬T )(a) = [[∀vi¬T (ra) ]]

= Ea ∧
∧
〈x,p〉∈|rA| E〈x, p 〉 → [[¬T ([ra] p〈x, p 〉 | iq ) ]]

= Ea ∧
∧
〈x,p〉∈|rA| p → E[ra] p〈x, p 〉 | iq ∧ ¬ [[T ([ra] p〈x, p 〉 | iq ) ]]

= Ea ∧
∧
〈x,p〉∈|rA| (Ea ∧ p) →

→ Ea ∧ E[ra] p〈x, p 〉 | iq ∧ ¬ [[T (r(a p〈x, p 〉 | iq ) ]].

By Lemma 37.11.(a).(3), we have

Ea ∧ E[ra] p〈x, p 〉 | iq = Era ∧ E[ra] p〈x, p 〉 | iq = Ea ∧ E〈x, p 〉 = Ea ∧ p,
which substituted in the expression above yields
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(I)

r∗(∀vi¬T )(a) = Ea ∧
∧
〈x,p〉∈|rA| (Ea ∧ p) →

→ Ea ∧ p ∧ ¬ [[T (r(a px | iq )) ]]

= Ea ∧
∧
〈x,p〉∈|rA| p → ¬ [[T (r(a px | iq )) ]].

Since ¬ [[T (r(a px | iq )) ]] is regular in Ω, for 〈x, p 〉 ∈ |rA|, we have

p → ¬ [[T (r(a px | iq )) ]] = ¬¬ p → ¬ [[T (r(a px | iq )) ]]

= ¬¬Ex → ¬ [[T (r(a px | iq )) ]]

= Ex → ¬ [[T (r(a px | iq )) ]]

and so (I) leads to r∗(∀vi¬T )(a) = Ea ∧
∧
x∈|A| Ex → ¬ [[T (r(a px | iq )) ]]

= ∀vir∗¬T (a),

establishing (1). Item (b) is immediate from this and Theorem 39.5.

Proof of (2) : For a ∈ |A|I , 42.15 entails

r∗(¬∃viT )(a) = [[¬∃viT (ra) ]] = Ea ∧ ¬ [[ ∃viT (ra) ]]

= Ea ∧ ¬
(∨
〈x,p〉∈|rA| [[T ([ra] p〈x, p 〉 | iq ) ]]

)
= Ea ∧ ¬

(∨
〈x,p〉∈|rA| ¬¬ [[T ([ra] p〈x, p 〉 | iq ) ]]

)
= Ea ∧ ¬

(∨
〈x,p〉∈|rA| ¬¬ [[T (r(a px | iq )) ]]

)
= Ea ∧ ¬

(∨
x∈|A| [[T (r(a px | iq )) ]]

)
= ¬∃vir∗T (a),

ending the proof. �

Exercises

42.16. Let A be a Ω-presheaf and E : A−→ 1 be the unique presheaf morphism
from A to the final object 1 (25.5, 26.10). Let S be a closed subpresheaf of A and
p ∈ Ω.

a) The following are equivalent :

(1) ∃ES = p; (2) ES = p 3;

(3) ∃ {pi : i ∈ I} ⊆ p with p =
∨
i∈I pi and S(pi) 6= ∅, ∀ i ∈ I.

b) The following are equivalent :

(1) ¬ [[S = ∅]] = p 4.

(2) p =
∨
{q ∈ Ω :

∀ r ≤ q, if r 6= ⊥, there is ⊥ 6= r′ ≤ r,

such that S(r′) 6= ∅.

}
(3) p ∈ Reg(Ω), ES ≤ p and there is a q ≤ p, such that ¬¬ q = p and

S(q) 6= ∅.
c) What can be said about the relation between the following elements of Ω : ∃ES
and [[S 6= ∅ ]] =def ¬ [[S = ∅]] ? 2

3ES is the support of S, as in 26.1.(c).
4∅ is the empty subpresheaf of A; this equality is defined in 36.6.
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CHAPTER 43

Relations. Equivalence Relations and Quotients

As in section 24.3, a relation on presheaves A1, . . . , An is a subpresheaf of∏
Ai. Since we are mainly interested in the subobjects describable via character-

istic maps, we define a relation on A1, . . . , An as a closed subpresheaf of
∏
Ai.

Any set of sections in this product generates a relation on A1, . . . , An : its closure
in
∏
Ai. Notice that this automatically prescribes that a relation on a finite family

of sheaves is a subsheaf of their product.

Definition 43.1. Let n ≥ 1 be an integer. A n-ary relation on a Ω-presheaf
A is a characteristic map in KnA. If R is a binary relation on A, that is R ∈ K2A,
we frequently use the so called infix notation for R, that is,

[[x R y ]] stands for [[R(x, y) ]].

All subsets S ⊆ |An| generate a n-ary relation on A, namely [[S(∗) ]].

Lemma 43.2. Let A be a L-set. For R ∈ KnA, n ≥ 2, the following are
equivalent 1 :

(1) For all x ∈ |A|n, [[ ∆n(x) ]] ≤ [[R(x) ]];

(2) For all a ∈ |A|, [[R(â) ]] = Ea.

Proof. By 37.19, [[ ∆n(x) ]] =
∧n−1
i=1 [[xi = xi+1]], and (1) ⇒ (2) follows

immediately. For the converse, given x ∈ |A|n, formula (]) in the proof of 37.19
(page 408), yields, with a = xn∧n−1
i=1 [[xi = xi+1]] = Exn ∧

∧n−1
i=1 [[xi = xi+1]]

= Exn ∧
∧n
i=1 [[xn = xi]]

= [[R(x̂n) ]] ∧
∧n
i=1 [[xn = xi]] ≤ [[R(x) ]],

as needed. �

Definition 43.3. If R is a binary relation on A, define the inverse of R by
the rule

For all 〈x, y 〉 ∈ |A|2, [[ y R−1 x ]] = [[x R y ]].

Classically, an equivalence relation on a set A is a subset θ ⊆ A × A, such
that ∆ ⊆ θ, θ = θ−1 and θ ◦ θ ⊆ θ. By analogy, we set down

1Notation as in 37.19; moreover, â = 〈 a, a, . . . , a 〉 ∈ An.
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Definition 43.4. An equivalence relation on a L-set A is a binary relation
θ on A, such that for all x, y, z ∈ |A|

[ER 1] : [[x = y]] ≤ [[x θ y ]];

[ER 2] : [[x θ y ]] = [[ y θ x ]];

[ER 3] : [[x θ z ]] ∧ [[ z θ y ]] ≤ [[x θ y ]].

Write Eq(A) for the poset of equivalence relations on A, with the order induced
by K2A.

Remark 43.5. Let A be an L-set and θ ∈ Eq(A).

a) By 43.2, condition [ER 1] in 43.4 is equivalent to

[ER 1′] : ∀ x ∈ |A|, [[x θ x ]] = Ex.

Note the similarity of [ER 1′] to the usual reflexive law “x θ x”.

b) For x, y ∈ |A|, we have [[x = y]] ≤ [[x θ y ]] ≤ Ex ∧ Ey. It is clear that

[[x >2 y ]] = Ex ∧ Ey and [[x = y]],

are both equivalence relations on A, in fact, the top and bottom, respectively, of
the poset Eq(A). Exercise 43.9 describes some of the lattice-theoretic properties
of Eq(A). 2

Example 43.6. Let A be a Ω-set and p ∈ Ω. For x, y ∈ |A|, define

[[x θp y ]] = Ex ∧ Ey ∧ [p → (p ∧ [[x = y]])].

It is easily established that θp ∈ K2A and that it satisfies [ER 1′] in 43.5.(a) and
[ER 2] in 43.4. Hence, to see that θp is an equivalence relation on A, it remains to
verify transitivity; for x, y, z ∈ |A|, this comes down to

p ∧ Ex ∧ Ey ∧ Ez ∧ [[x θp y ]] ∧ [[ y θp z ]] ≤ p ∧ [[x = z]].

But the rule of Modus Ponens in 6.4 yields

p ∧ Ex ∧ Ey ∧ Ez ∧ [p → (p ∧ [[x = y]])] ∧ [p → (p → [[y = z]])] ≤
≤ p ∧ ([[x = y]] ∧ [[y = z]]) ≤ p ∧ [[x = z]],

as needed. In the notation of 37.16, we have

Sθp = {〈 s, t 〉 ∈ |A2| : p ∧ Es ∧ Et = p ∧ [[s = t]]},
which, in case A is a Ω-presheaf, may be written

Sθp = {〈 s, t 〉 ∈ |A2| : s|p = t|p}.

Hence, the equivalence relation θp corresponds to compatibility over p in A, as
defined in 25.26. 2

43.7. Quotients. If θ is an equivalence relation on an L-set A, let θ̂ be the
following binary relation on |A| :

x θ̂ y iff Ex = Ey = [[x θ y ]].

It is clear θ̂ is an equivalence relation on |A|. Write x/θ for the class of x ∈ |A|
with respect to θ̂. Define a L-set A/θ by the following prescriptions :
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(i) |A/θ| = {x/θ : x ∈ |A|} = |A|/θ̂; (ii) [[x/θ = y/θ]] = [[x θ y ]].

Then A/θ is an extensional L-set and the natural map

πθ : |A| −→ |A/θ|, x 7−→ x/θ

is a morphism of L-sets. The diagram A
πθ−→ A/θ is the quotient of A by

the equivalence relation θ. The universal property of the diagram A
πθ−→ A/θ

appears in Exercise 43.10.

Now suppose A is a L-presheaf. For x, y ∈ |A| and p ∈ L,

(*) x θ̂ y ⇒ x|p θ̂ y|p.
To see this, note that [[x|p θ x ]] ≥ [[x|p = x]] = p ∧ Ex, with a similar relation

holding with y in place of x. Thus, [ER 3] in 43.4 and the hypothesis that x θ̂ y
entail

[[x|p θ y|p ]] ≥ [[x|p θ x ]] ∧ [[x θ y ]] ∧ [[ y θ y|p ]] = p ∧ Ex ∧ Ey.

Since Ex|p = p ∧ Ex = p ∧ Ey = Ey|p and θ is a characteristic function, the

above inequality implies [[x|p θ y|p ]] = Ex|p = Ey|p, establishing (*). Since

θ is a congruence with respect to restriction, there is a natural way to make the
quotient A/θ into a L-presheaf and πθ into a presheaf morphism : for x ∈ |A| and
p ∈ L, define

(**) (x/θ)|p = x|p/θ.

The diagram A
πθ−→ A/θ is the quotient of A by θ in the category pSh(L). In

general. A/θ will not be a sheaf even if A is a sheaf. In this case, we define
the quotient of A by θ to be the completion of the presheaf constructed
above, still indicating it by A/θ. 2

As an application of equivalence relations, we prove a general result concerning
the gluing of families of presheaves. For topological spaces, this appears in section
3.3 of Chapter 0 in [24] (and Exercise II.1.22 in [25]). This is the process by which
a general scheme is constructed out of affine schemes in Algebraic Geometry.

If p ∈ Ω, the ideal p← = {q ∈ Ω : q ≤ p} is a frame, with p in the role of >.
The concept of restriction of a L-set A to an element p of L, A|p, was defined in

25.3. With these preliminaries, we state

Theorem 43.8. Let Ω be a frame and B be a subset of Ω. Suppose we are
given the following data :

(1) For each b ∈ B, a presheaf Ab over b←;

(2) For each 〈 a, b 〉 ∈ B × B, an isomorphism fab : Aa|a∧b −→ Ab|a∧b, such that

for all a, b, c ∈ B we have, with p = a ∧ b ∧ c,
a) fbb = IdAb .

b) If x ∈ |Aa| is such that Ex ≤ p, then fac(x) = [fbc ◦ fab](x).
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Ac|p

Aa|p

?

- Ab|p
�

�
�

�
�	

fac

fab

fbc

Then, there is a unique presheaf A over Ω, together with isomorphisms, gb : Ab −→ A|b,
b ∈ B, such that for all a, b ∈ B and x ∈ |Aa|,

Ex ≤ a ∧ b ⇒ [gb ◦ fab](x) = ga(x).

Moreover, if each Ab is a sheaf over b←, then A is a sheaf over Ω.

Proof. For each b ∈ B, let eAb be the base extension from b← to Ω, as in
31.3. By 32.11.(III) and 32.12, we have, for u ∈ Ω

eAb(u) =

{
Ap(u) if u ≤ p

∅ otherwise,

and eAp is a Ω-sheaf, whenever Ap is a p←-sheaf.

Let 〈C, {kb : b ∈ B} 〉 be the coproduct of the eAb in pSh(Ω), where the
kb : eAb −→ C are the associated monics, as in 25.19 and 26.20. Recall that
|C| =

∐
b∈B |eAb|, identifying the unique sections over ⊥ in each eAb. Since

eAb(u) = ∅ if u 6∈ b←, we may write the elements of |C| as pairs 〈x, a 〉 with
x ∈ |Aa|; in particular,

E〈x, a 〉 = Ex ≤ a.

Equality and restriction in C are given by

(*)


[[〈x, a 〉 = 〈 y, b 〉]] =

{
[[x = y]] if a = b

⊥ otherwise.

〈x, a 〉|q = 〈x|a∧q, a∧ q 〉.

By 26.20 and 32.12, C is a sheaf whenever each Ab is a sheaf over Ω.

Define θ : |C| × |C| −→ Ω by

[[ 〈x, a 〉 θ 〈 y, b 〉 ]] = [[fab(x|b) = y]].

The definition of θ makes sense because x|b ∈ Aa|b. Hence,

[[ 〈x, a 〉 θ 〈 y, b 〉 ]] ≤ Efab(x|b) ∧ Ey = b ∧ Ex ∧ Ey
= Ex ∧ Ey = E〈x, a 〉 ∧ E〈 y, b 〉.

To verify that θ ∈ K2C, it must be shown that

[[ 〈x, a 〉 θ 〈 y, b 〉 ]] ∧ [[〈x, a 〉 = 〈x′, a′ 〉]] ∧ [[〈 y, b 〉 = 〈 y′, b′ 〉]] ≤
≤ [[ 〈x, a′ 〉 θ 〈 y′, b′ 〉 ]].

By (*), we may assume a = a′ and b = b′. Thus,
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[[fab(x|b) = y]] ∧ [[〈x, a 〉 = 〈x′, a 〉]] ∧ [[〈 y, b 〉 = 〈 y′, b 〉]]
= [[fab(x|b) = y]] ∧ [[x = x′]] ∧ [[y = y′]]

≤ [[fab(x|b) = y]] ∧ b ∧ [[x = x′]] ∧ [[y = y′]]

= [[fab(x|b) = y]] ∧ [[x|b = x′|b]] ∧ [[y = y′]]

≤ [[fab(x|b) = y]] ∧ [[fab(x|b) = fab(x
′
|b)]] ∧ [[y = y′]]

≤ [[fab(x
′
|b) = y]] ∧ [[y = y′]] ≤ [[fab(x

′
|b) = y′]]

and property [ch 2] in 37.1 follows immediately. It remains to check that θ is an
equivalence relation on C. We have

∗ Property (a) in the statement implies [[ 〈x, a 〉 θ 〈x, a 〉 ]] = Ex; by 43.2, θ
verifies [ER 1] in 43.4;

∗ By (2).(b), fba restricted to Aa|a∧b has fab as its inverse. Thus, definition θ is

symmetrical, i.e., [[ 〈x, a 〉 θ 〈 y, b 〉 ]] = [[ 〈 y, b 〉 θ 〈x, a 〉 ]].
∗ To check transitivity, let 〈x, a 〉, 〈 y, b 〉 and 〈 z, c 〉 be sections in |C|. Then, if
p = a ∧ b ∧ c, (2).(b) and 26.8.(b) yield

[[ 〈x, a 〉 θ 〈 y, b 〉 ]] ∧ [[ 〈 b, y 〉 θ 〈 z, c 〉 ]] =

= [[fab(x|b) = y]] ∧ [[fbc(y|c) = z]]

= p ∧ [[fab(x|b) = y]] ∧ [[fbc(y|c) = z]]

= [[fab(x|p) = y|p]] ∧ [[fbc(y|p) = z|p]]
≤ [[fbc(fab(x|p)) = fbc(y|p)]] ∧ [[fbc(y|p) = z|p]]
= [[fac(x|p) = fbc(y|p)]] ∧ [[fbc(y|p) = z|p]]
≤ [[fac(x|p) = z|p]] = p ∧ [[fac(x|c) = z]]

≤ [[fac(x|c) = z]],

and so θ is transitive. Let A be the quotient presheaf C/θ and πθ : C −→ C/θ be

the quotient map. Recall (43.7) that the domain of C/θ is |A|/θ̂, where θ̂ is the
equivalence relation

〈 t, a 〉 θ̂ 〈 z, b 〉 iff Et = Ez = [[fab(t|b) = z]].

Since Ab is extensional and Ez ≤ a ∧ b, this equivalence can be written 2

(+) 〈 t, a 〉 θ̂ 〈 z, b 〉 iff fab(t) = z.

For b ∈ B, consider the presheaf morphisms gb = πθ ◦ kb : Ab −→ A; we shall
prove that they satisfy the requirements in the conclusion of the Theorem.

If 〈 z, c 〉/θ ∈ |A|b|, then E〈 z, c 〉/θ = Ez ≤ b, and so Ez ≤ b ∧ c. Hence, (+)

entails 〈 z, c 〉 θ̂ 〈 fcb(z), b 〉; therefore

πθ ◦ kb(fcb(z)) = πθ (〈 fcb(z), b 〉) = 〈 z, c 〉/θ,

2Because t|b = t.
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and gb : Ap −→ A|p is surjective. For injectivity if x, y ∈ |Ab|, then 3,

[[gb(x) = gb(y)]] = [[〈x, b 〉/θ = 〈 y, b 〉/θ]] = [[ 〈x, b 〉 θ 〈 y, b 〉 ]]
= [[fbb(x) = y]] = [[x = y]]

and the conclusion follows from 26.17.(b). To finish the proof in the presheaf case,

let a, b ∈ B and x ∈ |Aa| satisfy Ex ≤ a ∧ b. Then, since 〈x, a 〉 θ̂ 〈 fab(x), b 〉) (by
(+) above), we have

gb(fab(x))) = πθ(kb(fab(x))) = πθ(〈 fab(x), b 〉) = 〈 fab(x), b 〉)/θ
= 〈x, a 〉/θ = ga(x),

as desired. The case in which Ab is a sheaf, b ∈ B, let cA be the completion of
the presheaf A constructed above. If we substitute g∗ by c ◦ πθ ◦ k∗, we obtain
monics from A∗ into cA, with the properties in the statement. Since A|b ≈ Ab,

A|b is complete over all q ∈ p←. We now invoke Theorem 27.20 to conclude that

cA|b = A|b and the newly defined monics are in fact isomorphisms, ending the

proof. �

The equivalence relation generated by a set of sections in |A × A| is instru-
mental in proving that Ω set, pSh(Ω) and Sh(Ω) have coequalizers, as was the
case for sheaves and presheaves over topological spaces in section 24.3. The details
are left as Exercise 43.11.

Exercises

43.9. Let A be a Ω-presheaf.

a) Eq(A) is a complete lattice with the po induced by K2A
4. Is it a complete

sublattice of K2A ?

b) If S ⊆ |A2|, define the equivalence relation generated by S to be

[[x θS y ]] =
∧
{[[x R y ]] :

R ∈ Eq(A) and ∀ 〈 s1, s2 〉 ∈ S
[[ s1 R s2 ]] = Es1 = Es2

}
If S = {〈x, y 〉}, write θxy for θS . Then,

(1) For all 〈x, y 〉 ∈ |A2|, θxy is compact in Eq(A).

(2) For all R ∈ Eq(A), R =
∨
〈x,y〉∈R θxy.

(3) Eq(A) is an algebraic frame. 2

43.10. a) Let A be an L-set and θ ∈ Eq(A). Let f : A −→ B be a morphism
of L-sets, such that

∀ x, y ∈ |A|, [[x θ y ]] ≤ [[fx = fy]].

Then, there is a unique L-set morphism, g : A/θ −→ B satisfying g ◦ πθ = f .

3Recall (see (ii) in 43.7) that [[∗/θ = ∗/θ]] = [[ ∗ θ ∗ ]].
4Hence, meets and joins are computed pointwise.
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b) The universal property in (a) holds in pSh(L), in the category of finitely
complete L-sets and in Sh(Ω).

c) πθ is an epic. Is it always surjective as a set map from |A| to |A/θ| ? 2

43.11. a) The categories Ω set, pSh(Ω) and Sh(Ω) have coequalizers.

b) The categories Ω set, pSh(Ω) and Sh(Ω) are cocomplete. 2

43.12. Let A be a L-set. A partial order on A is a characteristic map,
P ∈ K2A satisfying, for all x, y, z ∈ |A|

[ppo 1] : [[x Px ]] = Ex;

[ppo 2] : [[x P y ]] ∧ [[ y P x ]] ≤ [[x = y]];

[ppo 3] : [[x P y ]] ∧ [[ y P z ]] ≤ [[x P z ]].

a) If A is a presheaf and P ∈ K2A is a po on A, then for all u ∈ Ω,

P (u) = {〈x, y 〉 ∈ A(u)2 : [[x P y ]] = u}
is a (classical) partial order on A(u).

b) Let P be a closed subpresheaf of A2 such that for each u ∈ Ω, P (u) is a partial
order on A(u). Then, the characteristic map of P verifies conditions [ppo i], i =
1, 2, 3. 2

43.13. Let X be a topological space and A = C(X) be the sheaf of continuous
real valued maps on X. For f , g ∈ |C(X)|, set 5

[[ f ≤ g ]] = int {x ∈ Ef ∩ Eg : fx ≤ gx}.

Then, [[ ∗ ≤ ∗ ]] is a partial order on A, i.e., it verifies [ppo 1] − [ppo 3] in 43.12. 2

5int (·) is the interior operation in a topological space.
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CHAPTER 44

Finitary Relations and Operations on a Presheaf

This Chapter collects results on finitary relations and operations on Ω-presheaves,
although many of them hold true for arbitrary Ω-sets.

Definition 44.1. If A is a Ω-presheaf, let 1

KfA =
⋃
J⊆fN KN(A, J); op(A) =

⋃
J⊆fN [AI , A]J ,

be the set of finitary relations and operations, respectively, on A. For K ⊆f N,
write op(A,K) for the operations on A that depend on K and op(A,n) for those
that depend on n = {1, 2, . . . , n}.

From Propositions 37.4 and 40.5 we get

Corollary 44.2. With the operations defined in 37.4, KfA is a Heyting
algebra, whose bottom is ⊥⊥⊥N and whose top is >>>N. Moreover, if Ω is a Boolean
algebra, the same is true of KfA.

In general, KfA is not a complete lattice for joins and meets of an arbitrary
family of finitary relations might not be finitary. It will become apparent that
KfA and op(A) have just enough structure to interpret first-order Logic. We now
introduce

Definition 44.3. For R ∈ KfA and ω ∈ op(A), define

fv(R) =
⋂
{J ⊆ N : R depends on J}

fv(ω) =
⋂
{J ⊆ N : ω depends on J},

called the sets of free variables in R and ω, respectively.

Corollary 44.4. If R ∈ KfA and ω ∈ op(A), A a Ω-presheaf, then R depends
on fv(R) and ω depends on fv(ω). Moreover, fv(∗) is the smallest subset of N
on which ∗ depends.

Proof. Since R and ω depend on a finite subset of N, the intersections
defining fv(∗) in 44.3 are finite. The result is then a consequence of 40.5.(e). �

The behavior of fv(∗) with respect to substitution and quantification is the
usual one :

1Notation as in 40.2; recall that J ⊆f N means that J is a finite subset of N.
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Corollary 44.5. Let A be a presheaf over Ω, R ∈ KfA and ω ∈ op(A). For
J ⊆ N, let τ j, j ∈ J , be finitary operations in A and let τ be their product.

a) ∀ i ∈ N, ∃viR, ∀viR ∈ KfA and fv(∃viR) = fv(∀viR) = fv(R) − {i}.
b) If J ⊆ fv(R), then R pτ | Jq ∈ KfA and

fv(R pτ | Jq ) = (fv(R) − J) ∪
⋃
j∈J fv(τ j).

c) If J ⊆ fv(ω), then ω pτ | Jq ∈ op(A) and

fv(ω pτ | Jq ) = (fv(ω) − J) ∪
⋃
j∈J fv(τ j).

Proof. Item (a) follows from Theorem 42.6.(a) (or 42.11.(b)). Items (b) and
(c) are a consequence of Theorem 41.4.(b) and Proposition 41.7. �

Let L, R be frames and A, B be presheaves over L, R, respectively. Let
f = 〈 f, λ 〉 : A −→ B be a morphism in pSh, with λ a frame morphism. By Re-
mark 40.9, image by f does not produce a morphism from KfA to KfB. However,
for inverse image, we have

Corollary 44.6. With notation as above, let ρ be the right adjoint of λ.

a) f∗ : KfB −→ KfA is a semilattice morphism. If ρ preserves joins or implication,
the same is true of f∗.

b) For T ∈ KfB, f∗(∃viR) ≥ ∃vi f∗R and f∗(∀viR) ≤ ∀vi f∗R.

c) If for all b ∈ |B|, Eb =
∨
c∈|A| [[fc = b]] and ρ ◦ λ = IdL, then

(1) ρ is a
∨

-morphism ⇒ f∗(∃viR) = ∃vi f∗R.

(2) ρ is open ⇒ f∗(∀viR) = ∀vi f∗R.

Proof. a) By Proposition 40.10.(a), f∗ takes KfB to KfA. The preservation
of meets, joins and implication follow from the corresponding assertions in 39.1.
Items (b) and (c) are straightforward consequences of Proposition 42.12. �

The next result is basic in connecting KfA and op(A) with the Intuitionistic
Predicate Calculus H, presented in 17.5.

Proposition 44.7. Let A be a Ω-presheaf and J be a finite subset of N.
Let ω, τ j ∈ op(A), j ∈ J , and let τ : AI −→ AJ be the product of the τ j. Let
R, S ∈ KfA.

a) If 3 is one of the operations ∧, ∨ or →, then

(R 3 S) pτ | Jq = R pτ | Jq 3 S pτ | Jq .

Moreover, (¬R) pτ | Jq = ¬ (R pτ | Jq ).

b) If k 6∈ fv(τ) ∪ J , then

{
(∃vkR) pτ | Jq = ∃vk(R pτ | Jq );

(∀vkR) pτ | Jq = ∀vk(R pτ | Jq ).

c) For all k ∈ N, ∀vkR ≤ R pω | kq ≤ ∃vkR.

d) If k 6∈ fv(R), then for all x ∈ AN and c ∈ A
(1) [[R(x) ]] ≤ [[S(x) ]] ⇒ Ec ∧ [[R(x) ]] ≤ [[S(x pc | kq ) ]].
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(2) [[S(x) ]] ≤ [[R(x) ]] ⇒ Ex ∧ [[S(x pc | kq ) ]] ≤ [[R(x) ]].

e) If k 6∈ fv(R), then

(1) R ≤ S ⇒ R ≤ ∀vkS; (2) S ≤ R ⇒ ∃vkS ≤ R.

Proof. a) All relations follow from 41.4.(b).(1). As an example, for implica-
tion we have, with a ∈ |A|I , c = τ(a|Ea) and recalling that

Ea = Ea pτa|Ea | Jq = Ea pc | Jq ,

[[ (R → S) pτ | Jq (a) ]] = [[ (R → S)(a pc | Jq ) ]] =

= Ea pc | Jq ∧
(

[[R(a pc | Jq ) ]] → [[S(a pc | Jq ) ]]
)

= Ea ∧ [[R pτ | Jq (a) ]] → [[S pτ | Jq (a) ]]

= [[ (R pτ | Jq → S pτ | Jq )(a) ]].

b) We treat the universal quantifier; the analogous argument for the existential
quantifier is left to the reader. For a ∈ |A|I and u ∈ |A|, set

x = a|Ea and yu = (a pu | kq )|Eapu|kq.

Then, x, yu ∈ AI , with

Ex = Ea and Eyu = Ea pu | kq =
∧
i 6=k Eai ∧ Eu.

Hence, Ex ∧ Eyu = Ea ∧ Eu. Since k 6∈ fv(τ) =
⋃
j∈J τ j (44.8.(d)), a and

a pu | kq coincide in all coordinates except k and

Ea|Ea∧Eu = E(a pu | kq )|Ea∧Eu = Ea ∧ Eu,

we conclude that

(*) τ(x)|Ea∧Eu = τ(x|Ea∧Eu) = τ(yu|Ea∧Eu) = τ(yu)|Ea∧Eu.

Hence, since k 6∈ J , 41.4.(b).(1) and (*) yield,

[[ (∀vk)R pτ | Jq (a) ]] = Ea ∧
∧
u∈|A| Eu → [[R pτ | Jq (a pu | kq ) ]]

= Ea ∧
∧
u∈|A| Eu → [[R(a pu | kq pτ(yu) | Jq ) ]]

= Ea ∧
∧
u∈|A| Ea ∧ Eu → Ea ∧ Eu ∧ [[R(a pu | kq pτ(yu) | Jq ) ]]

= Ea ∧
∧
u∈|A| Ea ∧ Eu → [[R(a pu | kq pτ(yu)|Ea∧Eu | Jq ) ]]

= Ea ∧
∧
u∈|A| Ea ∧ Eu → [[R(a pu | kq pτ(x)|Ea∧Eu | Jq ) ]]

= Ea ∧
∧
u∈|A| Ea ∧ Eu → Ea ∧ Eu ∧ [[R(a pu | kq pτ(x) | Jq ) ]]

= Ea ∧
∧
u∈|A| Ea ∧ Eu → Ea ∧ Eu ∧ [[R(a pτ(x) | Jq pu | kq ) ]]

= Ea ∧
∧
u∈|A| Eu → [[R(a pτ(x) | Jq pu | kq ) ]]

= Ea pτ(x) | Jq ∧
∧
u∈|A| Eu → [[R(a pτ(x) | Jq pu | kq ) ]]

= [[ (∀vkR) pτ | Jq (a) ]],

as desired.

c) For x ∈ |A|I , let c = ω(x|Ex). Then, Ec = Ex = Ex pc | kq . Hence, Theorem

41.4.(b).(1) yields
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[[ ∀vkS(x) ]] ≤ Ex ∧ (Ec −→ [[S(x pc | kq ) ]]) ≤ [[S(x pc | kq ) ]]

= [[S pω | kq (x) ]],

establishing the first inequality in (d). The second is similar.

d) For (1), since k 6∈ fv(R) it follows that

Ec ∧ [[R(x) ]] = Ec ∧
∧
i6=k Exi ∧ [[R(x) ]] = Ex pc | kq ∧ [[R(x) ]]

= Ex ∧ [[R(x pc | kq ) ]] ≤ Ex ∧ [[S(x pc | kq ]]

≤ [[S(x pc | kq ) ]].

Analogously, one obtains (2); item (e) is a straightforward consequence of (d) and
the pertinent definitions. �

Exercises

44.8. Let A be a Ω-presheaf and R, S ∈ KfA. Let J ⊆f N, τ j ∈ op(A) and
let τ be the product of the τ j .

a) fv(R → S) = fv(R ∧ S) = fv(R ∨ S) = fv(R) ∪ fv(S).

b) fv(¬R) = fv(R).

c) fv(⊥⊥⊥N) = fv(>>>N) = ∅.
d) Set fv(τ) =

⋂
{J ⊆ N : τ depends on J}. Then, fv(τ) =

⋃
j∈J fv(τ j). 2

44.9. Let A be a Ω-presheaf. All the axioms and rules of the Intuitionistic
Propositional Calculus in 17.5 hold in KfA, with the following conventions :

∗ In the axioms and rules of H, the symbols φ, ψ and χ stand for elements of KfA;

∗ An axiom is satisfied if its value is >>>N for all φ, ψ, χ ∈ KfA;

∗ A rule is valid whenever the conjunction of its antecedents is satisfied, so is its
conclusion. For instance, to check that the rule of Modus Ponens is valid it must
be shown that

φ ∧ (φ → ψ) = >>>N ⇒ ψ = >>>N,

for arbitrary φ, ψ in KfA. 2
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CHAPTER 45

Graded Frames

Let A be a Ω-presheaf. Recall (37.1) that if n ≥ 1 is an integer, KnA is the
frame of n-characteristic maps on A. By Proposition 40.14, if J ⊆f N has cardinal
n ≥ 1, there is an automorphism of KNA that takes KN(A, J) isomorphically onto
KN(A,n) 1, which may be identified with KnA (40.8). Hence, associated to A there
is a sequence of frames

K∗(A) = 〈K0(A), K1(A), . . . , Kn(A), . . . 〉
where K0(A) = (EA)← (see (!) in 37.3). In this Chapter we introduce the structure
that is adequate to study this type of object. It is analogous to the graded rings and
modules that appear in Homology, Cohomology or in Topological and Algebraic
K-theory. A general reference for homological constructs is MacLane’s [45]; for
Algebraic K-theory the reader may consult [48], [4], [74] or [73]

1. Introduction

We start with the following

Definition 45.1. A graded frame is of a sequence of frames

L∗ = 〈L0, L1, . . . , Ln, . . . 〉
together with a binary operation, ⊗ : L∗ × L∗ −→ L∗, consisting for each pair of
integers n, m ≥ 0 of an operation

⊗ : Ln × Lm −→ Ln+m,

satisfying the following conditions, where ⊥n, >n are the top and bottom of Ln,
respectively :

[⊗ 1] : ⊗ is associative;

[⊗ 2] : ⊗ distributes over finite meets and arbitrary joins;

[⊗ 3] : >n ⊗ >m = >m ⊗ >n = >n+m;

[⊗ 4] : For all η ∈ Ln, η ⊗ η = (η ⊗ >n) ∧ (>n ⊗ η);

[⊗ 5] : For all p ∈ L and η ∈ Ln, p ⊗ η = η ⊗ p = η ∧ (p ⊗ >n);

[⊗ 6] : For all η ∈ Ln, >0 ⊗ η = η ⊗ >0 = η.

The frame Ln is the component of degree n of L∗; a member of Ln is
called an element of degree n of L∗. When context allows write > for >0

1n = {1, 2, . . . , n}.

467



Chapter 45. Graded Frames 468

(the top of L0). A graded cBa is a graded frame in which all components are
complete Boolean algebras.

The following comments are included to help make the statement of Definition
45.1 clearer :

∗ The only commutativity assumptions are [⊗ 5] and [⊗ 6]. Note that [⊗ 5] implies
(p ⊗ >n) = (>n ⊗ p), for all p ∈ L. In general, the operation ⊗ is not commutative;

∗ Associativity means that if α ∈ Ln, β ∈ Lm and γ ∈ Lk, then in Ln+m+k we
have

(α ⊗ β) ⊗ γ = α ⊗ (β ⊗ γ).

∗ Distributivity over finite meets means that if α, β ∈ Ln and γ ∈ Lm, then the
following relations hold in Ln+m :{

(α ∧ β) ⊗ γ = (α ⊗ γ) ∧ (β ⊗ γ);

γ ⊗ (α ∧ β) = (γ ⊗ α) ∧ (γ ⊗ β).

∗ Distributivity over arbitrary joins means that if {αi : i ∈ I} ⊆ Ln and γ ∈ Lm,
then the following relations hold in Ln+m :

(∨
i∈I αi

)
⊗ γ =

∨
i∈I αi ⊗ γ;

γ ⊗
∨
i∈I αi =

∨
i∈I γ ⊗ αi.

∗ Axiom [⊗ 4] is the form of idempotency that is compatible with the graded
structure.

∗ For all α ∈ Lm and n ≥ 0, α ⊗ ⊥n = ⊥n ⊗ α = ⊥n+m
2.

Example 45.2. If L is a frame, the constant sequence

L̂ = 〈L,L, . . . , L, . . . 〉
is a graded frame, where the operation ⊗ is the meet in L. Thus, for p ∈ Ln,
q ∈ Lm, we set p ⊗ q = p ∧ q, computed in Ln+m = L. 2

Example 45.3. Let A be a set. The sequence

2A∗ = 〈 2, 2A, 2A×A, . . . , 2A
n

, . . . 〉
where 2 = {⊥, >} is the two element cBa, is a graded cBa, where the operation
⊗ is defined, for S ⊆ An and T ⊆ Am, by

S ⊗ T = {〈 a1, . . . , an, c1, . . . , cm 〉 ∈ An+m :

〈 a1, . . . , an 〉 ∈ S
and

〈 c1, . . . , cm 〉 ∈ T


In this case, meets and joins are simply intersection and union, whether finite or
not. Observe that for S ⊆ An

S ⊗ > = > ⊗ S = S and S ⊗ ⊥ = ⊥ ⊗ S = ⊥n,

where ⊥n is ∅, understood as a subset of An. 2

2⊥ is the join of the empty family.
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Lemma 45.4. Let L∗ be a graded frame and n, m, l ≥ 0 be integers.

a) ⊗ is increasing in both coordinates : for α, β ∈ Ln and γ ∈ Lm, then

α ≤ β ⇒

{
(α ⊗ γ) ≤ (β ⊗ γ);

(γ ⊗ α) ≤ (γ ⊗ β).

b) For p, q ∈ L0, p ⊗ q = p ∧ q.
c) For all p, q ∈ L0 and n, m ≥ 0,

(p ⊗ >n) ⊗ (q ⊗ >m) = (p ∧ q) ⊗ >n+m.

d) For α ∈ Ln, the maps

{
(·) ⊗ α : Lm−→ Ln+m, β 7→ β ⊗ α;

α ⊗ (·) : Lm−→ Ln+m, β 7→ α ⊗ β,

are frame-morphisms, i.e., preserve finite meets and arbitrary joins.

e) Right-tensoring by >n provides a family of frame-morphisms from Ll to Ll+n,
such that the following diagram is commutative 3 :

Ll+m

Ll

?

- Ll+n

⊗ >m

⊗ >n

Ll+m+n

⊗ >m

⊗ >n

?
-

f) For n ≥ 1, the frame-morphism (∗) ⊗ >n is the n-fold composition of tensoring
on the right with >1.

Proof. a) If α ≤ β iff β = α ∨ β; hence, distributivity over joins yields
β ⊗ γ = (α ∨ β) ⊗ γ = (α ⊗ γ) ∨ (β ⊗ γ), proving that (α ⊗ γ) ≤ (β ⊗ γ).
Similarly, one verifies the other relation.

b) From [⊗ 5] and [⊗ 6] we get : p ⊗ q = p ∧ (q ⊗ >) = p ∧ q, as needed.

c) First note that associativity ([⊗ 1]) and [⊗ 5] yield

(p ⊗ >n) ⊗ (q ⊗ >m) = p ⊗ (>n ⊗ >m) ⊗ q = (p ⊗ >n+m) ⊗ q.

Next, since (p ⊗ >n+m) is an element of degree n + m in L∗, another application
of [⊗ 5] and distributivity of meets over ⊗ yields

(p ⊗ >n+m) ⊗ q = (p ⊗ >n+m) ∧ (q ⊗ >n+m) = (p ∧ q) ⊗ >n+m,

as needed. Item (d) is an immediate consequence of distributivity of finite meets
and arbitrary joins over ⊗, while (e) and (f) follow from (d) and [⊗ 3] in 45.1. �

To present the various concepts of morphism of graded frames and the induc-
tive systems associated to them, we introduce a set of “standard” operations in
frames, namely

3Notation is thoughtfully ambiguous.
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(O) O = {semilattice,
∧

,
∨

, frame 4, [
∧
,
∨

], open}

Remark 45.5. By Lemma 45.4.(e), a graded frame L∗ gives rise to an induc-
tive system of frame and frame-morphisms

I(L∗) = L0
⊗>1−→ L1 · · ·

⊗>1−→ Ln
⊗>1−→ Ln+1 · · ·

that will be important in what follows. Note that a morphism

g = 〈 gn 〉n≥0 : I(L∗) −→ I(K∗)

consists of a sequence gn : Ln −→ Kn, n ≥ 0, such that the following diagram is
commutative :

Ln+1

Ln

?

- Kn

(∗) ⊗ >1

gn

Kn+1

(∗) ⊗ >1

gn+1

?
-

If o ∈ O is one of the “standard” operations in (O), then g is a o-morphism iff
for all n ≥ 0, gn is a o-morphism from Ln to Kn. 2

Definition 45.6. a) Let d ≥ 1 be an integer and L∗, K∗ be graded frames.
A map of degree d, f : L∗ −→ K∗, consists of a sequence f = 〈 fn 〉n≥0 such
that

[grm 1] : ∀ n ≥ 0, fn : Ln −→ Kdn;

[grm 2] : For all α ∈ Ln and η ∈ Lm, fn(α) ⊗ fm(η) = fn+m(α ⊗ η).

A map of graded frames is map of degree 1.

b) A map of graded frames, f : L∗ −→ K∗, is stable if it induces a morphism
from I(L∗) to I(K∗), as in 45.5.

c) Let o ∈ O be one of the standard operations in frames (see (O), above) and
let f : L∗ −→ K∗ be a map of degree d. f is a o-morphism if for all n ≥ 0,
fn : Ln −→ Kdn is a o-morphism of frames. The expression o-morphism stands
for a o-morphism of degree 1.

e) A o-morphism is stable, if its carrier is a stable map.

Example 45.7. Let L∗ be a graded frame. There is a natural map (of degree

1), j : L̂0 −→ L∗, where L̂0 is the constant graded frame of 45.2. For p ∈ L̂n = L0,
set

jn(p) = p ⊗ >n.

By items (b) and (c) in 45.4, j is a graded frame-morphism (or [∧,
∨

]-morphism).
More examples will emerge in section 2. 2

4That is, [∧,
∨

]-morphism.
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45.8. Categories of Graded Frames. a) If L∗ is a graded frame, its iden-
tity morphism, IdL∗ , is the morphism whose nth map is the identity of the nth

component of L∗. Clearly, IdL∗ has degree 1.

b) Let o ∈ O (see (O) in page 470). If f : L∗ −→ R∗ and g : R∗ −→ S∗ are o-
morphisms of graded frames, of degrees d, d′, respectively, then g ◦ f : L∗ −→ S∗,
defined, for n ≥ 0, by

(g ◦ f)n = gdn ◦ fn,

is a o-morphism of graded frames, of degree dd′. In particular, the composi-
tion of o-morphisms of degree 1 is a o-morphism of degree 1. Graded frames
with o-morphisms of arbitrary degree, with o-morphisms of degree 1 or stable
o-morphisms are categories. 2

2. The Graded Frame of Relations on a Presheaf

Let A be a Ω-set and K∗(A) be the sequence

K∗(A) = 〈 (EA)←,K1(A), K2(A), . . . , Kn(A), . . . 〉
consisting of the frames of n-characteristic maps on A. Recall that K0(A) is iden-
tified with (EA)← (by (!) in 37.3). As in 37.22.(b) and (c), write >n, ⊥n for the
n-characteristic maps on A given by

x 7−→ Ex and x 7−→ ⊥,

which by 37.4.(a) are the top and bottom of Kn(A). If A is a Ω-presheaf, K∗(A) is
a graded frame, as follows : define a binary operation on K∗(A),

⊗ : K∗(A) × K∗(A) −→ K∗(A)

where for R ∈ Kn(A), S ∈ Km(A) and x ∈ |A|n+m

[[R ⊗ S(x) ]] = [[R(x1, . . . , xn) ]] ∧ [[S(xn+1, . . . , xn+m) ]].

It is straightforward that R ⊗ S ∈ Kn+m(A). The geometrical significance of this
operation is described in 37.27 (or 45.3). Note that

∗ If n = 0, then ⊗ : (EA)← × Km(A) −→ Km(A) takes 〈 p,R 〉 to p ∧ R ∈ Km(A)
(by 37.4.(b)). In particular,

∀ p ∈ Ω, ∀ R ∈ Km(A), p ⊗ R = R ⊗ p.

In terms of the isomorphism in 37.16, p ⊗ R is the characteristic map of R|p;

∗ In general, ⊗ is not commutative.

Besides being a graded frame, K∗(A) has other special properties, described in

Proposition 45.9. Let A be a Ω-presheaf and n, m ≥ 0 be integers. Then,

a) K∗(A) is a graded frame.

b) For R, R′ ∈ Kn(A) and S, S′ ∈ Km(A),

R ⊗ (S → S′) = (R ⊗ >m) ∧
(

(R ⊗ S) → (R ⊗ S′)
)

;

(R → R′) ⊗ S =
(

(R ⊗ S) → (R′ ⊗ S)
)
∧ (>n ⊗ S).
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c) The map (·) ⊗ >1 : Kn(A) −→ Kn+1(A), given by R 7→ R ⊗ >1, is an open
(8.1.(b)) injection.

d) Right-tensoring by >m provides a family of open injections from Kn(A) into
Kn+m(A).

Proof. Item (a) is straightforward and left to the reader.

b) To simplify exposition, if x ∈ |A|n+m, we write z = 〈x1, . . . , xn 〉 and
y = 〈xn+1, . . . , xn+m 〉. Hence, x = 〈 z, y 〉 and Ex = Ez ∧ Ey.

Let R ∈ Kn(A) and S, S′ ∈ Km(A); 6.4.(i) and [car 1] in 37.1 yield

[[R ⊗ (S → S′)(x) ]] = [[R(z) ]] ∧ ([[ (S → S′)(y) ]] =

= [[R(z) ]] ∧ Ey ∧ ([[S(y) ]] → [[S′(y) ]])

= [[R(z) ]] ∧ Ez ∧ Ey ∧ ([[R(y) ]] → [[S′(y) ]])

= [[R(z) ]] ∧ Ex ∧
(

([[R(z) ]] ∧ [[S(y) ]]) → ([[R(z) ]] ∧ [[S′(y) ]])
)

= [[R(z) ]] ∧ Ex ∧
(

[[R ⊗ S(x) ]] → [[R ⊗ S′(x) ]]
)

= [[R(z) ]] ∧ [[ (R ⊗ S → R ⊗ S′)(x) ]]

= [[R(z) ]] ∧ Ey ∧ [[ (R ⊗ S → R ⊗ S′)(x) ]]

= [[ (R ⊗ >m)(x) ]] ∧ [[ (R ⊗ S → R ⊗ S′)(x) ]],

establishing the first equality; the other can be proven similarly.

c) By 45.4.(d) (or (e)), right-tensoring with >1 is a frame-morphism. It follows
easily from the definition that it preserves arbitrary meets 5. To see it is open, let
R, R′ ∈ Kn(A). Item (b) and [⊗ 3] in 45.1 then yield

(R → R′) ⊗ >1 = (R ⊗ >1 → R′ ⊗ >1) ∧ (>n ⊗ >1)

= (R ⊗ >1 → R′ ⊗ >1) ∧ >n+1 = (R ⊗ >1 → R′ ⊗ >1),

showing that (∗) ⊗ >1 preserves implication; it remains to check that it is injective.
Note that

R ⊗ >1 = R′ ⊗ >1, (1)

implies that for all x ∈ |A|n

[[R(x) ]] ∧ Exn = [[R′(x) ]] ∧ Exn. (2)

To see this, just compute the value of each member in (1) at the n + 1-tuple
〈x1, . . . , xn, xn 〉 to obtain the equality in (2). Since Ex ≤ Exn, property [ch 1]
and (2) immediately imply that R = R′. For (d) observe that

∗ The composition of open injections yields an open injection;

∗ By 45.4.(f), right-tensoring with >n is the n-fold composition of right-tensoring
with >1. �

The relation between K∗(A
d) and K∗(A) yields an example of a graded mor-

phism of degree d.

5In fact, in K∗(A), right or left tensoring by any element is a [
∧

,
∨

]-morphism.
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Proposition 45.10. Let A be a Ω-presheaf and d ≥ 1 be an integer. There is
a natural graded morphism of degree d over (EA)←, g : K∗(A

d) −→ K∗(A), such
that for all m ≥ 0, gm is a frame isomorphism.

Proof. Set g0 = Id(EA)← ; for m ≥ 1 and x ∈ |A|md, we shall write

x = 〈x1, . . . , xm 〉,
where xj+1 = 〈x(j−1)d+1, . . . , xjd 〉 ∈ |A|d, 1 ≤ j ≤ m. Hence,

xj |Exj
∈ |Ad| and Ex =

∧m
j=1 Exj . (1)

Consider the map

γm : |A|md −→ |Ad|m, given by γm(x) = 〈x1|Ex1
, . . . , xm|Exm 〉,

and observe that for x, y ∈ |A|md

Eγm(x) = Ex and [[x = y]] = [[γm(x) = γm(y)]]. (2)

Define gm : Km(Ad) −→ Kmd(A) by 6

gm(h)(x) = h(γm(x)).

It follows easily from (2) that gm(h) ∈ Kmd(A). If h, h′ ∈ Km(Ad), then

gm(h ∧ h′)(x) = h ∧ h′(γm(x)) = h(γm(x)) ∧ h′(γm(x)),

and gm preserves meets; similarly, one verifies that it preserves joins. To show
that g = 〈 gn 〉n≥0 is a graded frame morphism, we use the following notational

convention : if x ∈ |A|(m+n)d, write

z = 〈x1, . . . , xmd 〉 and y = 〈xmd+1, . . . , xmd+nd 〉.
Hence, z ∈ |A|md, while y ∈ |A|nd. Moreover,

γm+n(x) = 〈 γm(z), γn(y) 〉. (3)

Given h ∈ Km(Ad) and k ∈ Kn(Ad), (3) yields, for x ∈ |A|(m+n)d,

gm(h) ⊗ gn(k)(x) = gm(h)(z) ∧ gn(k)(y) = h(γm(z)) ∧ k(γn(y))

= h ⊗ k(γm(z), γn(y)) = h ⊗ k(γm+n(x))

= gm+n(h ⊗ k)(x),

as needed. It remains to show that gm is an isomorphism. Note that if h ∈ Km(Ad)
and x ∈ |A|md, the first relation in (1) and 37.12.(a) entail

h(γm(x)) = h(x1|Ex1
, . . . , xm|Exm) =

∧m
j=1 Exj ∧ h(x)

= Ex ∧ h(x) = h(x), (4)

which immediately implies that gm is injective. For surjectivity, fix k ∈ Kmd(A).
Note that if t ∈ |Ad|, then

t = 〈 t1, . . . , td 〉, with Etk = Et1, 1 ≤ k ≤ d.

Define h : |Ad|m −→ Ω by

h(t1, . . . , tm) = k(t11, . . . , t1d, t21, . . . , t2d, . . . , tm1, . . . , tmd).

It is straightforward that h ∈ Km(Ad). For x ∈ |A|md, we have

6To simplify presentation, we momentarily abandon the infix notation.
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gm(h)(x) = h(γm(x)) = h(x1|Ex1
, . . . , xm|Exm)

= k(x1|Ex1
, . . . , xm|Exm) = Ex ∧ k(x) = k(x),

establishing that k = gm(h) and ending the proof. �

Our next task is the description of the functorial properties of K∗. For a mor-
phism of presheaves over the same frame, 38.11 (or 39.1) yields

Corollary 45.11. If Ω is a frame, K∗ is a covariant functor from the category
of Ω-presheaves to the category of graded frames, with

∨
-morphisms. A morphism

of Ω-presheaves, f : A −→ B, induces a
∨

-morphism

f∗ = 〈 f∗n 〉n≥0 : K∗A −→ K∗B,

that in degree 0 is the inclusion of (EA)← into (EB)←, and for n ≥ 1, R ∈ Kn(A)
and b ∈ |B|n,

[[ f∗nR(b) ]] =
∨
a∈|A|n [[fa = b]] ∧ [[R(a) ]].

Proof. Recall (25.36) that EA ≤ EB and so f∗0 is well defined. In view of
38.11, it is enough to check that f∗ is a morphism of graded frames, that is, that
for n, m ≥ 0, R ∈ KnA and S ∈ KmA

f∗nR ⊗ f∗mS = f∗(n+m)(R ⊗ S).

If b ∈ |B|n and d ∈ |B|m, write 〈 b, d 〉 = 〈 b1, . . . , bn, d1, . . . , dm 〉 ∈ |B|n+m.
Then,

[[ f∗nR ⊗ f∗mS(〈 b, d 〉) ]] = [[ f∗nR(b) ]] ∧ [[ f∗m(d) ]] =

=
∨
a∈|A|n

∨
c∈|A|m [[fa = b]] ∧ [[fc = d]] ∧ [[R(a) ]] ∧ [[S(c) ]]

=
∨
〈a,c〉∈|A|n+m [[f〈 a, c 〉 = 〈 b, d 〉]] ∧ [[R ⊗ S(〈 a, c 〉) ]]

= [[ f∗(n+m)(R⊗S)(〈 b, d 〉) ]],

as needed. �

By Remark 40.9 7, in general f∗ is not a stable morphism of graded frames.
However, for inverse image we have

Corollary 45.12. If Ω is a frame, K∗ is a contravariant functor from
pSh(Ω) to the category of graded frames with open stable morphism. If f : A −→ B
is a morphism of Ω-presheaves, then

f∗ = 〈 f∗n 〉n≥ 0 : K∗B −→ K∗A

that in degree 0 is the right adjoint of the inclusion of (EA)← into (EB)←, and
for n ≥ 1, T ∈ KnB and a ∈ |A|n

[[ f∗nT (a) ]] = [[T (fa) ]].

In particular, f∗n(>n) = >n and f∗n(⊥n) = ⊥n.

7See also 40.10 and 40.11.
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Proof. It is clear that f∗n is well-defined for all n ≥ 0. Taking 38.11 into
account, it remains to check that f∗ is a stable map of graded frames. To see that
it respects grading, let R ∈ Kn(B) and S ∈ Km(B). For a ∈ |A|n+m, we have

[[ f∗nR ⊗ f∗mS(a) ]] = [[R(fa1, . . . , fan) ]] ∧ [[S(fan+1, . . . , fan+m) ]]

= [[R ⊗ S(fa) ]] = [[ f∗n+m(R ⊗ S)(a) ]],

as desired. For stability, write 〈 a, c 〉 = 〈 a1, . . . , an, c 〉 for a typical element of
|A|n+1. A similar convention applies to elements in |B|n+1. The meaning of f〈 a, c 〉
is then clear. For T ∈ KnB, it must be shown that

f∗n+1(T ⊗ >1) = f∗nT ⊗ >1.

KnA

KnB

?

- Kn+1B

f∗n

⊗ >1

Kn+1A

f∗n+1

⊗ >1

?
-

If 〈 a, c 〉 ∈ |A|n+1,

[[ f∗n+1(T ⊗ >1)(a, c) ]] = [[T ⊗ >1(f〈 a, c 〉) ]] = [[T (fa) ]] ∧ Efc
= [[ f∗nT (a) ]] ∧ Ec = [[ (f∗nT ⊗ >1)(a, c) ]],

ending the proof. �

If f : A −→ B is a morphism of presheaves, the graded morphisms f∗ and f∗

form an adjoint pair, as follows :

Corollary 45.13. If f : A −→ B is a morphism of Ω-presheaves, then

f∗ ◦ f∗ ≤ IdK∗(B) and f∗ ◦ f∗ ≥ IdK∗(A)

and 〈 f∗, f∗ 〉 is an adjoint pair 8. Moreover,

a) The following conditions are equivalent :

(1) f is monic; (2) ∀ n ≥ 0, f∗n is injective; (3) ∀ n ≥ 0, f∗n is surjective.

b) The following are equivalent :

(1) f is epic; (2) ∀ n ≥ 0, f∗n is surjective; (3) ∀ n ≥ 0, f∗n is injective. 2

Since the completion in Theorem 27.9 is monic and epic, we obtain

Corollary 45.14. If A is a Ω-presheaf, there is a natural graded frame
isomorphism, c∗ : K∗(A) −→ K∗(cA), where cA is the completion of A over Ω. 2

The existential and universal quantifiers yield examples of morphisms of the
inductive system I(K∗A) (45.5), that are not morphisms of graded frames :

Corollary 45.15. Let A be a Ω-presheaf and let k ≥ 1 be an integer. Define{
∃vk : I(K∗A) −→ I(K∗A)

∀vk : I(K∗A) −→ I(K∗A)

8That is, for all n ≥ 0, 〈 f∗n, f∗n 〉 is an adjoint pair as in 7.8.
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by the following prescriptions :

∗ If n < k, then (Qvk)n = IdKnA, (Q = ∃,∀);
∗ If k ≤ n, R ∈ KnA and a ∈ |A|n, then{

[[ ∃vkR(a) ]] = Ea ∧
∨
c∈|A| [[R(a pc | kq ) ]];

[[ ∀vkR(a) ]] = Ea ∧
∧
c∈|A| Ec → [[R(a pc |q ) ]].

Then, ∃vk is a
∨

-morphism and ∀vk is a
∧

-morphism on I(K∗A).

Proof. By Theorem 42.6, ∃vk and ∀vk are, in each degree, right and left
adjoints, and so,

∨
and

∧
-morphisms, respectively; it remains to show (see 45.5)

that if n ≥ 0 and R ∈ KnA, then

(1)

{
∃vk(R ⊗ >1) = ∃vkR ⊗ >1

∀vk(R ⊗ >1) = ∀vkR ⊗ >1.

If k > n+ 1, it follows immediately from the definitions that the equations in
(1) are satisfied. If k ≥ n+ 1, we have two possibilities :

∗ k > n+ 1 : Then, for Q = ∃, ∀, Qvk(R ⊗ >1) = R ⊗ >1 = QvkR ⊗ >1,
as needed.

∗ k = n+ 1 : Then, for 〈 a, c 〉= 〈 a1, . . . , an, c 〉 ∈ |A|n+1 we have, recalling 8.16.(b),
6.4.(c) and that p → q = p → (p ∧ q)
[[ ∀vk(R ⊗ >1)(〈 a, c 〉) ]] = Ea ∧ Ec ∧

∧
u∈|A| Eu → [[R ⊗ >1(〈 a, c 〉 pu | kq ) ]]

= Ea ∧ Ec ∧
∧
u∈|A| Eu → [[R ⊗ >1(〈 a, u 〉) ]]

= Ea ∧ Ec ∧
∧
u∈|A| Eu → ([[R(a) ]] ∧ Eu)

= Ea ∧ Ec ∧
∧
u∈|A| Eu → [[R(a) ]]

= Ea ∧ Ec ∧
[
(
∨
u∈|A| Eu) → [[R(a) ]]

]
= Ea ∧ Ec ∧ (EA → [[R(a) ]])

= Ea ∧ Ec ∧ (Ea → [[R(a) ]])

= Ea ∧ Ec ∧ [[R(a) ]] = [[∀vkR(a) ]] ∧ Ec
= [[ (∀vkR ⊗ >1)(〈 a, c 〉) ]],

as desired. The existential quantifier can be treated similarly. �

We now show how the algebra KfA, of finitary relations on A, can be recovered
from the graded frame K∗A. Let A be a Ω-presheaf; for n ≥ 0 define

ιn : KnA −→ KfA, by [[ ιnR(a) ]] = Ea ∧ [[R(a1, . . . , an) ]],

where a ∈ |A|N. Then

Corollary 45.16. With notation as above

a) For all n ≥ 0, ιn is an open morphism.

b) The system 〈KfA; {ιn : n ≥ 0} 〉 is the colimit of I(K∗A), that is,

KfA = lim→ I(K∗A).
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Proof. Item (a) follows from 40.8; indeed, considered as a map from KnA
to KNA, it is inverse image by the projection that forgets the coordinates outside
n, and so, open and injective. Since its image is KN(A, n), a complete subalgebra
of KfA, ιn is an open morphism (although KfA is only a Heyting algebra). Since
for all n ≥ 0, the following diagram is commutative

KnA - Kn+1A

ιn ιn+1

KfA

⊗ >1

A
A
A
A
AU

�
�
�
�
��

the system 〈KfA; {ιn : ≥ 0} 〉 is a dual cone over I(K∗A); it is straightforward
that KfA = lim→ I(A). �

Remark 45.17. Since KfA = lim→ I(K∗A), inverse image by a morphism,

as well as quantification, may be recovered from their graded counterparts defined
for K∗. Indeed :

∗ If f : A −→ B is a morphism of Ω-presheaves, f∗ : K∗B −→ K∗A is, by 45.12,
a stable open morphism. Hence 9, lim→ f∗ : KfB −→ KfA is a Heyting algebra

morphism; it is easily established that lim→ f∗ is precisely the inverse image by f

described in 44.6, with λ = IdΩ.

∗ By 45.15, ∃vk, ∀vk constitute morphism of the inductive system I(K∗A). Hence,
lim→ ∃vk and lim→ ∀vk are maps from KfA to KfA; it is straightforward that these

colimits maps correspond to existential and universal quantification as in 42.11. 2

Exercises

45.18. If L∗
f−→ K∗ is a map of degree d and α ∈ Lm, then, for all n ≥ 0,

the following diagram is commutative :

Ln+m

Ln

?

- Kdn

(∗) ⊗ α

fn

K(n+m)d

(∗) ⊗ f(α)

fn+m

?
-

2

9See Proposition 17.19.
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cI(L), 132
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f∗A, 346, 365
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βX, 204

H, 159
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∃πJS, 446
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KIA, 400
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√
S, 97

RP , 109

ZT , 99

Za, 99
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εhA, 341
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∀f , 442

P>(A), 394

dhA, 358

ihB, 365

skA, 329

⊆f , 15

chA, 343, 344, 358

a→, 26

�, 40

g pf | Jq , 440

accumulation point, 205

adjoint pair, 83
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for graded direct image, 475
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for graded inverse image, 475

algebra, 42

A-, 145

σ-, 177

algebraic

element of a poset, 40

poset, 40

associated poset, 27

atom, 29

base space, 218

basis

for a space, 18

in complete lattice, 80

Boolean algebra, 63

of regular elements, 79

Booleanization

of a topological space, 193

bounded, 28

above, 28

below, 28

bundle

A-, 145

card(A), 15

cardinal of a set, 15

categorical constructions

in Sh(Ω), 325

category, 143

Cartesian closed, 268

cocomplete, 153

complete, 153

dual, 144

equivalent, 150

finitely complete, 153

locally small, 145

of graded frames, 471

product of, 145

set-based, 143

small, 143

with zero, 145

cHa, 86

chain, 32

in a poset, 32

characteristic map, 400

image by a Q-morphism, 419

inverse image by a Q-morphism, 419

of a subset of |A|I , 406

representation theorem, 407

clopen, 19

in a distributive lattice, 63

closed, 17

in a Ω-set, 394

map, 21

representation of P> by characteristic

maps, 407

closure, 252

in a Ω-set, 394

of a set, 18

cobasis, 91

coequalizer, 153

in pSh(X), 264

in Sh(Ω), 325

in Sh(X), 265

of lattice morphisms, 49

cofinal, 35

down (dcof), 35

up (ucof), 35

cokernel

of a morphism, 54

colimit

for morphisms of I-diagrams, 166

in a category, 152

in L-mod, 165

compact

element of a poset, 40

in a topological space, 22

poset, 40

relatively, 22

compatible, 222, 293, 299

for partial maps, 16

in a presheaf, 237

over p, 294, 299

restriction and equality, 301

complement, 63

of a set, 15

complemented, 63

complete

Ω-set, 311

Boolean algebra

graded, 468

pseudo Boolean algebras, 86

complete Heyting algebra, 86

completeness

for L-mod, 162

completion

along a semilattice morphism, 343

functor, 318

geometrical, 384

of a Ω-set, 315

of a H-set, 346

of a Boolean algebra, 135

of a Heyting algebra, 135

of a presheaf along a semilattice
morphism, 358

of a presheaf over a topological space,
257

preservation of finite products, 324
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composition

of characteristic maps, 438

of graded frame morphisms, 471

of relations, 263

cone, 151

dual, 152

congruence

frame, 116

frame (generated by a set), 117

generated by a filter, 54

generated by a morphism, 47

generated by an ideal, 54

constant presheaf, 300

continuous, 21

conucleus, 130

convergence

filter-, 205

of a map along a filter, 205

coproduct

empty, 291

in Sh(Ω), 325

in a category, 153

of lattice morphisms, 46

of lattices, 45

of presheaves, 249

of sets, 17

coreflection, 150

coreflective subcategory, 150

coretraction, 145

degree

component of – n, 467

of a map of graded frames, 470

of an element, 467

dense, 77, 222

ρ-, 309

in a Ω-set, 297

in a presheaf, 252

in another element, 77

restriction, 310

set, 19

density, 21

of a Ω-set, 297

dependence on coordinates

for characteristic map, 430

for closed subpresheaves of AI , 430

for morphisms of Ω-sets, 430

for presheaves over X, 261

diagonal of Pn, 282

diagram in a category, 150

difference of sets, 15

directed

down (dd), 35

left, 35

right, 35

up (ud), 35

discrete sheaf, 238

discrete topology, 17

disjoint union of sets, 17

domain

of a L-set, 285

of a presheaf, 235

dual cone, 152

duality, 150

embedding

L-, 161

elementary, 161

of posets, 26

regular, 81

enough injectives, 155

enough projectives, 154

epimorphism, 145

equality

in a L-set, 285

in a geometric sheaf, 220

in a presheaf, 236

strict, 328

equalizer, 153, 291

in Sh(Ω), 325

of presheaf morphisms, 248

equivalence

class, 16

in a Heyting algebra, 74

of categories, 150

relation, 16, 263

generated in a presheaf, 263

on a L-set, 457

essential image

of a presheaf, 356, 357

exchange rules, 298

existential quantification

for presheaves, 262

extension

as adjoint to restriction, 353

essential (for closed sets), 192

of a presheaf, 350, 352

extension theorem

for BA-morphism, 140

extensional, 236

L-set, 285

extensionalization, 242

functor, 342

extent

of a characteristic map, 400

in a presheaf, 299

of a section, 235

of a section in a L-set, 285
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of a singleton, 315

exterior power, 411

empty, 411

exterior product, 411

Feferman-Vaught value

of a formula, 271

fiber

at a filter, 374

fibered product, 153, 290

in Sh(Ω), 325

of L-presheaves, 305

of bundles over a base space, 228

of geometric presheaves, 248

of lattices, 45

over a morphism, 228

over a sheaf morphism, 232

filter∨
-, 112∧
-, 115

base, 35

complete, 132

generated by, 132

completely prime, 120

generated by S in a lattice, 49

in 2X , 35

in a poset, 35

irreducible, 61

lattice, 49

maximal, 59

prime, 59

principal, 35

proper, 35

filtered power, 275

bounded, 276

filtration, 275

final object, 145

for presheaves, 247

in Sh(Ω), 325

finitary

operations, 463

relations, 463

finite intersection property, 49

finite union property, 49

finitely complete

L-set, 297

presheaf, 271

fixed point theorem, 81

fixing coordinates

in a characteristic map, 410

flabby, 238, 310

locally, 326

formula, 158

∀∃, 159

existential, 159

Horn, 159

positive, 159

primitive, 159

quantifier-free, 159

universal, 159

frame, 85

free, 137

with enough points, 121

free

algebra, 135, 136

frame, 137

frontier of a set, 18

functor, 145

s -, 331

bi-, 147

change of base, 342

complete extension, 354

faithful, 146

forgetful, 146

full, 146

morphism, 147

preserves colimits, 153

preserves limits, 153

regularization, 386

representable, 148

Stone space, 180

Zariski spectrum, 180

fundamental theorem

for lattice morphisms, 47

for quotient by ideals, 55

for quotients by filters, 55

Gaussian domain, 104

generic point, 122

germ of a section, 374, 377

Gleason cover, 212

global section

of a L-set, 285

gluing

in a Ω-set, 296

of a subset, 299

gluing lemma

for pF (X,Y ), 16

graded

cBa, 468

frame, 467

greatest lower bound, 28

Heyting algebra (HA), 71

homeomorphism, 21

local, 217

ideal
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base, 35

complete, 132

generated by a set, 132

generated by S in a commutative ring,
94

generated by S in a lattice, 49

in 2X , 35

in a commutative ring, 94

in a poset, 35

lattice, 49

maximal, 59

prime, 59

in a commutative ring, 95

principal, 35

product

in a commutative ring, 94

proper, 35

radical

in a commutative ring, 96

sum

in a commutative ring, 94

idempotent, 186

image

as a graded map on K∗, 474

by a Ω-set morphism, 398

by a morphism in pSh, 423

by a Q-morphism, 419

of a L-set along a semilattice morphism,
341

of a presheaf along a semilattice

morphism, 358

of a sheaf along a continuous map, 365

of a sheaf along a semilattice morphism,
344

implication

for closed subpresheaves, 258

for subpresheaves, 258

in a Heyting algebra, 71

inductive

limit, 153

system, 151

infimum (inf), 28

initial object, 145

for presheaves, 247

in Sh(Ω), 325

injective

Boolean algebra, 141

hull, 155

in a category, 155

interior of a set, 18

inverse image

as a graded map on K∗, 474

by a Ω-set morphism, 398

by a morphism in pSh(X), 260

by a morphism in pSh, 423

by a Q-morphism, 419

of a presheaf along a semilattice
morphism, 365

of a sheaf along a continuous map, 346

invertible element, 99

irreducible, 122

isomorphism, 145

join, 28, 44

in PP (X), 256

kernel

of a morphism, 54

of a presheaf morphism, 264

of a sheaf morphism, 228

Kripke models, 85

lattice, 44

[∨,
∧

]-, 86

[∧,
∨

]-, 86

complete, 80

distributive, 52

zero-dimensional, 90

least upper bound, 28

left adjoint, 83

Lemma

gluing, 16

Yoneda’s, 148

Zorn’s, 32

limit

along a filter, 205

for morphisms of I-diagrams, 165

in a category, 152

in L-mod, 162

inductive, 153

of a map along a filter, 205

projective, 153

linear element, 90

linear order, 32

local homeomorphism, 217

localization

at D, 426, 454

of a L-set at a filter, 374

of a ring at a prime ideal, 109

lower bound, 28

lower set, 29

map

I-characteristic, 400

n-characteristic, 400

closed, 21

continuous, 21

essential, 211

minimal, 211
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of graded frames, 470

of graded frames over Ω, 470

open, 21

spectral, 185

maximal, 29

maximum, 28

meet, 28, 44

minimal, 29

minimum, 28

modular law, 52

Modus Ponens, 72, 160

monomorphism, 145

morphism

[
∨

,
∧

]-, 81

[∧,
∨

]-, 81∨
-, 80∧
-, 80

L-, 161

characteristic, 267

complete, 81

cone-, 152

epic, 145

epic (for presheaves), 249

evaluation, 268

fiber – at a filter, 374

frame, 85

implication preserving (ip), 87

from L-set to a P -set, 334

HA-, 71

image of a, 259

increasing, 26

lattice, 44

localization, 374

monic, 145

monic (for presheaves), 249

of I(L∗), 470

of I-diagrams, 164

of L-sets, 288

of geometric sheaves, 218

of graded frames, 470

of pre-ordered sets, 26

of presheaves, 234

of presheaves over distinct topological
spaces, 336

of sheaves, 237

open, 87

restriction of a, 259

stable, 470

stalk, 377

multiplicative subset, 95

natural equivalence, 148

natural number object, 278

natural transformation, 148

negation

for closed subpresheaves, 258

for subpresheaves, 258

neighborhood of a point, 18

nucleus, 126

open, 17

map, 21

operator

idempotent, 126

implicative, 126

order

lexicographic, 32

linear, 32

opposite, 28

partial, 26

pre-, 26

reverse, 28

total, 32

well-ordering, 32

orthomodular law, 52

partial order (po), 26

extension, 30

partition

of a measure space, 31

of a set, 31

point

generic, 122

in a complete lattice, 120

poset, 26

algebraic, 40

compact, 40

continuous, 40

predicate calculus

classical, 160

intuitionistic, 159

presheaf

of C-objects, 234

as a Ω(X)-set, 285

extensionalization of a, 242

finitely complete, 271

flabby, 310

over a semilattice, 299

extensional, 299

restriction in, 234, 235

section of a, 234

pro-constructible set, 197

product

empty, 289

in Sh(Ω), 325

in a category, 153

of L-sets, 289

of L-structures, 162
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of lattices, 45

of maps, 16

of posets, 31

of presheaves, 248

of sets, 16

of sheaves, 248

reduced, 56

topology, 23

projection, 126

projective

cover, 154

in a category, 154

limit, 153

system, 151

proof, 160

proper

multiplicative set, 95

pseudo-complement, 72

pullback, 153

pushout, 153

Q-morphism, 414

Q-operator, 126

quantifier

as a morphism on I(K∗A), 476

classical, 445, 446, 451

existential, 261

along f , 442

universal, 261

along f , 442

quotient

L-structure, 168

distributive lattice, 53

for presheaves, 264

for sheaves, 265

lattice, 47

of a L-presheaf, 458

of a L-set, 458

of a sheaf, 458

ring, 179

reduced product, 56

refinement

of partitions, 31

reflection, 150

reflective subcategory, 150

regular, 77

closed set, 19

monic, 292

open set, 19

ring, 186

regularization

associated to double negation, 389

by double negation, 428, 454

relation

in pSh(X), 262

inverse of a, 456

on a Ω-presheaf, 456

on presheaves, 456

representation theorem, 407

restriction

as adjoint to extension, 353

in a geometric sheaf, 219

in a presheaf, 299

of a characteristic map, 401

of a L-set to p, 286

of a map, 15

of a presheaf to p, 301

of a presheaf to a subsemilattice, 301

of a presheaf to an open set, 238

restriction dense, 310

retract, 337

retraction, 145

right adjoint, 83

ring

Noetherian, 105

of fractions, 106

total, 111

von Neumann regular, 186

zero, 107

saturated, 99

saturation, 101–103

section

continuous, 219

extent of a, 219

global, 219, 299

of a L-set, 285

of a map, 217

of a presheaf, 299

semicontinuous

lower, 31

upper, 31

semilattice, 44

[∧,
∨

]-, 295

join, 44

sentence, 159

separation

by a family of functions, 22

by a family of subsets, 21

sequence, 281

set

Ω-

associated to a presheaf, 302

complete, 311

constant, 288

L-, 285

bounded constant, 287
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irreducible, 122

pro-constructible, 197

sheaf, 237

constant geometric, 221

discrete, 238

domain of a, 219

geometrical, 218

Hausdorff geometric, 227

of closed subpresheaves, 398

of continuous functions, 239

of morphisms, 268

of opens, 238

of subsheaves, 265, 266, 398

over Ω, 311

sections of, 219

skyscraper, 373

sheaf representation

of a commutative ring, 321, 324

of a Heyting algebra, 224, 232

of a regular ring, 226, 233

of an integral domain, 225, 233

sheaf space, 218

sheafification, 257

singleton, 315

skyscraper sheaf, 373

solution sets, 154

soundness

of Intuitionistic Propositional Calculus

in KfA, 466

space

Baire, 171, 197

base, 218

Boolean, 170

Cantor, 170

compact, 22

completely regular, 22

completely spectral, 204

connected, 189

covering, 221

dyadic, 171

extremally disconnected, 204

Hausdorff or T2, 22

Lindelöff, 21

locally compact, 42

normal or T4, 22

regular or T3, 22

second countable, 21

separable, 21

sheaf, 218

sober, 121

spectral, 190

Stone, 178

T0, 22

T1, 22

topological, 17

totally disconnected, 170

specialization po, 30

spectrum

of a commutative ring, 95, 178

stable morphism, 470

stalk, 377

of a geometric sheaf, 218

Stone duality, 192

Stone space, 178

Stone-Čech compactification, 157, 206

structure, L-, 161

sub-basis

for a space, 18

sub-Boolean algebra

generated by a set, 139

subbasis

in a complete lattice, 80

subcategory, 143

full, 143

subframe, 85

sublattice, 44

regular, 81

subobject

classifier, 267

in a category, 145

subpresheaf, 251

closed, 252

closed – generated by, 252

generated by, 252

subsheaf, 251

characteristic, 267

substitution

in a sequence, 404

of a J-sequence in a I-sequence, 438

of a term for a variable, 159

of morphisms in R ∈ K1(AI), 441

of morphisms in R ∈ KIA, 440

of morphisms into a morphism, 440

support

of a presheaf, 236

of a product, 305

of a set of sections

in a L-presheaf, 299

in a L-set, 285

of an exterior power, 412

of powers, 290

of products, 290, 305

supremum (sup), 28

symmetric difference

of sets, 15

tensor product

of characteristic maps, 471
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term, 158

free for a variable, 159
theorem, 160

adjoint functor-, 154

Feferman-Vaught, 272
representable functor-, 154

Stone’s, 192

Stone-Weierstrass, 176
Tychonoff’s, 24

Urysohn separation, 22

theory, 160
topology, 17

constructible, 197

discrete, 17
finer than, 17

generated, 17
induced, 17

product, 23

Stone, 180
subspace, 17

Zariski, 180

total order, 32
total ring of fractions, 111

tree, 32

Y -branching, 33
binary, 34

ultrafilter, 59
ultraproduct, 59

unit, 99

upper bound, 28
upper set, 29

variable
bound, 159

free, 159

in a finitary operation, 463
in a finitary relation, 463

way below, 40
weight, 21

well-founded, 32
well-ordering, 32
Well-Ordering Axiom (WOA), 33

Yoneda’s Lemma, 148

zero

-divisor, 99

in a category, 145
ring, 107

Zorn’s Lemma, 32
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